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ON THE THETA NUMBER OF POWERS OF CYCLE GRAPHS

CHRISTINE BACHOC, ARNAUD FECHER, AND ALAIN THIERY

ABSTRACT. We give a closed formula for Lovasz’s theta number of theqrs
of cycle graph<>¢ and of their complements, the circular complete gralghs,.
As a consequence, we establish that the circular chromaitibar of a circular
perfect graph is computable in polynomial time. We alsow@ean asymptotic
estimate for the theta number 6.

1. INTRODUCTION

Let G = (V, E) be a finite graph with vertex sét and edge sek. Theclique
numberw(G) and thechromatic numbey (G) are classical invariants @F which
can be defined in terms of graph homomorphisms.

A homomorphisnfrom a graphG = (V, E) to a graphG’ = (V',F’) is a
mappingf : V — V’ which preserves adjacency: if is an edge ofG then
f(@)f(j) is an edge of7’. If there is a homomorphism fror¥ to G’, we write
G — G'. Then, the chromatic number ¢f is the smallest numbét such that
G — K, where K, denotes the complete graph withvertices. Similarly, the
cligue number is the largest numbesuch thatk;, — G.

In the seminal papef [7], Lovasz introduced the so-callezta number}(G)
of a graph. On one hand, this number provides an approximafiw(G) and of
X(G) since (this is the celebrateshndwich Theorejn

w(G) < 9(G) < x(G),
whereG stands for the complement 6f. On the other hand, this number is the
optimal value of asemidefinite prograrfiL1], and, as such, is computable in poly-
nomial time with polynomial space encoding accuracy [18], [In contrast, the
computation of either of the cligue number or the chromatimber is known to
be NP-hard.
By definition, a graphG is perfect if for every induced subgrapH, w(H) =

x(H) [1]. As ¥(G) = x(G) andx(G) is an integer, we have

Theorem 1.1. (Grotschel, Lo@sz and Schrijver])s] For every perfect graph, the
chromatic number is computable in polynomial time.
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2 CHRISTINE BACHOC, ARNAUD EECHER, AND ALAIN THIERY

There are very few families of graphs for which an explicitnfmila for the theta
number is known. In[]7], the theta numbers of the cyalgsand of the Kneser
graphsK (n,r) are explicitly computed. In particular, it is shown thatkifs an
odd number,

k cos (%)
1+ cos (%) '
In this paper, we give a closed formula for the theta numbethefcircular

complete graphd(;,,; and of their complement&;, ;. Fork > 2d, the graph
K},q hask vertices{0,1,...,k — 1} and two vertices and j are connected by

an edge ifd < |i — j| < k —d. We haveK;,;;, = K}, andK,, = Cy. More
generally, the grapl, ,; is the(d — 1) power of the cycle grapti},. Because the
automorphism group ak’, ,,; is vertex transitive (it contains the cyclic permutation
(0,1,...,k — 1)), we have (see [7, Theorem 8])

) V(Kyya)(Kgja) = k-

Besides the cas¢ = 2 demonstrated by Lovasz, the only case previously known
was due to Brimkov et al. who proved inl [4] that, #de= 3 andk odd,

5 —cos (F15)) —cos (F (L5 + 1) )
(cos (FL51) = 1) (cos (F (151 +1)) = 1) )

In Sectior 8, we prove the following:

(1) HC) =

3) ﬁ(m):k<1_

Theorem 1.2. Letd > 2, k > 2d, withged(k,d) = 1. Let,for0 <n <d —1,

Cp, = COS (2717%» Ay, := COS Q%kJ 2%)
Then

(4) I(Era) —gijlj(cf__;f)

The notions of clique and chromatic numbers and of perfeaphys have been
refined using circular complete graphs. Tieular chromatic numbeg.(G) of a
graphG was first introduced by Vince in[12]. It is the minimum of thadtions
k/dfor whichG — Kj, 4. Later, Zhu defined theircular clique numbetu.(G) of
G to be the maximum of thg/d for which K}, ,; — G and introduced the notion
of acircular perfect grapha graph with the property that every induced subgraph
H satisfiesw.(H) = x.(H) (see Section 7 in_[14] for a survey on this notion).
The class of circular perfect graphs extends in a natural thhayone of perfect
graphs. So one can ask for the properties of perfect gragthgémeralize to this
larger class. In this paper, we prove that Thedrer 1.1 stiti$for circular perfect
graphs:

Theorem 1.3. For every circular perfect graph, the circular chromatic mber is
computable in polynomial time.
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In previous works, the polynomial time computability of ttleromatic number
of circular perfect graphs was established_in [8] and of thrmutar chromatic num-
ber of strongly circular perfect graphs (i.e. circular petfgraphs such that the
complementary graphs are also circular perfect) was priovig].

In contrary to perfect graphs)(G) does not give directly the result, @$G)
is not always sandwiched betweep(G) and x.(G): for instance¥(Cs) = v/5
andw.(C5) = x.(C5) = 5/2. To bypass this difficulty, we make use of this
following basic observation: by definition, for every gra@hwith n vertices such
thatw.(G) = x.(G) = k/d, we haved(G) = (K}, ), wherek,d < n (see the
next section for more details). Hence, to ensure the polyaldime computability
of xc(G), it is sufficient to prove that the value¥ K}, ;) with k,d < n are all
distinct and separated by at leagbr somee with polynomial space encoding.

This paper is organized as follows: Sectldn 2 gathers theatkeefinitions
and properties of Lovasz theta number and of circular nusab®ectiori B proves

Theoren_1.R, while Sectidd 4 proves Theorfen] 1.3. In Se€lichésasymptotic

estimate (Kj,/q) = g +0 (%) is obtained (Theoremn 5.1).

2. PRELIMINARIES

The theta numbet(G) of a graphG = (V, E') was introduced in_[7], where
many equivalent formulations are given. The one_of [7, Thro4] has the form
of a semidefinite program:

I(G) = max{ Z B(z,y) : BERV*V B =0,
(z,y)eV?2
(5) > B(x,x) =1,
zeV
B(z,y) =0 aye€ E}

where B = 0 stands for: B is a symmetric, positive semidefinite matrix. For a
survey on semidefinite programming, we refer(tol [11]. Thel gmagram gives
another formulation for}(G) (there is no duality gap here because the identity
matrix is a strictly feasible solution dfl(5) so the Slatendition is fulfilled):

ﬂ(G):inf{t . BeRV*V, B0,
(6) B(z,x) =t —1,
B(z,y) = -1 xy¢E}

From [B) one can easily derive that,(f — G’, thend(G) < 9(G’). Indeed, if
B’ is an optimal solution of the dual program definiig’), then the matrixB
defined byB(z, y) := B'(f(x), f(y)) is feasible ford(G).

The circular complete grapfis;,,; have the property that, ,; — K}/ if and
onlyif k/d < k'/d’ (seel[8]). Thus the theta numb{K’, ;) only depends on the

quotientk/d, and we later conveniently assume thatndd are coprime.
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From the definition, it follows that
w(G) < we(G) < xe(G) < Xx(G).

Moreoverw(G) = |w.(G)], x(G) = [x:(G)], andw.(G) andx.(G) are attained
for pairs(k, d) such thatc > 2d andk < |V| (seel3], [13]).

If G is a circular perfect graph, lét d be such thagcd(k, d) = 1 andw.(G) =
Xc(G) = k/d. Becauses and K, ,; are homomorphically equivalent,(G) =

V(K}q). Summarizing, we have

Proposition 2.1. Let G be a circular perfect graph with vertices. Then,

1. w.(G) = x.(G) = k/d for some(k,d) such thatk > 2d, k < n, and
ged(k, d) = 1.
2. U(G) = I(Kyyq)-

3. AN EXPLICIT FORMULA FOR THE THETA NUMBER OF CIRCULAR
COMPLETE GRAPHS

In this section we prove Theordm 11.2. We start with an ovenoéour proof:
first of all we show that! (K, ) is the optimal value of a linear program (Proposi-
tion[3.1). This step is a standard simplification of a semiukefiprogram using its
symmetries. In a second step, a candidate for an optimatii@olof the resulting
linear program is defined (Definitidn 3.2) as the unique sarhudf a certain linear
system. We give an interpretation of this element, in terimh® coefficients of
Lagrange interpolation polynomials on the basis of Chebygwolynomials. Then,
playing with the dual linear program, it is easy to prove tine elementif feasi-
ble, is indeed optimal (Lemnia_3.4). The last step, which is dleaost technical,
amounts to prove that this elements is indeed feasiblegssentially that its coor-
dinates are non negative (Lemial3.3). To that end, we boihdovprove that a
certain polynomialZy(y) has non negative coefficients when expanded as a linear
combination of the Chebyshev polynomials (Lenima 3.6).

3.1. Alinear program defining the theta number. The vertex set off = K}, /4
can be identified with the additive group/kZ, and the additive action of this
group defines automorphisms of this graph. This action alltwtransform the
semidefinite prograni.{5) into a linear program, as follows:

Proposition 3.1. Letky := |k/2]. We have:

ko
ﬁ(m):max{kfo Cofz00 Y =1,
(7) =0

f:fjcos(#):(), 1§€§d—1}
§=0
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and also:

d—1
(Kyyq) = min{ kgo : de > 1,
) i »
> gecos (S) 20, 1< <k |
/=0

Proof. Taking the average over the translations by the elemerifg /g, one con-
structs from a matrix3 which is optimal for [(5), another optimal matrix which
is translation invariant, i.e. which satisfiéyx + z,y + z) = B(z,y) for all
x,y,z € Z/kZ. Thus one can restrict inl(5) to the matricBswhich are transla-
tion invariant. In other words, we can assume tBat,y) = F(x — y) for some
F : Z/kZ — R. Then we can use the Fourier transform o¥gkZ to expressF

as
k-1

F(Z) — ijeZijmr/k.

j=0
ThenB = Oifand only if f; = fi_;andf; > Oforall j =0,...,k — 1. Aftera
change fromf; to 2 f; for j # 0, k/2, we can rewrite

B(z,y) = fo:fj cos (M)
5=0

Then, it remains to transfer 1, . . ., f,) the constraints o3 that stand in[(5).

We have) . e /kz)2 Bl y) = k% fo, and > zezkz Bz x) = k:z;?io fj-
The edges of(},/; are the pairgz, y) with 1 < [z — y| < d — 1 so the condition
that B(z,y) = 0 for all edgesz, y) translates to

ko 2jbm
ijcos(T> =0, 1<¢<d-1.
§=0

Changingf; to f;/k leads tol(¥). The linear prograi (8) is the dual formulatién o
. O

3.2. A candidate for an optimal solution of (7). In order to understand the con-
struction of this solution, it is worth to take a look at theseavhend divides k.
Indeed, in this case, the system of linear equations

ko 2jbm
Y fjcos (T) — b0y, 0<l<d—1
=0

which is equivalent to

k—1
> frertlh =5y, 0<6<d—1
§=0
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where f] = f,;_j = fj/2 for j # 0,k/2, otherwisef; = f;, has an obvious
solution f = (fy,..., f;_,) defined as follows: takg; = 1/d for the indices;j
which are multiples ok/d, i.e. forj = nk/d,n = 0,...,d — 1. Takef; = 0

for other indices. Therf has exactlyl non zero coefficients, is feasible because
f; > 0, and its objective value equaltg'd, which is also the optimal value of the
linear program.

In the case whegcd(k,d) = 1, none of the rational numberst/d, for n =
0,...,d—1, are integers. Instead, we choose indices which are asasdqsessible,
namely we choose the indices of the font#fj for0 < n < d-1and set all
other coefficients to zero. Then, tletuple of coefficients which are not set to
zero, satisfies a linear system witlequations, and this linear system has a unique
solution. We shall prove that in this way an optimal solutir{7) is obtained.

Now we introduce some additional notations. The Chebyshiinpmials ([10]),
denoted(7;),>( are defined by the characteristic propeffy(cos(6)) = cos(¢6).
They can be iteratively computed by the relatibn ;(x) = 22T;(x) — Ty—1(x)
and the first termdy = 1, 17 = x. These polynomials are orthogonal for the
measurelz/v/1 — x2 supported on the intervi-1, 1].

The numbers,, 0 < n < d — 1, introduced in Theoreiin_1.2, come into play

now. Recall that
oo (|24]5)

We remark that the coefficients in the linear constraintd7)fassociated to the
indices| % | are precisely equal t&;(ay,).

We assume for the rest of this section that(k, d) = 1. Then the real numbers
ay, are pairwise distinct. We introduce the Lagrange polynts1({d0]) associated
to (CLQ, Ce ,ad_l):

d—1

9) La(y) = [T ( j __“st)-

s=0
sF#EN

Now we have two basis for the space of polynomials of degresoat equal tal —
1: the Chebyshev basigly, ..., T;_1} and the Lagrange bas{d.o, ..., Lq_1}.
We introduce the twa x d matricesI” = (7;,) andL = (), ) such that

(10)  Tu(y) = me0Lo(y) + Tenla(y) + -+ 70a-1La-1(y) 0<€<d—1
and

(11) Ln(y) = MoTo(y) + M1 Ti(y) + -+ Mpa—1Ta—1(y) 0<n<d-1.
Obviously we have

(12) Ton = Ty(an)

and
TL=LT =1,
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In particular, thei-tuple (Ao, A1,0, - - ., Ad—1,0) Satisfies the equations:
d—1
(13) > AnoTelan) =60, 0<L<d—1.
n=0

Now we can define our candidate for an optimal solutior_bf (7):
Definition 3.2. With the above notations, I¢t = (f7, ..., f, ) be defined by:

fr=2Ano ifj=%|"%] modk
fr=0 otherwise

It remains to prove thaf* is indeed optimal for[({[7). It will result from the two
following lemmas:

Lemma 3.3. For all j,0 < j < kg, f; > 0.
We postpone the proof of Lemrha B.3 to the next subsection.
Lemma 3.4. f* is an optimal solution of(7).

Proof. Lemma3.8, joined with (13) shows that is feasible. Thus we can derive
the inequality:

koo < 9(Kyq)-
Now we claim that the element = (Ao, Ao.1,--.,Aoq—1) is a feasible solution
of the dual prograni{8). For that we need to prove that

1 2jr .
Z)\o,z cos (T) > 050, 0<j<ko
0=0

which can be rewritten as

gx\o,zTe<cos (2‘7%» > 90, 0<j<ko

or, taking account of (11),

(14) Lo(cos (2‘%)) > 850, 0< < ko

Forj = 0, (I14) holds becaus&(1) = Lo(ap) = 1. Forj > 1, we take a look
at the position ofos(2;j7/k) with respect to the roots,, . .., aq_1 Of Ly. Indeed,
these roots belong to the seos(2j7/k),j = 1,...,k — 1}, but it should be no-
ticed that they go in successive pairs. More precisgyanda,_,, are equal to the
first coordinate of neighbor vertices of the regutagone. So eithecos(2;j7/k)
is equal to one of tha,,, or there is an even number of roaets, n > 1, which
are greater thaoos(2j7/k). In the later casel,o(cos(2j7/k)) andLy(1) have the
same sign. Sincéy(1) = 1, we are done.

Sinceg* is a feasible solution of{8), its objective value, whichdgial tok X o,
upper bounds)(K}, ;). So we conclude that

V(Kya) = kXoo
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and thatf* is an optimal solution of (7). O

3.3. The proof of Lemma[3.3. We want to prove thah,, > 0 for all n =
0,...,d — 1. We first prove that this condition is equivalent td,, > 0 for
alo<e<d—1.

Lemma 3.5. The tupleg ), 0,0 <n < d—1)and(X\g¢,0 < ¢ < d—1) are equal
up to a permutation of their coordinates.

Proof. It turns out that, up to a permutation of thg, the matrixT is symmetric.
Sinceged(k,d) = 1, one can findv, 1 < v < d — 1, andt > 0, such that
kv = 1 + td. By definition,

o (|24

only depends om mod d. Let us computer,,, wheren’ = vn mod d. Since
vnk/d = n/d + nt, we have

o = (| 5) = o ()
If we set

(15) x = x(k,d) := cos (%%) = cos ((% - %)271‘),

we have
an = Ty ().

If we reorder thez,, according to the permutation— vn mod d, which fixes0,
the coefficients of the corresponding matfixare equal to:

Tgm = Tg(an/) = Tg(Tn((ﬂ)) = Tgn(x) = Tng(l') = ng.
Thus the new matrif” is symmetric. This reordering of thg,, permutes accord-
ingly the coordinates of), 0,0 < n < d — 1). Also the matrixL = 71 has
become symmetric, so the permutggl, are equal to\y,, (who have not changed

in the procedure because the polynoniig(y) is not affected by the reordering of
thea,). O

The next lemma ends the proof of Lemmal 3.3:
Lemma3.6. Forall 0 < ¢ <d—1, Ao, > 0.

Proof. Since]‘[?;i(l —as) > 0, we can replacé(y) by

d—1 d—1
[T —as)=]]w-Tux)
s=1 s=1

wherez is defined in[(1b). The right hand side becomes a polynomitdienvari-
ablesx andy, depending only oni. This polynomial has an expansion in the
Chebyshev basis:

d—1 d—1

(16) [1o-Ti@) =D Qua)Tu(y).

s=1 =0
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We introduce complex variable¥ andY’, such thalz = X + 1/X and2y =
Y 4+ 1/Y. Then, [(16) becomes:

d—1 d—1
(17) [[v-x)v —x*) =yt Y Qia)y*
s=1 {=—(d-1)

whereQ) = 2¢71Qg and, for = 1,...,d — 1, Q" , = @}, = 272Q,. We want to
prove thatQ),(z) > 0 whenz is given by [15). To that end, we will prove that this
sequence of numbers is decreasing:

(18) Qo(z) = Qi(z) = -+ = Q4 (x)

and sinc&)’;_, (xz) = 1, we will be done. Now the idea is to multiply the equation
(17) by (Y — 1), so that the successive differeneé@s , (z) — Q) (x) appear in the
right hand side as the coefficientsof. We obtain, setting)’ , = @/, := 0:

d—1 d
(19) [I v-x)=y"" Y (Qi(x)—Qua)Y"
s=—(d—1) t=—(d—1)
We let:
d—1 2d—1 _
(20) Py)= [ v-x°):=> C(x)vi.
s=—(d-1) j=0
We have:
d—1
Pxy)= [ (Xvy-Xx)
j=—(d-1)
d—1 '
_ X2d—1 H (Y_Xy—l)
j=—(d-1)
Yy — X~
2d—1
X v Xd_lP(Y)
This equation leads to:
2d—1 o 2d—1 '
(V= XTH Y X)Xy = (XY - XN Y Cy(X)Y.
j=0 j=0
Comparing the coefficients af/ in both sides, we obtain the formula:
Xi—d _ xd ,
If X = €%, we obtain in[(21)
in((£ — d)f
(22) Ci(X) = Cj_l(X)M, 1<j<2d—1.

sin(%)
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Thus, taking account of (15)L_(119), (20) ad|(22), the inditiea (18) that we

want to establish, are equivalent to the non negauwty-é% whenf =

(% —2&)2m, 1 <j<d-1,andk > 2d. Let us prove it now: let

N = N(k,d) = | 2]
e =¢e(k,d) .:%—N.

Sincev andd are coprlme and < j < d, we haves € {d,d,..., = 11, We
first study the sign ofin(4 9y smceye = 7m(N + ¢ — &), this number belongs to
][N, (N + 1)x[, which means that the sign sifa(% ) s(—1DN.
Now we determine the sign sfn((4—d)6) : we have(%—d)e = (N —2v+e—
L +2), from which we obtain that —d)6 belongs td(N —2v)x, (N —2v+1)x|,
thus the sign ofin((4 — d)6) equals(—1)"V+2v.
U

3.4. The end of the proof of Theoren{1.2.We have obtained an optimal solution
f* of (@), given in Definitiori 3.P, with objective value equaliag . So we have

(23) V(Kx/a) = koo

We recall that:

(24) Lo(y) = XooTo(y) + XoaT1(y) + -+ + Xoa—1Ta-1(y)-

If we plug in (24) the valug) = ¢, and sumup fon = 0, ...,d—1, taking account

of Ty = 1and > % Tj(c,) = S.%_{ cos(2jnm/d) = 0, we obtain the formula

4.

3.5. Other expressions ford (K}, 4). Alternatively, we can integraté (P4) for the
measurely//1 — y?2, for which the Chebyshev polynomials are orthogonal, lead-
ing to different expressions far( K, 4):

Theorem 3.7. We have, with the notations of Theorlem 1.2:

1
@) )= [ Lol

-1 V1= 1?2

(—1)d_1k L(d_l)/2J

1 /25
(26) = 0 Z ﬁ(j)ad—l—%(ala---aad—l)
H(l —ay) 7=0
n=1
whereoy, ...,04_1 denote the elementary symmetric polynomialg ia 1 vari-
ables.

Proof. Integrating[(24) for the measudg /+/1 — y? over the interval—1, 1] leads
to (28) because the Chebyshev polynomiBssatisfy:

1t dy
— Th(y) —=—— = d,,0-
7T/_1 (v) =y On,0
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Then, (26) is obtained froni (25) with the monomial expansbr.,(y) and the
formula (ref ??)

1/1 i dy 0 if 5 is odd
™ _ly N 2%(];2) otherwise.
Il

Remark 3.8. The expressiofd]) specializes, whei = 2 andd = 3, to the expres-
sions given respectively [@] and[4]. Indeed, in the casé = 2, we havey = 1,
¢ = —1,anda; = — cos(w/k). Replacing in(4)), we recovei(T).
For d = 3, we haver; = co = —1/2, a1 = cos(|£|2F) andas = cos((|£] +
1)27). We obtain in)
k

I(Kigs) = 5 (1+

(1 —ar)(e1 —az) | (2 —a1)(c2 — az))
(I-a)(I—az2)  (I—a1)(1—a2)
k(1/2 4+ ayas)
(1—a1)(1 —a2)
which agrees with the expressi@@) given in[4, Theorem 1]

4. SEPARATING THE V(K /4)

In this section, we prove Theordm11.3. Jointly with Proposi®.1, and follow-
ing the discussion in the Introduction, it will be an immediaonsequence of the
following theorem:

Theorem 4.1. There exists an absolute and effective constasiich that for all
N e Nk <NK <N,k >2dk > 2d with ged(k,d) = ged(K',d') = 1, and
k/d#£k/d,

1

19 (Kyja) — (K ar)| > N

We start with a proof of the weaker property thé#<;, ;) # (K ) if k/d #
K /d.

Theorem 4.2. If ﬁ(Kk/d) = ﬂ(Kk’/d’) thenk‘/d = k‘//d/.

Proof. Assume that)( K}, /q) = V(K @) for k/d < k'/d'. Sinced(K,,) is an
increasing function op/q (see Sectiofil2), it implies tha(k, ,) is constant for

allp/q € [k/d, k' /d']. This constant will be denotegfor simplicity.

Claim 4.3. The numbep is rational.

Proof. Let ¢ > 5 be a prime such that/q < (k’/d’ — k/d). Then there exists
r such that/q, (r + 1)/q, (r + 2)/q, (r + 3)/q € [k/d,k'/d']. Sinceq > 5, it
divides at most one of the four numbets + 1, + 2, + 3. Hence one can find
psuchthap/q,(p+1)/q € [k/d, k' /d'] andq is prime top andp + 1.

For any positive integet;, denote(, = exp(2ir/a). We refer to[[6] for the
basic notions of algebraic number theory that will be ineolnext. For a number
field K, we letGal(K') denote its Galois group ové€. For number fieldd C L,
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andz € L, Tracek (z) andNorm% (z) denote respectively the trace and norm of
x in the extensiorl /K.
It is well-known (seel[B]) that

U, : (Z/aZ)* — Gal(Q(())
n — o,suchthat,(¢,) ="

is an isomorphism. Furthermore dfandb are coprime,
(Z)abZ)* = (Z/aZ)* x (Z)VZ)"™
by Chinese Remainder Theorem. It implies immediately that

Gal(Q(Cap)) = Gal(Q(Ca)) x Gal(Q(G)),

hence the field§)({,) andQ((;) are linearly disjoint ovef).

We now compute) = 9J(k,/,) using formulal(#). By definition, we havg, =

cos(2nm/q) = $(CI + (™) = onlcr) for 1 < n < g — 1. It follows that

v = q(l + Trace ECP‘;)(LO(cl)))

It gives immediately that? € Q((,). The same result using + 1)/q leads to
¥ € Q(¢p+1)- Since the field€)(¢,) andQ((,+1) are linearly disjoint, this proves
the result. O

Claim 4.4. The numbe# is an integer.

Proof. Let ¥ = ¢ with a,b € N coprime. Using the same arguments as in the
previous lemma, for any primesuch thatl /p < 1(d/k — d'/k’), one can find,
with p coprime tog andq + 1, such thay/p, (¢ + 1)/p € [d/k,d /K] . It means
thatp/q,p/(q+1) € [k/d, k' /d'].

Using formulal[(4) forp/q, one sees that = ¢ H‘f;ll(Z — 2ay)¥ is an algebraic

integer, hencNormg(Cpq) (x) € Z. We now compute this norm.

Sinceqd is rational,Norm%“pq)(qﬂ) = (q9)??) where¢ is the Euler func-
tion. Sincep is a prime,a,, is a conjugate ofi; forall 1 < n < ¢ — 1, hence
Normg (T2} (2 — 2a,)) = (Normg (2 — 2a1))4~". We also have

2

1£] -1£]
92— 2 =2 —QCOS(LSJ?) — (1)1 —¢ ).
HenceNormg(Cm)@ —2a;) = (Noer(Cm)(l — (p))?. Finally,

Normg(cpq)(l —(p) = Noer( )(Norm Eg (1 —¢p))

= (Normg(cp)( ()P

— p¢>(q)

(seell6]). Summing up all partial results, one gets

9y6(pa) p2(a-13(0) ¢ 7,

(qb
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If [ # pis a prime factor ob, then! divides ¢ by the previous formula. But the
same formula holds with + 1, hencel divides alsog + 1. It follows thatb is a
power ofp. But this is true for any large enough. Hende= 1. This proves the
result. O

To finish the proof of Theorem 4.2, we use the following re$udn [8] (see
also [8]): if ¥(K}/4) € Nthenk/d € N. But every rational number in the interval
[k/d, k' /d'] cannot be an integer. O

We can now start the proof of Theoréml4.1. It is based on theWailg obvious
lemma.

Lemma 4.5. Let« be a non zero algebraic integer of degree less thamdc > 1
such that the absolute values of the conjugates afe less thar: then
jof > 7
o
Proof. Since« is a non zero algebraic integetNormg(“)(a)] > 1. It follows
immediately that

la|c®=t > 1.
|

Let

d—1 d-1

o=dd ]2 2a.) ] @~ 20)0(Fesa) — 0(Fiya))

n=1 n=1

d'-1 d—1 d—1 d-1d-1
:kd’H (2 —2d/, ZH 2en — 2am) de 2 — 2a,) Z H 2¢, — 2a,

n=0m=1 n=0 m=1

2nm nk’

with the obvious notations/, := cos( L ) andal, := cos ({7 i—?) The
numbera is thus an algebraic integer, and it is non zero by TheareimMa2eover
it belongs toQ((rarar ), hence its degree is less that.

Let 8 be a conjugate ot.. Since the absolute values of the conjugates of
an, a,, ¢, andc,, are all less than 1, one gets

< N34V,

: : N v N
18] < kd'a® 14?4 ka4t g < 2N54% 54%

It follows from Lemmd4.b that
1

(N34N)N4 :

Furthermoreldd’ T2} (2 — 2a,,) [[¢=} (2 — 2a/,)| < N24V . This implies imme-
diately that

ol >

1
‘ﬁ(Kk/d) - ﬁ(Kk’/d’)’ > N24N(N34N)N4

This finishes the proof of Theordm 4.1.
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5. THE ASYMPTOTIC BEHAVIOUR OF(K}, /4)

From Lovasz’s formuld (1), the asymptotic behaviour ofttheta number of odd
holesCy1 is (seel[2] for instance):

(27) (O = 22 1o (3> -

2 k
In general, we havé(Kk/d) < k/d. Indeed,
I(Kyya) = k/9(Kyjq) < kjw(Kyq) = k/d.
In this section, we prove:

]:I_'hec?rem 5.1.1f d > 3andk > 4d® /7 thend(K} ) > k_ 46§r2 4. Hence, ford
ixed,

I(Fooya) = S +0 (%)
Notice that ford = 2, Theoreni 5.11 agrees with Equatiénl(27).
Proof. Letd > 3 andk > 4d*/n. Forevery0 < i < d — 1, letc; = cos(2in/d),
o; = sin(2i7/d), a; = cos ({%J 2%) ando; = ¢; —a;. We haven; = cos(2im/d—
27e;), With ¢; = s;/kd ands; = ik mod d.

Claim 5.2. Foreveryl < j < d— 1, we have
d—1

(28) II - = Q_d—iz if j #0,d/2
i ’
d—1 2
(29) Il (-c)=g5= ifi=dn
i
O |
(30) Z 1—y¢ - 6

i=1
Proof. The proof of these equalities is a short computation andetetld are omit-
ted. Equation[(29) (respectively (28), {30)) is obtaineddking the first deriva-
tive (respectively the second derivative, the third deived with respect tar of
the equalityZ}(cos x) = cos(kx), taking into account the identity(z) — 1 =

2k—1 Hfz‘ol(x — ¢;), then by evaluating the resulting identity at(respectively
2jm /q, respectively0). O
Claim 5.3. Foreveryl < j < d— 1, we have

;04— Ar? dm .

o“
2

J
47 .
(32) < Ty ifi=df2

(31)
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Proof. For everyl

< j<d—j, letz; € [2jm/d — 2me;, 257 /d] such that
d; = —2me;sin(z;). As|

sin(z)| < Joy| of [sin(za-)| < |0, we get
1870-] < 4] |(|o] + 2 /) /42,

Taking into accounto;| > sin 5 > 2/d, we obtain[(31L).
The inequality [(3R) is straightforward. O

Claim 5.4. For everyl < j <d — 1, we have

d—1 2 d2
(33) H\cj 0l < Srm 3( I

Proof. Letm; = ;04— if j # d/2, andmg o = d4/2. We have

d;
H!Cj—az‘\zmj' (¢j —ci) H <1+cj_ci>

s
I
L
-
lL_ﬁ
AL
S
=
l“ﬁ
L
<

Cj—CZ

2 42| 0;
S Ty ];[ <1+ ) due to [Z8),[[20) [(31)[(32)

i=1
i#j,d—j
< 2 d? 4d3\ . > w2 ;
< %4 3(1—cj)ﬁe 1 since |¢; — ¢ Y7 or everyi # j,d
e d?
ask > 4d°
= 2031 = ;) K2 2 4d/
O
Claim 5.5. We have
d—1
d2
H (1—a;)> 5d

Proof. Indeed,

d-1 d-1 d-1 5,
1—a ; 1 :
[0 - ( +1_ci>

i=1 i=1 =1

I
—~
—_
|
o
<
~—
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If 21,...,; are real numbers belonging 0, 1], then'_, (1 — z;) > 1 —
(x1 4 ...+ ;). Since for every, % <1, it follows:
d-1 d-1
d? 2m 1
H(l_ai)2—2d_1 (1—?' 1_Ci>
i=1 i=1

> ;l— due to [(3D) and: > 4d° /x.
O

Now we are ready to prove Theorém]5.1. We have the followirgjrcbf in-
equalities:

d—1 y7d—1
— k ETIE (en—ay)
ﬂ(Kk/d) = -4+ = Z__l— from @)
d d n=1 Hz:ll (1 —a;)
L ]{7 2d d—1 |d—-1
> - - - (¢n, — a;)| by Claim5.5
2
d dd n=1 |i=1
_k k2l en? & ot by ClaimE3
27 R T Y
k der?d
> e
2 3% due to [(30)

O

Notice that Theorern 5.1 shows thats close to the circular chromatic number
of densecircular perfect graphs (where dense means that the cliguer is large
compared to the stability number):

Corollary 5.6. For everye > 0, for every positive integet, there is a positive
integerw such that for every circular-perfect grapfi satisfyingw(G) > w and
a(G) < o, we haved (G) — xc(G)| < e.
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