
HAL Id: hal-00572823
https://hal.science/hal-00572823

Submitted on 2 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Splitting in the K-theory localization sequence of
number fields

Luca Caputo

To cite this version:
Luca Caputo. Splitting in the K-theory localization sequence of number fields. Journal of Pure and
Applied Algebra, 2010, 215 (4), pp.485-495. �10.1016/j.jpaa.2010.06.001�. �hal-00572823�

https://hal.science/hal-00572823
https://hal.archives-ouvertes.fr


Splitting in the K-theory localization sequence of
number fields
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Abstract - Let p be a rational prime and let F be a number field. Then, for each i ≥ 1, Quillen’s K-
theory group K2i(F ) is a torsion abelian group, containing the finite subgroup K2i(OF ), where OF is the ring of
integers of F . If p is odd or F is nonexceptional or i is even, we give necessary and sufficient conditions for the
p-primary component of K2i(OF ) ⊂ K2i(F ) to split. Our conditions involve coinvariants of twisted p-parts of the
p-class groups of certain subfields of the fields F (µpn) for n ∈ N. We also compare our conditions with the weaker
condition X2

S(F, Zp(i+ 1)) = 0 and give some example.
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1 Introduction and notation

Throughout the paper, p will denote a rational prime. For an abelian group A, set

Div(A) = maximal divisible subgroup of A

div(A) = {a ∈ A | ∀n ∈ N ∃ an ∈ A : a = nan}

Then div(A) is a subgroup of A which is commonly called the subgroup of (infinitely) divisible elements
or the subgroup of elements of infinite height of A. We denote by Ap the p-primary part of A and, for
n ∈ N, by A[pn] the subgroup of elements of A whose order divides pn.

If R is a ring and j is a natural number, Kj(R) denotes the j-th Quillen’s K-group of R. Let F be a
number field and i be a positive integer. Thanks to Soulé’s results (see [23], Theorem 4.6), Quillen’s long
exact localization sequence splits into isomorphisms K2i+1(OF ) ∼= K2i+1(F ) and short exact sequences of
the form

0 −→ K2i(OF ) −→ K2i(F )
∂F,i−→

⊕
v-∞

K2i−1(kv) −→ 0 (1)

where OF is the ring of integers of F , kv is the residue field of F at v and the direct sum is taken over
the finite places of F . We recall that, thanks to Quillen’s and Borel’s results, K2i−1(kv) is cyclic of order
|kv|i − 1 and K2i(OF ) is a finite group: in particular we always have Div(K2i(F )) = 0 (but in general
div(K2i(F )) may be nontrivial).
One can asks for conditions for the exact sequence in (1) to split. As a motivation for this question we
quote the following three results:

• if F = Q, Tate showed that the exact sequence (1) splits (see [13], Theorem 11.6);
∗Partially supported by an IRCSET fellowship.
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• if E is a rational function field in one variable over an arbitrary base field, then the localization
sequence for K2(E) (which is completely analogous to (1)) always splits, thanks to a result of Milnor
and Tate (see [12], Theorem 2.3);

• if E is a local field (i.e. a field complete with respect to a discrete valuation whose residue field is
finite), then the localization sequence for K2i(E) (which again is completely analogous to (1)) always
splits, thanks to a result of Soulé (see [20], Proposition 4).

Coming back to the case of a number field F , consider now the exact sequence which (1) induces on
p-primary parts, which we shall refer to as the localization sequence for K2i(F )p. The problem of the
splitting of the localization sequence for K2i(F )p was first studied by Banaszak: in one of his papers
(see [1], Corollary 1) he claims that, if p is odd, the localization sequence for K2i(F )p splits if and only
if div(K2i(F ))p = 0 (in fact Banaszak’s result is stated in terms of X2

S(F, Zp(i + 1)), see Proposition
2). This is obviously a necessary condition, since both the right and the left terms of the localization
sequence for K2i(F )p have trivial subgroup of divisible elements. However the proof of sufficiency seems
to be incomplete. It turns out that, for any i ≥ 1, there is a counterexample, namely there is a number
field F and a prime p such that div(K2i(F ))p = 0 but the localization sequence for K2i(F )p does not
split (see Example 2). The counterexample is constructed using Theorem 1, which is our main result and
is described in Section 3. We first define certain groups Ω

(p)
i,n (see (8)) which are the obstruction to the

splitting of the p-part of (1). Then, under the assumption that p is odd or i is even or F is nonexceptional
(see Definition 1), the Ω

(p)
i,n ’s are shown to vanish exactly when the groups (Cl

Si,n

Fi,n
⊗ µ⊗ipn)Gal(Fi,n/F ) are

trivial. Here Fi,n is a particular subfield of the fields F (µpn) (see Notation 4), where µpn denotes the
group of roots of unity in an algebraic closure of F , and Cl

Si,n

Fi,n
is the p-split class group of Fi,n. The

techniques used in the proof of Theorem 1 have already been used in [15] and [6]. In many cases, Ω
(p)
i,n and

(Cl
Si,n

Fi,n
⊗ µ⊗ipn)Gal(Fi,n/F ) are actually both isomorphic to a cohomological kernel, namely X2

S(Fi,n, µ
⊗i
pn)

(the general case for p = 2 requires a different approach). Another approach to the proof of Theorem 1 is
possible, following the ideas of [4], Section 3, to describe Ω

(p)
i,n , but it turns out to be lengthier and more

technical.
The difference between our splitting criterion and the condition div(K2i(F ))p = 0 (which is equivalent
to the vanishing of the i-th étale wild kernel X2

S(F, Zp(i + 1))) is also analyzed at the end of Section 3.
Anyway the condition div(K2i(F ))p = 0 is often also sufficient for the localization sequence for K2i(F )p
to split (for example in the case where F = Q, see Example 1).

2 Localization sequence for continuous Galois cohomology

In this section we are going to translate the problem of the existence of a splitting for the localization
sequence for K2i(F )p in cohomological terms. First of all we recall the following notion.
Definition 1. Let E be a field of characteristic other than 2. Then E is said to be nonexceptional if
Gal(E(µ2∞)/E) has no element of order 2 (and exceptional otherwise). Here µ2∞ is the group of roots of
unity whose order is a power of 2 in an algebraic closure of E.
Remark 1. Note that nonexceptional fields have no embeddings in R (since R is exceptional and subfields
of exceptional fields are exceptional).

As in the preceding section, p denotes a rational prime, i is a positive integer and F is a number field.
We are interested in the localization sequence for K2i(F )p, namely

0 −→ K2i(OF )p −→ K2i(F )p
∂F,i−→

⊕
v-p∞

K2i−1(kv)p −→ 0 (2)

which easily follows from (1). This exact sequence has a cohomological counterpart (see also Remark
2), as shown in the next proposition (which can essentially be found [1], Section I, §2-3). In this paper,
cohomology is always continuous cohomology of profinite groups, in the sense of Tate ([21]).
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Notation 1. If T is a finite set of places of F , GF, T denotes the Galois group of the maximal extension
FT of F unramified ouside T and OTF is the ring of T -integers of F . For a field E, GE denotes the
Galois group of a separable algebraic closure of E (and we use the convention Hj(E, −) := Hj(GE , −)

for cohomology). Finally, S(p)
F = S denotes the set of primes above p and ∞ in F .

For a noetherian Z[1
p ]-algebra A and a natural number j, let K ét

j (A) denote the j-th étale K-theory
group of Dwyer and Friedlander (see [3]). For any finite set T containing S, there are functorial maps

K2i(OTF )p
ν−→ K ét

2i(OTF ) and K ét
2i(OTF )

α−→ H2(GF, T , Zp(i+ 1))

We know that α is an isomorphism (see [3], Remark 8.8). We set ch = α◦ν (ch stands for Chern character).

Proposition 1 (Banaszak). Suppose that p is odd or F is nonexceptional. There is a commutative diagram
with exact rows as follows

0 // K2i(OSF )p

ch
��

// K2i(F )p

��

∂F,i
// ⊕v-p∞K2i−1(kv)p

��

// 0

0 // H2(GF, S , Zp(i+ 1)) // H2(F, Zp(i+ 1))p
∂cF,i

// ⊕v-p∞H1(kv, Zp(i)) // 0

Moreover vertical maps in the above diagram are surjective and the rightmost is an isomorphism.

Proof. Let T be any finite set of primes T containing S. For the rest of this proof, for any j ∈ N, set

Hj
T (−) := Hj(GF, T , −) and Hj(−) := Hj(F, −)

Then, for any n ∈ N, there is a commutative diagram with exact rows

0 // K2i(OSF )p

ch
��

// K2i(OTF )p

ch
��

∂F,i
// ⊕v∈TrSK2i−1(kv)p

��

// 0

0 // H2
S(Zp(i+ 1)) // H2

T (Zp(i+ 1))
∂cF,i

// ⊕v∈TrS H1(kv, Zp(i)) // 0

0 // H1
S(Qp/Zp(i+ 1))/Div

δ

OO

// H1
T (Qp/Zp(i+ 1))/Div

δ

OO

// ⊕v∈TrS H0(kv, Qp/Zp(i))

δ

OO

// 0

The definition and the exactness of the middle row can be found in [20], Section III and and [18], Section
4. The upper rightmost vertical map is defined by the diagram (note that in general this does not coincide
with the direct sum of the residue fields Chern characters) and it is bijective. This follows from the
surjectivity of the ch’s (see [3], Theorem 8.7, for the case p odd and [18], Theorem 0.1, for the case p = 2
and F nonexceptional) together with the easy fact that, for any v ∈ T rS, H1(kv, Zp(i)) is cyclic of order
|kv|i−1 and has therefore the same order as K2i−1(kv)p (thanks to Quillen’s calculation). As for the maps
denoted with δ, they are connecting homomorphisms in the long exact cohomology sequence relative to
the exact sequence

0→ Zp(j)→ Qp(j)→ Qp/Zp(j)→ 0

(j = i, i+ 1) and they are bijective (see [21], Proposition 2.3).
Taking direct limits as T ⊃ S grows, we get

0 // K2i(OSF )p

chδ−1

��

// K2i(F )p

��

∂F,i
// ⊕v-p∞K2i−1(kv)p

��

// 0

0 // H1
S(Qp/Zp(i+ 1))/Div // H1(Qp/Zp(i+ 1))/Div

∂cF,i
// ⊕v-p∞H0(kv, Qp/Zp(i)) // 0

(3)
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This is because, for any finite set T containing S,

Div(H1
T (Qp/Zp(i+ 1))) = Div(H1(Qp/Zp(i+ 1)))

(see [19], §4, Lemma 5). Composing again with δ we get a commutative diagram with exact rows

0 // K2i(OSF )p

ch
��

// K2i(F )p

��

∂F,i
// ⊕v-p∞K2i−1(kv)p

��

// 0

0 // H2
S(Zp(i+ 1)) // H2(Zp(i+ 1))p

∂cF,i
// ⊕v-p∞H1(kv, Zp(i)) // 0

Here again the rightmost map is an isomorphism and the other two vertical maps are surjective.

Remark 2. The Quillen-Lichtenbaum "conjecture" says that for any finite set of places T containing S,

ch : K2i(OTF )p −→ H2(GF, T , Zp(i+ 1)) (4)

is indeed an isomorphism. Tate (see [21], Theorem 5.4) proved this statement for i = 1: in this case
ch is just the Galois symbol ([3], proof of Theorem 8.2). The general case of the Quillen-Lichtenbaum
"conjecture" is a consequence of the Bloch-Kato "conjecture", whose proof has been recently completed
in [26] (in that paper the reader will also find suitable references to the work of Voevodsky, Rost, Haese-
meyer, Suslin, Joukhovitski, Weibel, ...). Anyway the isomorphism in (4) is not necessary for the proof of
Proposition 1 and in fact we shall not use it at all in this paper.

In the following we will be mainly interested in the bottow row of the diagram of Proposition 1, namely
the exact sequence

0→ H2(GF, S , Zp(i+ 1))→ H2(F, Zp(i+ 1))p →
⊕
v-p∞

H1(kv, Zp(i))→ 0 (5)

We will refer to it as the localization sequence for H2(F, Zp(i + 1)). The next proposition shows that,
even without using the Quillen-Lichtenbaum "conjecture", for our purposes there is no difference between
considering (2) or (5).
Definition 2. A subgroup B of an abelian group A is pure if nA ∩B = nB for each n ∈ N.

Proposition 2. Suppose that p is odd or F is nonexceptional. Then the localization sequence for
H2(F, Zp(i+ 1)) splits if and only the localization sequence for K2i(F )p splits.

Proof. A diagram chasing in the diagram of Proposition 1 shows that if the localization sequence for
K2i(F )p splits then the localization sequence for H2(F, Zp(i + 1)) splits. As for the converse, we can
assume p 6= 2 because if p = 2, then F is totally imaginary and the ch’s are isomorphisms by [18],
Theorem 0.11. Banaszak (see [1], Proposition 2) proved that the natural map

ν : K2i(OF )p −→ K ét
2i(OF [1

p ]) (6)

is split surjective. We are going to prove the analogous result for the map

ν : K2i(F )p −→ K ét
2i(F )p (7)

with the same strategy as Banaszak, taking into account that the groups involved are no longer finite (but
still torsion). First of all, for each n ∈ N, there is a commutative diagram

K2i+1(F, Z/pnZ) −−−−→ K2i(F )[pn] −−−−→ 0y ν

y
K ét

2i+1(F, Z/pnZ) −−−−→ K ét
2i(F )[pn] −−−−→ 0

1It is likely that there exists a proof of the proposition for p = 2 and F nonexceptional which does not use the results in
[18].
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with exact rows and surjective vertical maps (see [1], Diagram 1.6). This implies that the kernel Ci of the
map ν in (7) is a pure subgroup of K2i(F )p. Moreover Ci is finite since it is easily seen to coincide with
the kernel of the map in (6) (see [1], Remark 7). Hence Theorem 7 of [9] tells us that the map in (7) is
split. By definition of the maps ch, this proves that the map

K2i(F )p −→ H2(F, Zp(i+ 1))p

in the diagram of Proposition 1 splits. The proof of the proposition is then achieved by a diagram chasing
in the diagram of Proposition 1.

3 Main result

We are going to describe the obstruction to the existence of a splitting for the localization sequence for
H2(F,Zp(i+ 1)) in terms of coinvariants of twisted p-parts of the class groups of certain subfields of the
fields F (µpn). For a field E, we denote by µpn(E) the group of pn-th roots of unity in an algebraic closure
of E (the reference to E in µpn(E) will be often omitted).

Notation 2. For typographical convenience, we set

Ω
(p)
F,i,n = Ω

(p)
i,n =

(
H2(GF, S , Zp(i+ 1)) ∩ pnH2(F, Zp(i+ 1))p

)/
pnH2(GF, S , Zp(i+ 1)) (8)

Remark 3. Note that, from the definition of Ω
(p)
i,n , we have Ω

(p)

i,0 = 0.

The following lemma shows that the Ω
(p)
i,n ’s are the obstructions to the existence of a splitting for the

localization sequence for H2(F,Zp(i+ 1)).

Lemma 1. The localization sequence for H2(F, Zp(i + 1)) splits if and only if for every n ∈ N we have
Ω

(p)
i,n = 0.

Proof. Thanks to Theorem 5 in [9] and the fact that any direct summand of an abelian group is pure, we
have the following equivalences

Ω
(p)
i,n = 0 ∀n ∈ N ⇔ H2(GF, S , Zp(i+ 1)) is pure in H2(F, Zp(i+ 1))p

⇔ the localization sequence for H2(F, Zp(i+ 1)) splits.

We will make use of the following notation (see [24]).

Notation 3. Let E be any field. If M is a GE-module, we denote by E(M) the fixed field of the kernel of
the homomorphism GE → Aut(M) induced by the action of Gal(E/E) on M .

For each n ∈ N, we now introduce the subfield Fi,n of F (µpn) which will be relevant for us. Such
subfields has been used for the first time by Weibel in [24].

Notation 4. Let F be a number field. For n ∈ N and i ≥ 1, set Fi,n = F (µ⊗ipn) (note that Fi,0 = F for any
i ≥ 1). We will also use the notation Γi,n = Gal(Fi,n/F ). If w is a place in Fi,n, then denote by (ki,n)w
the residue field of Fi,n at w (thus (ki,0)w = kw). Finally, let Si,n be the set of primes of Fi,n above p
and ∞ (thus Si,0 = S) and let GSi,n denote the Galois group of the maximal extension of Fi,n unramified
outside Si,n (thus GSi,0 = GS = GF, S). Of course, in all this notation, a reference to p should appear but
the context should prevent any misunderstanding.

Lemma 2. Suppose that p is an odd prime or F is nonexceptional. For every n, m ∈ N, there are
isomorphisms of Γi,m-modules

H2(GSi,m , Zp(i))/p
n ∼= H2(GSi,m , µ

⊗i
pn) and H2(Fi,m, Zp(i))/pn ∼= H2(Fi,m, µ

⊗i
pn)
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Proof. The first isomorphism come from the cohomology sequence corresponding to the exact sequence

0→ Zp(i)
pn−→ Zp(i) −→ µ⊗ipn → 0 (9)

In fact H3(GSi,m , Zp(i)) = 0 since GSi,m has p-cohomological dimension less or equal to 2 (see [14],
(8.3.17)): this is true even in the case p = 2 because in that case Fi,m has to be nonexceptional and
therefore it has no real embeddings.
Similarly, consider the exact sequence

0→ µ⊗ipn
pn−→ Qp/Zp(i) −→ QpZp(i)→ 0

Since H3(Fi,m, µ
⊗i
pn) = 0 because GFi,m has p-cohomological dimension less or equal to 2 as before, we

deduce that H2(Fi,m, Qp/Zp(i)) is divisible. Then H3(Fi,m, Zp(i))p = 0 (see [14], (2.3.10)). In partic-
ular the image of the connecting homomorphism H2(Fi,m, µ

⊗i
pn) → H3(Fi,m, Zp(i)) relative to the exact

sequence (9) is trivial which gives the second isomorphism of the lemma.

We recall the definition and some properties of certain cohomological kernels which will be useful in
the proof of Theorem 1.

Notation 5. Let j be a natural number. Let E/F an algebraic Galois extension with Galois group G and
M a G-module. For any set T of prime of F we set

Xj
T (G, M) = ker

(
Hj(G, M) −→

∏
v∈T

Hj(Gv, µ
⊗i
pn)

)

where Gv is a decomposition group of v in E/F and the map is induced by the inclusion Gv ↪→ G. It is
standard to use the notation Xj(F, M) when E is an algebraic closure of F and T is the set of all primes
and Xj

T (F, M) when E = FT for a set of primes T of F .

Notation 6. If M is a GF -module, we denote by M∨ its Pontryagin dual, i.e. M∨ = Hom(M, Q/Z).

Lemma 3. • There is an isomorphism X1
Si,n

(Fi,n, (µ⊗ipn)∨) ∼=
(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)∨
.

• For any set of primes T of F , there is an isomorphism X2
T (F, µ⊗i+1

pn ) ∼=
(
X1

T (F, (µ⊗ipn)∨)
)∨.

Proof. For the first assertion see [14], Lemma 8.6.3, for the second see [14], Theorem 8.6.8.

Lemma 4. Let G be a finite cyclic group and let M be a faithful G-module which is cyclic of order a
power of p as an abelian group. Then

• if p 6= 2, then Hj(G, M) = Hj(G, M) = 0 for any j ≥ 1 (or equivalently the norm map MG →MG

is surjective);

• if p = 2 and G 6= {±1} (i.e. G is not a group of order 2 whose generator g satisfies gm = −m
for any m ∈ M), then Hj(G, M) = Hj(G, M) = 0 for any j ≥ 1 (or equivalently the norm map
MG →MG is surjective);

Proof. See [24], Lemma 3.2 and Remark 3.2.1.

Definition 3. We say that F satisfies C(n, i, p) if at least one of the following holds

(i) p is odd;

(ii) i is even;

(iii) n = 1;
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(iv)
√
−1 ∈ F ;

(v) n ≥ b−(F ) > 1 where b−(F ) = max{b ∈ N | ζ2b − ζ−1
2b
∈ F} where ζ2b is a generator of µ2b .

Remark 4. Note that F is nonexceptional if and only if b−(F ) > 1 (see [4], Lemma 2.1).

The next lemma shows the relation between Lemma 4 and the condition C(n, i, p) for F .

Lemma 5. The number field F satisfies C(n, i, p) exactly when Γi,n is cyclic and different from {±1} if
p = 2. Moreover F is nonexceptional if and only if, for sufficiently large n, Γi,n is cyclic and different
from {±1} if p = 2.

Proof. It is clear that if one of (i) or (iii) or (iv) holds, then Γi,n is cyclic and different from {±1} if p = 2.
For (ii), see [24], Application 3.3. For (v) see [5], Lemma 2.2 (3) (note that i can be taken to be odd and
then Γi,n = Gal(F (µ2n)/F )). On the other hand, suppose Γi,n is cyclic and different from {±1} if p = 2
and none of (i), (ii), (iii) and (iv) holds. Then F is the nonexceptional (see [5], Lemma 2.2 (1)) and then
b−(F ) > 1 by Lemma 2.1 of [5] and n ≥ b−(F ) again by Lemma 2.2 (3) of [5].

The next lemma will only be used for the 2-part of the proof of Theorem 1.

Lemma 6. Let v - p be a finite place of F . If w is a place of Fi,n above v, then (ki,n)w = kv(µ
⊗i
pn).

Proof. Both (ki,n)w and kv(µ
⊗i
pn) are subextensions of kv(µpn)/kv. Set Dv (resp. D′v) for the decompo-

sition group of v in Fi,n/F (resp. F (µpn)/F ) and P for the Galois group of F (µpn)/Fi,n. Identifying
Gal(kv(µpn)/kv) with D′v we get

Gal(kv(µpn)/kv(µ
⊗i
pn)) = D′v ∩ P

Gal((ki,m)v/kv) = Dv = D′v/D
′
v ∩ P

which proves the result.

We are now ready to state and prove the main result of the paper.

Theorem 1. Let i be a positive integer and let F be a number field. If F satisfies C(n, i, p), then there
is an isomorphism

Ω
(p)
i,n
∼=
(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)
Γi,n

Moreover, if F is nonexceptional, then for any n ∈ N and any i ≥ 1 we have

Ω
(2)
i,n = 0⇐⇒

(
Cl

Si,n

Fi,n
⊗ µ⊗i2n

)
Γi,n

= 0

In particular, if p is odd or F is nonexceptional or i is even, the localization sequence for K2i(F )p (or
equivalently for H2(F, Zp(i+ 1))) splits if and only if for every n ∈ N we have

(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)
Γi,n

= 0.

Proof. Suppose first that F satisfies C(n, i, p). Then note that

X1
S(F, (µ⊗ipn)∨) ∼= X1

Si,n
(Fi,n, (µ⊗ipn)∨)Γi,n

This follows from the exact sequence of terms of low degree associated to the exact sequence

1→ GFi,n, Si,n → GF, S → Γi,n → 1

using the fact that Hj(Γi,n, (µ⊗ipn)∨) = 0 for any j ≥ 1 (use Lemma 5 and Lemma 4). Therefore, using
Lemma 3, we get

X2
S(F, µ⊗i+1

pn ) ∼=
(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)
Γi,n

(10)
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Now, again using Lemma 3, we get X2(F, µ⊗i+1
pn ) ∼=

(
X1(F, (µ⊗ipn)∨)

)∨. Moreover X1(F, (µ⊗ipn)∨) ∼=
X1(Γi,n, (µ⊗ipn)∨): this follows from the exact sequence

0→X1(Γi,n, (µ⊗ipn)∨)→X1(F, (µ⊗ipn)∨)→X1(Fi,n, (µ⊗ipn)∨)Γi,n

which comes from the exact sequence of terms of low degree associated to the exact sequence

1→ GFi,n → GF → Γi,n → 1

together with the fact that X1(Fi,n, (µ⊗ipn)∨) = 0 (see [14], Theorem 9.1.3). Finally we also have,
X1(Γi,n, (µ⊗ipn)∨) = 0 (use Lemma 5 and Lemma 4) and therefore X2(F, µ⊗i+1

pn ) = 0. Now consider-
ing the commutative diagram with exact rows

0 −−−−→ X2
S(F, µ⊗i+1

pn ) −−−−→ H2(GF, S , µ
⊗i+1
pn ) −−−−→

∏
v∈S H

2(Fv, µ
⊗i+1
pn )y y y

0 −−−−→ X2(F, µ⊗i+1
pn ) −−−−→ H2(F, µ⊗i+1

pn ) −−−−→
∏
vH

2(Fv, µ
⊗i+1
pn )

we get
X2

S(F, µ⊗i+1
pn ) = ker

(
H2(GF, S , µ

⊗i+1
pn )→ H2(F, µ⊗i+1

pn )
) ∼= Ω

(p)
i,n

thanks to Lemma 2. We conclude using (10).
We now focus on the case where p = 2 and F is nonexceptional. Suppose first that the localization
sequence for H2(F, Z2(i+ 1)) splits, in other words Ω

(2)
i,n = 0 for any n ∈ N. Observe that, since Γi,n is a

2-group, Nakayama’s lemma implies

(Cl
Si,n

Fi,n
⊗ µ⊗i2n)Γi,n = 0⇐⇒ (Cl

Si,n

Fi,n
)2 = 0 (11)

Moreover, if we set Fi,∞ = ∪n∈NFi,n, then Fi,∞/F is a Z2-extension, since F is nonexceptional. Now,
since C(1, i, 2) holds for F , we know that (ClSF )2 = 0 by the first part of the proof. Moreover, again
by the first part of the proof, we also know that (Cl

Si,n

Fi,n
)2 = 0 for n large enough, since the fact that

F is nonexceptional implies that C(n, i, 2) is satisfied by F for n large enough. We have to show that
(Cl

Si,n

Fi,n
)2 = 0 for any n ∈ N. Let m ∈ N be such that Fi,m 6= F : we can find a prime v above 2 in F

which stays inert in Fi,m/F because (ClSF )2 = 0 and only primes above 2 can ramify in Z2-extensions. In
particular there is only one prime above v in Fi,∞/F (since Fi,∞/F is a Z2-extension). Now take n ≥ m

such that (Cl
Si,n

Fi,n
)2 = 0: Fi,n/Fi,m has to be disjointed from the 2-split Hilbert class field of Fm since there

is a nonsplit prime above 2 in Fi,n/Fi,m. This means that the norm map

(Cl
Si,n

Fi,n
)2 −→ (Cl

Si,m

Fi,m
)2

has to be surjective, which implies (Cl
Si,m

Fi,m
)2 = 0.

Now suppose that (Cl
Si,n

Fi,n
)2 = 0 for every n ∈ N: we prove by induction on n that Ω

(2)
i,n = 0. Of course

we trivially have Ω
(2)
i,0 = 0 (and indeed also Ω

(2)
i,1 = 0 by the first part of the proof). Next consider the

following commutative diagram

H2(Fi,n, Z2(i+ 1))[2n]
∂cFi,n−−−−→

⊕
w-2∞

H1((ki,n)w, Z2(i))[2n]ycor(2)n

ycor(1)n

H2(F, Z2(i+ 1))[2n]
∂cF−−−−→

⊕
v-2∞

H1(kv, Z2(i))[2n]
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A generic element x = (xv) ∈
⊕

v-2∞H
1(kv, Z2(i))[2n] can be written as a sum x = y1 + . . .+ yn where,

for any j = 1, . . . , n, yj ∈
⊕

v-2∞H
1(kv, Z2(i))[2n] and

(yj)v =

{
xv if xv ∈ H1(kv, Z2(i))[2j ] rH1(kv, Z2(i))[2j−1]
0 otherwise

By induction, for any j = 1, . . . , n− 1, there is an element

zj ∈ H2(F, Z2(i+ 1))[2j ] ⊆ H2(F, Z2(i+ 1))[2n]

such that ∂cF (zj) = yj . Now (yn)v is an element of order 2n in H1(kv, Z2(i))[2n] ∼= H0(kv, µ
⊗i
2n) (since

H0(kv, Z2(i)) = 0). This means that H0(kv, µ
⊗i
2n) = µ⊗i2n which implies (ki,n)w = kv(µ

⊗i
2n) = kv for

any w|v in Fi,n (by Lemma 6), i.e. v splits completely in Fi,n/F . In particular there is an element
wn ∈

⊕
w-2∞H

1((ki,n)w, Z2(i))[2n] such that cor(1)
n (wn) = yn. Now

H2(Fi,n, Z2(i+ 1))[2n]
∂cFi,n−→

⊕
w-p

H1((ki,n)w, Z2(i))[2n]

is surjective by the first part of the proof since Fi,n satisfies C(n, i, 2) (if i is odd Fi,n = F (µ2n) which
contains

√
−1 since n ≥ 2) and (Cl

Si,n

Fi,n
)2 = 0 and therefore there exists an element tn ∈ H2(Fi,n, Z2(i +

1))[2n] such that ∂cFi,n
(tn) = wn and clearly ∂cF (cor

(2)
n (tn)) = yn. This shows that

H2(F, Zp(i+ 1))[2n]
∂cF−→
⊕
v-p

H1(kv, Zp(i))[2n]

is surjective which is equivalent to Ω
(2)
i,n = 0.

Remark 5. It is worth noting that, if µp ⊆ F , then(
Cl

Si,n

Fi,n
⊗ µ⊗i

pn

)
Γi,n

= 0⇔ Cl
Si,n

Fi,n
⊗ µ⊗i

pn = 0⇔ Cl
Si,n

Fi,n
/pn = 0⇔ (Cl

Si,n

Fi,n
)p = 0

because in this situation Γi,n is a (cyclic) p-group and hence Nakayama’s lemma applies.

When p is odd or F is nonexceptional, the criterion of Theorem 1 is closely related with the triviality
of the so-called i-th étale wild kernel of F , which is by defintion X2

S(F, Zp(i + 1)) and is isomorphic to
div(K2i(F )p).

Theorem 2. [Tate, Banaszak-Kolster, Keune, Schneider, Østvaer] Suppose that p is an odd prime or F
is nonexceptional. For any i ≥ 1, we have

div(K2i(F )p) ∼= X2
S(F, Zp(i+ 1)) ∼= lim

←−

(
Cl

S1,n

F1,n
⊗ µ⊗ipn

)
Γ1,n

Proof. The first isomorphism is due to Tate (for i = 1 and p odd, see [21]), Banaszak and Kolster (for any
i and p odd, see [1], Theorem 3) and Østvaer (for any i, p = 2 and F non exceptional, see [16], Theorem
9.5). The second isomorphism is due to Keune or Schneider (for p odd, see [10], Theorem 6.6, or [19], §6,
Lemma 1) and Østvaer (for p = 2 and F nonexceptional, see [16], Theorem 6.1). Note that the proof is
now easy thanks to (10) since

X2
S(F, Zp(i+ 1)) ∼= lim

←−
X2

S(F, µ⊗i+1
pn ) ∼= lim

←−

(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)
Γi,n

∼= lim
←−

(
Cl

S1,n

F1,n
⊗ µ⊗ipn

)
Γ1,n

(for the latter isomorphism see (12)).
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Remark 6. As we have already remarked in the introduction of this paper, the condition div(K2i(F )p) = 0
is certainly necessary for the localization sequence for K2i(F )p to split since

div(K2i(OF )p) = div

⊕
v-p∞

K2i−1(kv)p

 = 0

We can check that the criterion of Theorem 1 is indeed consistent with Theorem 2, namely we can give
another proof of the fact that, if

(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)
Γi,n

= 0 for any n ∈ N, then div(K2i(F )p) = 0. This is

not difficult thanks to the description given in Theorem 2. For any i ≥ 1, set

Fi,∞ =
⋃
n∈N

Fi,n and Γi,∞ = Gal(Fi,∞/F )

Next observe that Fi,∞ ⊆ F1,∞ and using the definition of Fi,n one easily shows that the restriction gives
an isomorphism

Γ1,∞ = Γi,∞ ×∆i,∞

where ∆i,∞ = Gal(F1,∞/Fi,∞) = 〈γ ∈ Γ1,∞ | γi = 1〉. In particular ∆i,∞ is finite of order coprime with p
(since Γ1,n

∼= Zp × Gal(F (µp)/F ) and Zp has no nontrivial finite subgroups) and acts trivially on Zp(i).
Now set

X ′i,∞ = lim
←−

Cl
Si,n

Fi,n

and note that (
X ′i,∞ ⊗ Zp(i)

)
Γi,∞

= lim
←−

(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)
Γi,n

We have (X ′1,∞)∆i,∞ = X ′i,∞ since ∆i,∞ has order coprime with p and therefore

div(K2i(F )p) ∼=
(
X ′1,∞ ⊗ Zp(i)

)
Γ1,∞

=
((
X ′1,∞

)
∆i,∞

⊗ Zp(i)
)

Γi,∞
=
(
X ′i,∞ ⊗ Zp(i)

)
Γi,∞

(12)

which shows that, if
(
Cl

Si,n

Fi,n
⊗ µ⊗ipn

)
Γi,n

= 0 for any n ∈ N, then div(K2i(F )p) = 0. We will see in the

next section (Example 2) that the converse of this statement is not true in general: in other words, for
any i ≥ 1, there exists a prime number p and a number field F such that the localization sequence for
K2i(F )p does not split but div(K2i(F )p) = 0.

4 Examples.

To begin with we analyze the simplest case, namely F = Q. Let p be an odd prime and let Ai,n denote the
p-Sylow subgroup of ClSi,n

Fi,n
where Fi,n = Q(µ⊗ipn). Let K1,n be the n-th level of the cyclotomic Zp-extension

of Q. Set ∆1,n = Gal(F1,n/Kn) and for every j ∈ Z, let A(j)
1,n denote the ωj-component of A1,n where

ω : ∆n → Z×p denotes the Teichmüller character. We need the following well known result.

Theorem 3 (Kurihara). Let p be an odd prime. For any i ≥ 1,

H2(GQ, S ,Zp(i+ 1)) = 0⇐⇒ A(−i) = 0

where A is the p-Sylow of the class group of Q(µp). In particular, the triviality of H2(GQ, S ,Zp(i + 1))
only depends on the class of i modulo p− 1.

Proof. See [11], Corollary 1.5.

10



Example 1. Let F be the field of rational numbers. Since Gal(F1,n/Fi,n) acts trivially on µ⊗ipn , for every
n ≥ 1 we have (

A1,n ⊗ µ⊗
i

pn

)
Γ1,n

=
(

(A1,n)Gal(F1,n/Fi,n) ⊗ µ
⊗i

pn

)
Γi,n

=
(
Ai,n ⊗ µ⊗

i

pn

)
Γi,n

the last equality coming from the fact that there is only one ramified prime in F1,n/Q and it is totally
ramified (use [22], Proposition 13.22). By Nakayama’s lemma((

A1,n ⊗ µ⊗
i

pn

)
∆1,n

)
Gal(K1,n/Q)

= 0⇐⇒
(
A1,n ⊗ µ⊗

i

pn

)
∆1,n

= 0

Furthermore (
A1,n ⊗ µ⊗

i

pn

)
∆1,n

∼= A
(−i)
1,n

Moreover, it is easy to see that for any n ≥ 1

A
(−i)
1,n = 0⇐⇒ A

(−i)
1,1 = 0

Hence the localization sequence for K2i(Q)p splits if and only if A(−i)
1,1 is trivial. Therefore, by Theorem 3,

the localization sequence for K2i(Q)p splits if and only if H2(GQ, S ,Zp(i+ 1)) = 0 (the latter is equivalent
to K2i(Z)p = 0 thanks to the Quillen-Lichtenbaum "conjecture"). Moreover, it can be easily proved that
X2

S(Q, Zp(i+1)) ∼= H2
ét(GQ, S ,Zp(i+1)): therefore in this case the triviality of div(K2i(Q)p) is a necessary

and sufficient condition for the localization sequence for K2i(Q)p to split.
It is worth noting that the order of K4i−2(Z) is known: if Bi denotes the i-th Bernoulli number and ci
denotes the numerator of Bi/4i, then |K4i−2(Z)| is ci if i is even and 2ci if i is odd. Furthermore K4i−2(Z)
is known to be cyclic for 4i−2 < 20000. As for K4i(Z), we know that |K4i(Z)| has no prime factor smaller
than 107. Of course, Vandiver’s conjecture predicts that K4i−2(Z) is cyclic and K4i(Z) is trivial for any
i ≥ 1 (for these final remarks, see for instance [25], Introduction).
Anyway in general the condition X2

S(F, Zp(i+ 1)) = 0 is weaker than the condition of Theorem 1, as we
will show in the next example. First we need the following criterion.

Proposition 3. Let p be an odd prime and let F/Q be finite Galois extension such that

• µp ⊆ F ;

• (ClSF )p ∼= Z/pZ;

• there is only one prime above p in F ;

• F (µp2)/F is a nontrivial extension where every prime over p is totally split.

Then, for any i ≥ 1, X2
S(F, Zp(i+ 1)) is trivial but the localization sequence for K2i(F )p does not split.

Proof. We are going to use Jaulent’s theory of logarithmic classes: for notation and basic results the reader
is referred to [7]. For any F/Q finite and Galois (even not satisfying the hypotheses) we have an exact
sequence (see [2], §3)

0→ C̃lF (p)→ C̃lF
ϕ−→ (ClSF )p −→ degFD`/(degF p)Zp → 0 (13)

where p is any prime of F over p. Moreover

degFD` = p[F ∩ Q̂c : Q]Zp and degF p = f̃p · deg p = [Fp ∩ Q̂c
p : Qp] · p

where Q̂c (resp. Q̂c
p) is the cyclotomic Ẑ-extension of Q (resp. Qp). Now we want to compare [F ∩ Q̂c : Q]

and [Fp ∩ Q̂c
p : Qp]. We have vp([F ∩ Q̂c : Q]) = 0 thanks to the first and the fourth hypothesis. The

fourth hypothesis also implies that vp([Fp ∩ Q̂c
p : Qp]) = s ≥ 1. In other words

degFD`/(degF p)Zp ∼= Z/psZ

11



with s ≥ 1. Now the third hypothesis implies C̃l(p) = 0 (see [2], Lemma 4): therefore (13) implies that
s = 1 and C̃lF = 0 because of the second hypothesis. Since µp ⊆ F , we can use the isomorphism (see [8],
Théorème 3)

µ⊗ip ⊗ C̃lF ∼= X2
S(F, Zp(i+ 1))/pX2

S(F, Zp(i+ 1))

to deduce that X2
S(F, Zp(i+ 1)) = 0. On the other hand (ClSF )p is nontrivial, hence Theorem 1 tells us

that the localization sequence for K2i(F )p does not split.

Example 2. We have to find a number field F and an odd prime p satisfying the hypotheses of Proposition
3. We proceed as follows: we choose an odd prime p and a prime ` such that ` ≡ 1 (mod p): this ensures
that Q(µ`) has exactly one subextension of degree p which we call E. Let K be the subextension of degree
p of Q(µp2): then EK is an abelian number field whose Galois group is isomorphic to (Z/pZ)2. Let F ′ be
a subextension of degree p of EK which is different from E and K. Now, if the order of p modulo ` is not
divisible by p, then E has to be totally split at 3. In particular, EK/F ′ is totally split at p and F ′/Q has
only one prime above p (which is totally ramified). We may then choose F = F ′(µp): then the first, the
third and the fourth hypotheses of Proposition 3 are satisfied. So we are left to find such a prime ` with
the additional requirement that (ClSF )p is cyclic of order p.
Choose p = 3 and ` = 61: of course we have 61 ≡ 1 (mod 3) and 3 has order 10 modulo 61. We only have
one choice for F ′ and computations with PARI ([17]) reveal that F = F ′(µ3) = Q(θ) where θ is a root of
the polynomial X6−793X3 + 226981. We clearly have only one (totally ramified) prime above 3 in F and
furthermore (ClSF )3

∼= Z/3Z. Then by Proposition 3, for any i ≥ 1, we deduce that X2
S(F, Z3(i+ 1)) = 0

but the localization sequence for K2i(F )3 does not split.

Remark 7. (i) It seems reasonable to conjecture that, for any i ≥ 1 and any rational prime p, there
exist infinitely many number fields F such that the localization sequence for K2i(F )p does not split but
div(K2i(F )p) = 0.
(ii) As we have seen there exist a number field F and a prime p such that (for any i ≥ 1) div(K2i(F )p) = 0
but the localization sequence for K2i(F )p does not split. However, for any number field F , any prime p
and any i ≥ 1, we have div(K2i(F )p) = 0 if and only if K2i(F )p is isomorphic to a direct sum of finite
cyclic groups. This follows from a theorem of Prüfer (see [9], Theorem 11).
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