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Benchmark 3D: a version of the DDFV scheme
with cell/vertex unknowns on general meshes.

Boris Andreianov, Florence Hubert and Stella Krell

Abstract This paper gives numerical results for a 3D extension of the 2D DDFV
scheme. Our scheme is of the same inspiration as the one called CeVe-DDFV ([9]),
with a more straightforward dual mesh construction. We sketch the construction in
which, starting from a given 3D mesh (which can be non conformal and have arbi-
trary polygonal faces), one defines a dual mesh and a diamond mesh, reconstructs a
discrete gradient, and proves the discrete duality property. Details are given in [1].

1 DDFV methods in 2D and in 3D. A 3D CeVe-DDFV scheme.

DDFV (“Discrete Duality Finite Volume”) scheme was introduced in 2D by Herme-
line in [15] and by Domelevo and Omnès in [13]. To handle anisotropic problems or
nonlinear problems, or in order to work on general distortedmeshes, full gradient
reconstruction from point values is a popular strategy. It is well known that recon-
struction of a discrete gradient is facilitated by adding unknowns that are new with
respect to those of standard cell-centered finite volume schemes. The 2D DDFV
method consists in adding new unknowns at the vertices of theinitial mesh (this ini-
tial mesh is often called the primal one), and in use of new control volumes (called
dual cells, or co-volumes) around these points. A family of diamond cells is nat-
urally associated to this construction, each diamond beingbuilt on two neighbor
cell centersxK,xL and the two vertices of the edgeK|L that separates them. On a di-
amond, one can construct a discrete gradient direction per direction (cell-cell and
vertex-vertex), following the idea of [8]. It turns out thatthis discrete gradient is
related by a discrete analogue of integraton-by-parts formula, called “discrete du-
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ality”, to the classical discrete finite volume divergence associated with these two
families of meshes. This duality property greatly simplifies the theoretical analysis
of finite volume schemes based on the DDFV construction, see e.g. [5, 2]. This 2D
strategy reveals to be particularly efficient in terms of gradient approximation (see
[7, 14]) and has been extended to a wide class of PDE problems (see [1, 5, 6, 18, 19]
and references therein).

The 3D CeVe-DDFV scheme we present here also keeps unknowns only at the
cell centers and the vertices of the primal mesh, and it uses the primal mesh, a
dual mesh and a diamond mesh; as in the 2D case, a diamond is constructed from
two neighbor cell centersxK,xL and froml vertices of the edgeK|L that separates
them (l ≥ 3). The price to pay is that the gradient reconstruction becomes more
intricate. As in 2D, one direction per diamond is reconstructed using the two cell
center unknowns at the nodesxK,xL; two complementary directions of the gradient in
K|L are reconstructed simultaneously, by a suitable interpolation of the vertex values
in each faceK|L of the primal mesh. While the casel = 3 (meshes with triangular
faces) offers no choice, in general we have to fix a formula forinterpolation that is
consistent with affine functions and which leads to discreteduality (with respect to
appropriately defined dual cells). This was achieved independently in [17] and in
[3, 4, 1], with two different approaches (the above description stems from the point
of view developed in [3, 4, 1]).

Several 3D DDFV constructions exist. The CeVe-DDFV scheme by Pierre et al.
(see [12]) was the pioneering work in 3D; a particular feature of this method was in
the double covering of the domain by the dual mesh. This approach led to a method
that is only slightly different from ours; we refer to the benchmark paper [9] in the
same collection. Next, Hermeline in [16] introduced the important idea to associate
additional unknowns with the face centers of the primal mesh. In the subsequent
work [17] of Hermeline, elimination of these unknowns eventually led to the same
method that the one we describe. Many numerical tests are given in [16, 17]. Finally,
Coudière and Hubert in [10] introduced edge unknowns, instead of eliminating face
unknowns. This idea assessed a new strategy of 3D DDFV approximation; we call it
CeVeFE-DDFV because with respect to the primal mesh, cell, vertex and face+edge
unknowns are used. Let us point out the differences with respect to CeVe-DDFV
strategies. In [10], each diamond is constructed on two cellcentersxK,xL, on two
verticesxK∗ ,xL∗ in the faceK|L, and one face centerxK|L ∈ K|L and one edge center
xK∗|L∗ ∈ [xK∗ ,xL∗ ]. Then the gradient is reconstructed per direction (cell-cell, vertex-
vertex and face-edge), as in 2D. The edge and face centers arethe centers for a new,
third mesh. The CeVeFE-DDFV method is the object of the benchmark paper [11]
in the same collection.

Let us present the construction of our 3D CeVe-DDFV scheme. The primal mesh
needs not be conformal; there is no restriction on number of faces or face edges. For
simplicity, let us assume that the primal mesh volumes are convex; that their centers
belong to the volumes; and the face centers belong to the faces. These restrictions
can be relaxed, see [1]; but let us stress that the edge pointsmust be the middlepoints.
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Notation. We use a tripleT=
(

M
o,M∗,D

)

of partitions ofΩ into polyhedra.

• M
o denotes the initial mesh1, calledprimal mesh. We call ∂Mo the set of all

faces of this mesh that are included in∂Ω . These faces are considered as flat
boundary (primal) control volumes. We denote byMo the unionMo∪∂Mo.

– Center: To any (primal) control volumeK ∈M
o, we associate a pointxK ∈ K.

– Vertex: A generic vertex ofMo is denoted byxK∗ .
– Neighbors:givenK ∈M

o, all control volumesL ∈M
o such thatK andL have

a common face (or part of a face) form the setN (K) of neighbors ofK.
– Face: for all L ∈ N (K), by K|L we denote∂ K ∩∂ L which is a face (or a part of

a face) of the meshMo; it is supplied with aface center xK|L ∈ K|L.
– Edge: An egde[xK∗ ,xL∗ ] of Mo is defined by two neighbor verticesxK∗ , xL∗ ;

it is marked with the centerxK∗|L∗ that must be its middlepoint(xK∗+xL∗)/2.
– Element: An elementT = T

K ;L
K∗;L∗ is the tetrahedron(xK ,xK|L,xK∗|L∗ ,xK∗) : here

K is a primal volume ;K|L is a face ofK ; and[xK∗ ,xL∗ ] is an edge ofK|L (see
Fig. 1). The set of all elements is denoted byT . If xK is a vertice ofT ∈ T ,
then we say thatT is associated2 with the volumeK, and we writeT ∼ K.

• M
∗ denotes thedual meshconstructed as follows. A generic vertexxK∗ of Mo is

associated with the polyhedronK∗ ∈M
∗ made of all elementsT ∈ T that share

the vertexxK∗ (we write T ∼ K∗). If xK∗ ∈ Ω , we say thatK∗ is a dual control
volumeand writeK∗ ∈M

∗; and if xK∗ ∈ ∂Ω , we say thatK∗ is aboundary dual
control volumeand writeK∗ ∈ ∂M∗. ThusM∗ =M

∗∪∂M∗.
• D is thediamond mesh. For K ∈M

o,L ∈N (K), the union of the convex hull of
xK andK|L with the convex hull ofxL andK|L is calleddiamond, denoted byDK|L.

For expression of the discrete operators one needs a convention on diamond orien-
tation, subdiamonds and other objects and notation of [1]; we give them via Fig. 1.
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T
K⊕ ;K⊙
K∗1 ;K∗3
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xK∗3|K
∗
1

xK∗2

xK∗3
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xK⊙
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xK⊕

xK⊕

xK⊕−→nK⊙,K⊕

volume
K⊙

xK∗3|K
∗
1

K⊙|K⊕

xK⊙

xK⊙

xK∗3|K
∗
1
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xK∗3

xK∗3|K
∗
1

xK∗1

xK∗1

xK∗3

xK⊙|K⊕
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orientation

xK⊙|K⊕

xK∗2

interface

xK∗3

xK∗2

diamond
DK⊙|K⊕

subdiamond
S
K⊙|K⊕
K∗3|K

∗
1

K⊕

volume

Fig. 1 Element (left). Oriented diamond, subdiamond and related notation, cf. [1] (right).

1 This means,Mo is one of the meshes provided by the benchmark organizers.
2 Because we have made the assumption thatxK|L ∈ K|L, the relationT ∼ K simply means thatT is
included inK. The same observation applies to the notationT ∼ K∗. See [1] for generalizations.
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Discrete space and discrete operators; the discrete duality feature.

• A discrete function onΩ is a setwT =
(

wMo
,wM∗)

consisting of two sets of real
valueswMo

= (wK)K∈Mo andwM∗
= (wK∗)K∗∈M∗ .

• A discrete function onΩ is a setwT =
(

wMo
,wM∗

;w∂Mo
,w∂M∗)

≡
(

wT;w∂T
)

,

wMo
= (wK)K∈Mo, wM∗

= (wK∗)K∗∈M∗ , w∂Mo
= (wK)K∈∂Mo, w∂M∗

= (wK∗ )K∗∈∂M∗ .

• A discrete field onΩ is a set
−→
F T =

(−→
FD

)

D∈D
of vectors ofR3.

• We writeRT, RT, (R3)D, respectively, for the sets of discrete functions/fields.

• Discrete divergenceis the operator acting from(R3)D to R
T, given by

divT :
−→
F

T 7→
(

(

divK

−→
F

T
)

K∈Mo ,
(

divK∗
−→
F

T
)

K∗∈M∗

)

=: divT
−→
F

T, (1)

where the entries divK

−→
F T, divK∗

−→
F T of the discrete function divT

−→
F T on Ω are

divK

−→
F

T =
1

Vol(K) ∑
T∼K

mT

−→
F T ·

−→nT , divK∗
−→
F

T =
1

Vol(K∗) ∑
T∼K∗

m∗
T

−→
F T ·

−→n ∗
T , (2)

−→n T ,
−→n ∗

T being the exterior normal vectors to∂ K, ∂ K∗. Formulae (2) stem from the
standard procedure of finite volume discretization, applied onMo and onM∗.

• Discrete gradientis the operator acting fromRT to (R3)D, given by

−→
∇ T : wT 7→

(−→
∇D wT

)

D∈D
=:

−→
∇ TwT (3)

where the entry
−→
∇D wT of the discrete field

−→
∇ TwT corresponding toD = DK⊙|K⊕

(see Fig. 1) is reconstructed from the valueswK⊙ ,wK⊕ at the neighbor centers
xK⊙ ,xK⊕ (they give the projection on−−−−→xK⊙xK⊕ ) and the values(wK∗i )

l
i=1 at the l

vertices of the interfaceK⊙|K⊕ (they give the projection on the planeK⊙|K⊕)3 with

−→
∇D wT =

1
6Vol(D)

l

∑
i=1

{ 〈 −−−−→xK⊙xK⊕ , −−−−−−−→xK⊙|K⊕xK∗i |K
∗
i+1

, −−−−→xK∗i
xK∗i+1

〉
−−−−→xK⊙xK⊕ ·

−→nK⊙,K⊕

(wK⊕ −wK⊙)
−→nK⊙,K⊕

+2(wK∗i+1
−wK∗i

)
[−−−−→xK⊙xK⊕ × −−−−−−−→xK⊙|K⊕xK∗i |K

∗
i+1

]

}

. (4)

• Pick
[[

wT, vT

]]

:= 1
3 ∑K∈Mo Vol(K)wKvK+

2
3 ∑K∗∈M∗ Vol(K∗)wK∗vK∗ for scalar prod-

uct onRT and
{{−→

F T,
−→
G T

}}

:= ∑D∈D Vol(D)
−→
FD ·

−→
GD for scalar product on(R3)D.

And now, one can mimic the identity−
∫

Ω (div
−→
F )w=

∫

Ω
−→
F ·

−→
∇w for w|∂Ω = 0:

Proposition 1 (the discrete duality property; see [3, 1], see also [17]).For all
−→
F T∈(R3)D and all wT∈RT with w∂T = 0,

[[

−divT
−→
F T , wT

]]

=
{{−→

F T ,
−→
∇ TwT

}}

.

3 When l = 3, one simply uses the three-point interpolation in the plane K⊙|K⊕ to reconstruct this
projection. Clearly, the interpolation is exact for affine functions. In general, the reconstruction (3),
which is exact for affine functions, is based upon the 2D identity given in [3] and [1, Appendix].
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The scheme. In this benchmark, one approximates the linear diffusion problem

−div [A(·)
−→
∇u] = f (·) with Dirichlet boundary conditionu|∂Ω = ū(·), A(·) being

a heterogeneous anisotropic diffusion tensor andf (·) being a source term. LetPT

denote the projection on the DDFV meshT (i.e. the components ofPT f are the
mean values off ∈L1(Ω) per primal and per dual volumes);P

∂T is the projection on

the boundary part of the mesh. Let
−→
P

T denote the projection on the diamond mesh
D. For general data, the heterogeneity of the matrixA(·) is taken into account by

using the diamond-wise projectionAT :=
−→
P

TA(·); similarly, we usefT = P
T f (·) as

the discrete source term. The boundary condition is given bythe projectionP∂Tū(·).

For a fully practical discretization ofA(·) and f (·) (which are continuous in all
the tests we perform), for every element (recall that diamonds, primal volumes and
dual volumes of a DDFV mesh are unions of elements, see Fig. 1)we take the mean
value of the four vertices of the element. The point values ofthe exact solutionue in
the centers of the boundary volumes are used as discrete boundary conditions.

Given a DDFV meshT of Ω the method writes as:

FinduT s.t. −divT
[

AT
−→
∇TuT

]

= fT with uT = (uT;P∂Tū).

Convergence. From the discrete duality (Prop. 1) which is a cornerstone ofDDFV
schemes, and from consistency properties of the projection, gradient and divergence
operators (see [2]; cf. [5] for analogous properties in 2D) one easily derives that
the scheme is well posed forl ≤ 4.4 Given a family(Th)h of CeVe-DDFV meshes,
the associated discrete solutionsuTh enjoy a uniform discreteH1 estimate, and they
converge to the exact solutionu as the sizeh of the mesh tends to zero. Convergence
analysis requires mild proportionality assumptions on themeshesTh in use, see [2].

2 Numerical results

In this section, we describe the results obtained on Tests 1–4 of the benchmark. No-
tice that, while the method converges for merelyL∞ uniformly elliptic tensorA(·),
it is not designed for a smart handling of apiecewisecontinuousA(·)5. Therefore,
we skip Test 5 that involves piecewise constantA(·). We refer to Coudière, Pierre,
Rousseau and Turpault [12] and to Hermeline [17] for 3D CeVe-DDFV construc-
tions efficiently taking into account discontinuities ofA(·).

Choice of the cell and face points.We pick forxK, the isobarycenter of the cellK,
and forxK|L, the isobarycenter of the faceK|L.

4 The restriction on the numberl of face vertices is only needed for justifying a discrete Poincaré
inequality; yet this property is immaterial, e.g., for the associated evolution problem. In practice,
in the below tests valuesl = 3,4,6 were used, and no particular problem forl = 6 is reported.
5 In 2D, a scheme called m-DDFV, specifically designed to handlediscontinuousdiffusion tensors,
was designed by Boyer and Hubert in [6]. There is a clear difference in convergence orders for the
basic DDFV version [5] and the m-DDFV version [6] (see the 2D benchmark paper [7]).
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Measure of errors and convergence orders.To put the discrete and the exact solu-
tions “at the same level”, we use the projectionP

Tue of the exact solution and the as-

sociated discrete gradient reconstruction
−→
∇T

P
Tue, wherePT · = (PT · ; P∂T ·) . The

L2 norms of the errorseT :=uT−P
Tue and

−→
∇TeT :=

−→
∇TuT−

−→
∇T

P
Tue are measured in

terms of the scalar products
[[

· , ·
]]

onRT,
{{

AT · , ·
}}

and
{{

· , ·
}}

on(R3)D: the rel-

ative error indicatorserl2 and ener, ergrad we use are defined, respectively, as
(

[[

eT ,eT
]]

[[

PTue,PTue

]]

)1/2

and as

(
{{

AT
−→
∇TeT,

−→
∇TeT

}}

{{

AT
−→
∇TPTue ,

−→
∇TPTue

}}

)1/2

,

(
{{−→

∇TeT ,
−→
∇TeT

}}

{{−→
∇TPTue,

−→
∇TPTue

}}

)1/2

.

• Test 1 Mild anisotropy, ue(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
1 2187 21287 0.706E-02 0.706E-02 1.992 1.992 0.178E+01
2 4301 44813 0.706E-02 0.706E-02 1.997 1.996 0.179E+01
3 8584 94088 0.278E-02 0.278E-02 1.993 1.993 0.179E+01
4 17102 195074 0.792E-03 0.792E-03 1.997 1.997 0.179E+01
5 34343 405077 0.140E-02 0.140E-02 1.999 1.999 0.180E+01
6 69160 838856 0.140E-02 0.140E-02 1.999 1.999 0.180E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 2187 0.539E-02 - 0.654E-01 - 0.649E-01 -
2 4301 0.331E-02 2.165 0.488E-01 1.297 0.491E-01 1.239
3 8584 0.206E-02 2.069 0.381E-01 1.077 0.383E-01 1.079
4 17102 0.135E-02 1.841 0.301E-01 1.018 0.302E-01 1.026
5 34343 0.846E-03 1.998 0.240E-01 0.973 0.242E-01 0.955
6 69160 0.539E-03 1.934 0.190E-01 1.012 0.191E-01 1.008

• Test 1 Mild anisotropy, ue(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg
1 87 1433 0.667E-01 0.667E-01 1.904 1.904 0.159E+01
2 235 4393 0.432E-02 0.432E-02 1.997 1.997 0.172E+01
3 527 10777 0.280E-01 0.280E-01 1.990 1.990 0.176E+01
4 1013 21793 0.108E-02 0.108E-02 2.003 1.995 0.177E+01
5 1776 40998 0.113E-01 0.113E-01 2.000 1.996 0.178E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 87 0.484E-01 - 0.204E+00 - 0.374E+00 -
2 235 0.388E-01 0.666 0.173E+00 0.496 0.277E+01 -6.049
3 527 0.231E-01 1.925 0.118E+00 1.402 0.838E+00 4.445
4 1013 0.167E-01 1.484 0.940E-01 1.060 0.299E+01 -5.843
5 1776 0.117E-01 1.937 0.818E-01 0.742 0.291E+01 0.147
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• Test 1 Mild anisotropy, ue(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 855 13819 2.28E-02 2.28E-02 1.989 1.989 1.730
2 7471 138691 2.52E-03 2.52E-03 1.994 1.994 1.778
3 62559 1237459 1.99E-03 1.99E-03 1.999 1.999 1.794
4 512191 10443763 3.82E-04 3.82E-04 2.000 2.000 1.797

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 855 0.501E-01 - 0.484E+00 - 0.558E+00 -
2 7471 0.156E-01 1.611 0.209E+00 1.160 0.159E+00 1.735
3 62559 0.392E-02 1.954 0.677E-01 1.594 0.395E-01 1.970
4 512191 0.101E-02 1.936 0.223E-01 1.585 0.109E-01 1.835

• Test 1 Mild anisotropy, ue(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg
1 59 703 0.341E-01 0.341E-01 1.966 1.966 0.167E+01
2 599 9835 0.856E-02 0.856E-02 1.991 1.991 0.178E+01
3 5423 101539 0.214E-02 0.214E-02 1.998 1.998 0.179E+01
4 46175 917395 0.535E-03 0.535E-03 1.999 1.999 0.180E+01
5 381119 7788403 0.134E-03 0.134E-03 2.000 2.000 0.180E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 59 0.396E-01 - 0.136E+00 - 0.116E+00 -
2 599 0.149E-01 1.266 0.928E-01 0.499 0.818E-01 0.449
3 5423 0.400E-02 1.792 0.497E-01 0.849 0.448E-01 0.820
4 46175 0.103E-02 1.905 0.256E-01 0.931 0.232E-01 0.920
5 381119 0.259E-03 1.954 0.130E-01 0.965 0.118E-01 0.961

• Test 2 Heterogeneous anisotropy,min=−0.862,max= 1.0487
ue(x,y,z) = x3y2z+ xsin(2πxz)sin(2πxy)sin(2πz), Prism meshes

i nu nmat umin uemin umax uemax normg
1 3010 64158 -.856E+00 -.856E+00 1.044 1.044 0.170E+01
2 24020 555528 -.859E+00 -.859E+00 1.047 1.047 0.171E+01
3 81030 1924098 -.861E+00 -.861E+00 1.049 1.049 0.171E+01
4 192040 4619868 -.862E+00 -.862E+00 1.049 1.049 0.171E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 3010 0.467E-01 - 0.711E-01 - 0.785E-01 -
2 24020 0.123E-01 1.931 0.224E-01 1.667 0.328E-01 1.262
3 81030 0.554E-02 1.960 0.116E-01 1.634 0.190E-01 1.348
4 192040 0.314E-02 1.973 0.728E-02 1.607 0.127E-01 1.389
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• Test 3 Flow with strong anisotropy on random meshes,min= 0, max= 1,
ue(x,y,z) = sin(πx)sin(πy)sin(πz), Random meshes

i nu nmat umin uemin umax uemax normg
1 91 1063 -.202E+01 -.978E+00 1.969 0.931 0.392E+01
2 855 13819 -.116E+01 -.994E+00 1.206 0.982 0.363E+01
3 7471 138691 -.105E+01 -.995E+00 1.029 0.991 0.362E+01
4 62559 1237459 -.101E+01 -.998E+00 1.014 0.998 0.360E+01

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 91 0.713E+00 - 0.716E+00 - 0.439E+00 -
2 855 0.152E+00 2.068 0.199E+00 1.712 0.130E+00 1.633
3 7471 0.384E-01 1.906 0.854E-01 1.174 0.417E-01 1.568
4 62559 0.119E-01 1.656 0.542E-01 0.640 0.183E-01 1.165

• Test 4 Flow around a well, min= 0, max= 5.415, Well meshes

i nu nmat umin uemin umax uemax normg
1 1482 23942 -.438E-01 -.438E-01 5.415 5.415 0.162E+04
2 3960 70872 -.239E-01 -.239E-01 5.415 5.415 0.162E+04
3 9229 173951 -.132E-01 -.132E-01 5.415 5.415 0.162E+04
4 21156 412240 -.661E-02 -.661E-02 5.415 5.415 0.162E+04
5 44420 882520 -.411E-02 -.411E-02 5.415 5.415 0.162E+04
6 82335 1654893 -.281E-02 -.281E-02 5.415 5.415 0.162E+04
7 145079 2937937 -.198E-02 -.198E-02 5.415 5.415 0.162E+04

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1482 0.564E-02 - 0.473E-01 - 0.817E-01 -
2 3960 0.218E-02 2.897 0.205E-01 2.556 0.487E-01 1.578
3 9229 0.964E-03 2.898 0.108E-01 2.255 0.296E-01 1.770
4 21156 0.645E-03 1.454 0.748E-02 1.344 0.205E-01 1.320
5 44420 0.427E-03 1.664 0.546E-02 1.274 0.144E-01 1.443
6 82335 0.291E-03 1.864 0.396E-02 1.560 0.108E-01 1.391
7 145079 0.205E-03 1.848 0.337E-02 0.858 0.794E-02 1.624

3 Comments

Let us summarize the observations; footnotes provide comments of theoretical order.

Choice of the solvers. The following results have been performed either with the
direct solvers given by the UMFPACK library, or with the BiCGStab algorithm with
ILU(0) preconditionning delivered in the HSL library. A comparison between ISTL-
CG with ILU(0) preconditionning and PETSC-CG with ILU(2) preconditionning
shows that, whenever ISTL-CG/ILU(0) algorithm converges,much less CPU time
and much less memory is used than for the PETSC-CG/ILU(2) algorithm.
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Convergence orders observed6. Even if the orders present serious oscillations for
some cases (e.g., in Test 3 and in Test 1 on Voronoı̈ meshes), orders slightly belowh2

(superconvergence) for the solution in theL2norm are observed quite systematically.
One exception is Test 4, where an order intermediate betweenh3/2 andh2 seems to
appear; this may be related to the presence of a singularity in the well center.

Regarding the gradient norm, convergence orders close toh are seen in Test 1 on
tetrahedral, Voronoı̈, checkerboard meshes. On Kershaw meshes in Test 1 and prism
meshes of Test 2, more structured though distorted, anh3/2 convergence order can
be observed. For random meshes of Test 3, orders degrade quickly but the numerical
evidence (four meshes only) seems insufficient. The well meshes of Test 4 appear
as rather structured but having a singularity; the effect ofsingularity grows as the
mesh becomes finer, and the convergence order falls fromh2 to h3/2 and then toh.
Yet from Tests 3 and 4 with stronger anisotropy ofA(·), it becomes clear that more
adequate norm for measuring gradient convergence is the energy norm. In Test 4 we
observe an accurateh3/2 convergence and in Test 3, an orderh3/2 can be conjectured.

Violation (and fulfillment) of the maximum principle 7. We observe that viola-
tion of discrete maximum principle does not occur systematically (or if it occurs,
it is of imperceptible magnitude, even on coarse meshes). Noovershoot/undershoot
is reported on Kershaw, checkerboard and prism meshes for Test 1, nor on the well
meshes of Test 4; a very slight overshoot can be seen in Test 1 on tetrahedral meshes.
On the contrary, random meshes of Test 3, and also the finest ones among the
Voronoı̈ meshes of Test 1, exhibit a perceptible violation of the maximum principle
which is nonetheless reduced as the mesh size diminishes8. Difficulties on these two
kinds of meshes can be explained by their poor shape regularity (e.g., fine Voronoı̈
meshes in Test 1 present a dramatic contrast of size between neighbor cells).

Influence of the mesh type and quality on convergence orders9. Among the
different mesh properties that could influence the numerical behavior, restrictions on
l appear as immaterial (the best convergence orders are achieved for prism meshes
of Test 2 having up tol = 6 face vertices). While conformity is not needed for the
method, non-conformal meshes bring more distorted cells and diamonds. We have
seen that bad shape conditioning may induce violation of themaximum principle.
In Test 1, presence of neighbor cells with considerable contrast in size (for Voronoı̈
meshes and for non-conformal checkerboard meshes) degrades convergence orders
for the gradient, in contrast to rather gradually distortedKershaw and prism meshes.

6 For regular enoughA(·) andue, orderh can be proved for both solution and its gradient inL2.
7 In principle, DDFV methods are not designed in order to respect the discrete maximum princi-
ple; and the convergence analysis exploits rather the variational structure, well preserved by the
method (this is one of the benefits from the discrete duality of Prop. 1). Let us point out that for
isotropic problems on primal meshes satisfying the orthogonality condition (e.g., Delaunay tetra-
hedral meshes with the choice of circumcenters for the cell centersxK - note thatxK may fall out of
K), the discrete maximum principle is easily shown for the CeVe-DDFV scheme under study ([4]).
8 In theory, one can prove convergence inLq for q< 6; nothing guarantees convergence inL∞.
9 Recall that conformity of meshes is not required by the method; and the construction allows
for unrestricted numberl of face vertices. Yet it is a well-known difficulty for the analysis of the
scheme that the discrete Poincaré inequality cannot be proved for l > 4, see [17, 2].
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