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Optimal Delaunay and Voronoi quantization
schemes for pricing American style options

Gilles Pagès and Benedikt Wilbertz

Abstract We review in this article pure quantization methods for the pricing of mul-
tiple exercise options. These quantization methods have the common advantage, that
they allow a straightforward implementation of the Backward Dynamic Program-
ming Principle for optimal stopping and stochastic controlproblems. Moreover we
present here for the first time a unified discussion of this topic for Voronoi and
Delaunay quantization and illustrate the performances of both methods by several
numerical examples.

1 Introduction

This paper is focused on pure quantization method for pricing multi-asset Ameri-
can style options (by contrast with hybrid Monte Carlo-quantization approaches).
It continues two goals: it is partly a survey on the pricing ofthis family of options
by optimal Voronoi quantization techniques. It is also an opportunity to present
our first attempt to implement in a multi-dimensional setting the new quantization
method called dual (orDelaunay) quantization recently developed and investigated
in [Pagès and Wilbertz 2010a] and [Pagès and Wilbertz 2010b]. This approach re-
lies on the Delaunay triangulation of a grid whereas usual vector quantization re-
lies on its Voronoi diagram, hence its name since the Delaunay triangulation is and
Voronoi diagrams are in duality (see [Okabe et al. 2000]). Dual quantization has
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been originally introduced in [Pagès and Wilbertz 2009] tocompute the expectation
of functionals of nonhomogenous Bernoulli random walks involved in the pricing
of CDO’s (in a static copula model).

Optimal Voronoi quantization, which is an old story going back the the 1950’s has
been originally developed for Signal transmission purposeat the Bell Laboratory,
has been implemented as a numerical method for the pricing ofmulti-asset Ameri-
can – strictly speaking Bermuda – options in a series of papers [Bally et al. 2001],
[Bally and Pagès 2003a], [Bally and Pagès 2003b], [Bally et al. 2003], [Bally et al. 2005].
Other fields of application have been developed, often in connection with financial
problems like numerical integration [Pagès 1993], [Pagès 1998], [Pagès and Printems 2003],
non-linear filtering(see [Pagès and Pham 2005], [Pham et al. 2005], [Sellami 2010],
[Sellami 2009] with application to stochastic volatility lodels, stochastic control
with application to portfolio management (see [Pagès et al. 2004]) and swing option
pricing (see [Bardou et al. 2010a], [Bardou et al. 2010b]), discretization of stochas-
tic PDE’s (typically Zakaı̈ and Mc Kean Vlasov equations, see [Gobet et al. 2007],
[Gobet et al. 2005]). We also refer to the surveys [Pagès et al. 2003] and [Pagès and Printems 2009]
and the references therein, as well as to the website devotedto Optimal quantization
(see [Pagès and Printems 2005]).

Quantization methods consists in approximating/discretizing anR
d-valued ran-

dom vectorX by a random vector often denoted̂X taking into a gridΓ of sizeN≥ 1
so as to make‖X− X̂‖p as small as possible. As concerns Voronoi quantization,X̂
is a projection following the nearest neighbour rule on gridΓ of sizeN. For dual
quantization,̂X is the result of a randomsplitting operatorwhich projectsX on one
of the vertices of a “minimal”Γ -valuedd-simplex which containsX, with a proba-
bility ruled by the barycentric coordinates ofX. In a quadratic Euclidean framework
optimal Voronoi quantizers satisfy the so-called stationary propertyX̂ = E(X | X̂)

whereasall dual quantizers satisfy the reverse stationarity propertyX = E(X̂ |X).
WhenX has an unbounded support, one extends the splitting operator by a nearest
neighbour projection outside the convex hull of the gridΓ .

In order to solve dynamic optimization problems related to a(discrete time)
Markov chain(Xk)0≤k≤n, one introduces quantization trees that is quantization
grids Γk of the marginalXk and some transition matrices approximating the the
Markov transition of the chain. The stationarity of the grids used in the quanti-
zation schemes designed on such quantization tree plays a important role to pre-
serve the numerical efficiency/accuracy: the easiest way toget convinced is to
check that such grids lead to quantization based cubature formulas of second or-
der (see [Pagès 1993, Pagès and Wilbertz 2010a]). Although not as prominent when
dealing with less linear problems (Bermuda option pricing,filtering, stochastic con-
trol, etc), stationarity turns out to be crucial when dealing with numerical implemen-
tation. Now, only optimal Voronoi quantization grid share this property whereas it
is shared by all dual quantization grids. This makes dual quantization more flexi-
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ble than the Voronoi one: when switching from a distributionto another like in an
iterative calibration procedure, one only has to modify theweights of a dual quanti-
zation grid to preserve the stationarity (even if the resulting quantization is no longer
optimal). This can be doneon lineby a regular Monte Carlo simulation in a few sec-
onds or even less with the help of high performance massivelyparallel computation
device (GPGPU). When dealing with Voronoi quantization, preserving stationarity
requires to re-adjust both the grids and the weights.

In Section 2 we propose in a Markovian framework a unified approach to provide
somea priori error bounds for Voronoi and Delaunay quantization schemes, relying
on a non asymptotic version of Zador’s theorem (about the rate of decay of theLp-
quantization error). This improves and simplifies the results in [Bally and Pagès 2003a].
The resulting bound is the (weighted) sum of the quantization errors of the marginals
of the Markovian dynamics.

In Section 3, we present with more details both Voronoi and Delaunay quan-
tization. In Section 4, we briefly describe several stochastic optimization methods
to optimize grids. Those related to Voronoi quantization are classical (Lloyd’s I and
CLVQ) whereas their counterpart have been recently devised in [Pagès and Wilbertz 2010a]
or completely new. In section 6, we propose methods – some of them heuristic –
to optimize the structure of the quantization tree. In Section 7, numerical test are
carried out on several American payoff functions (swing option, exchange option
between geometric indices and call option on minimum of two assets) in a multi-
dimensional setting. We determine emirically rates of convergence, discuss several
improvement possibilities and finally establish a comparison with the Longstaff-
Schwartz algorithm.

NOTATION: | . | denotes the canonical Euclidean norm on the vector spaceR
d of

column vectors. conv(A) denotes the convex hull ofA⊂ R
d.

2 Quantized Backward Dynamic Programming Principle

Let (Xk)0≤k≤n be anR
d-valued homogeneous Feller Markov chain defined on a

probability space(Ω ,A ,P) with transitionP(x,dy). The homogeneity assumption
is essentially made for convenience in order to to alleviatenotations but the exten-
sion to a non-homogeneous framework is straightforward. Wewill make the slightly
more stringent assumption that the chain is in fact “Lipschitz Feller”: this means that
the transition is not simply Feller but also preserves uniformly Lipschitz continuous
functions: there exists a (finite) real constant[P]Lip such that

∀ f : R
d→ R

d, [P f ]Lip ≤ [P]Lip [ f ]Lip .
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where[ f ]Lip = supx6=y
| f (x)− f (y)]
|x−y] . Without loss of generality we may assume that

[P]Lip = sup
[ f ]Lip≤1

[P f ]Lip .

Let hk : R
d→R+, 0≤ k≤ n, be a sequence of Borel functions satisfying

max
0≤k≤n

‖hk(Xk)‖p < +∞.

Let FX = (FX
k )0≤k≤n denote the natural filtration of the chainX. It is classical

background from Optimal Stopping Theory that if one defines by induction the so-
calledBackward Dynamical Programming Principle(BDPP) by

Vn = hn(Xn), Vk = max
(

hk(Xk),E
(
Vk+1 |Xk

))
(1)

then
V0 = sup

{
E

(
hτ(Xτ)

)
, τ : Ω → {0, . . . ,n}FX-stopping time

}

and more generally

Vk = esssup
{

E

(
hτ(Xτ) FX

k

)
, τ : Ω → {k, . . . ,n}FX-stopping time

}
, k= 0, . . . ,n.

The sequence(Vk)0≤k≤n is known as the(P,FX)-Snell envelopeof the so-called
obstacle process(h(Xk))0≤k≤n.

The paradigmof Quantized Backward Dynamic Programing Principleis two
folded and can be described as follows:

⊲ discretization.As a first step, we consider an abstract approximation process
of the Markov Chain(Xk)0≤k≤n by a sequence(X̂k)0≤k≤n of the form

X̂k = πk(Xk,Uk), k = 0, . . . ,n,

where(Uk)0≤k≤n is an i.i.d. sequence ofRd0-valued random vectorindependentof
FX

n (i.e. of (Xk)0≤k≤n) and the mappingsπk : R
d×R

d0 → R
d are Borel functions.

As concerns numerical implementation we will of course ask the chain(Xk)0≤k≤n

and the exogenous simulation noise(Uk)0≤k≤n to be to be simulatable (at reasonable
cost) and the mappingπk to take values in finite setsΓk (calledgrids).

We will see further on that these random vectorsUk represent an exogenous noise
involved in the simulation process of̂Xk “from” Xk (so will be the case when dealing
with dual quantization). One can always achieve such a framework by defining the
sequence(Uk) on a probability space(Ω0,A0,P0) and by considering the product
probability space(Ω̃ ,Ã , P̃) = (Ω ×Ω0,A ⊗A0,P⊗P0).

⊲ Quantized Backward Dynamic Programming Principle.As a second step, we
introduce a dynamic programming formula involving the r.v;X̂k, obtained by sim-
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ply mimicking the regularBDPP related to the Snell envelope of(hk(Xk))0≤k≤n;
in practice this essentially amounts to “forcing” the Markov property although the
sequence(X̂k)0≤k≤n has no reason to be a Markov chain. To be precise, we define a
sequence(V̂k)0≤k≤n

V̂n = h(X̂n), V̂k = max
(

hk(X̂k),E
(
V̂k+1 | X̂k

))
. (2)

Then the following (new) result holds about the rate of approximation of the
Snell envelope(Vk)0≤k≤n by its quantized counterpart(V̂k)0≤k≤n.

Proposition 2.1 Let p∈ [1,+∞). Assume that

max
0≤k≤n

(
‖Xk‖p +‖X̂k‖p

)
< +∞

and assume that all the functions hk, k = 0, . . . ,n, are Lipschitz continuous. Then,
for every k∈ {0, . . . ,n},

‖Vk− V̂k‖p ≤
n

∑
ℓ=k

Cn,ℓ([P]Lip, [h.]Lip)‖X− X̂k‖p

where
Cn,k([P]Lip, [h.]Lip) = cp max

k≤ℓ≤n

(
[P]ℓ−k

Lip [hℓ]Lip

)

with cp = 1 if p = 2 and cp = 2 otherwise.

Proof. STEP 1. The functions vk are Lipschitz.One first shows by induction using
the Markov property that

Vk = vk(Xk), k = 0, . . . ,n,

where the functionsvk are Lipschitz continuous satisfying

vn = hn and vk = max(hk,Pvk+1), k = 0, . . . ,n−1.

In particular, for everyk = 0, . . . ,n−1,

[vk]Lip ≤max
(
[hk]Lip, [P]Lip[vk+1]Lip

)

where we used the elementary inequality|supi∈I ai − supi∈I bi | ≤ supi∈I |ai − bi |.
Then standard computations yield that

[vk]Lip ≤ max
k≤ℓ≤n

(
[P]ℓ−k

Lip [hℓ]Lip

)
.

STEP 2. Induction on‖Vk− V̂k‖p. It follows from the quantizedBDPPthat
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V̂k = v̂k(X̂k) wherev̂k : R
d→R+, k = 0, . . . ,n.

are Borel functions. Then

‖Vk− V̂k‖p ≤ ‖hk(Xk)−hk(V̂k)‖p +‖E(Vk+1 |Xk)−E(V̂k+1 | X̂k)‖p

≤ [hk]Lip‖Xk− X̂k‖p +‖E(Vk+1 |Xk)−E(V̂k+1 | X̂k)‖p.

Now, one easily checks that

E

(
V̂k+1 | X̂k

)
= E

(
V̂k+1 |πk(Xk,Uk)

)

=

∫

R
d0

E

(
V̂k+1 |πk(Xk,u)

)
PUk

(du)

sinceX̂k = πk(Xk,Uk), Uk and(V̂k+1,Xk) are independent (keep in mind thatV̂k+1 is
σ(X̂k+1)-measurable andσ(X̂k+1)⊂ σ(Xk+1,Uk+1)).

It follows from the generalized Minkowski inequality that

∥∥∥E(Vk+1 |Xk)−E(V̂k+1 | X̂k)
∥∥∥

p
=

∥∥∥∥
∫

R
d0

[
E(Vk+1 |Xk)−E

(
V̂k+1 |πk(Xk,u)

)]
PUk

(du)

∥∥∥∥
p

≤

∫

R
d0

∥∥∥E(Vk+1 |Xk)−E

(
V̂k+1 |πk(Xk,u)

)∥∥∥
p
PUk

(du).(3)

Now, for everyu∈ R
d0,

∥∥∥E
(
V̂k+1 |πk(Xk,u)

)
−E

(
Vk+1 |Xk

)∥∥∥
p

≤
∥∥∥E
(
V̂k+1−Vk+1 |πk(Xk,u)

)∥∥∥
p
+
∥∥E(Vk+1 |Xk)−E

(
Vk+1 |πk(Xk,u)

)∥∥
p

≤ ‖V̂k+1−Vk+1‖p +
∥∥E
(
Vk+1 |Xk

)
−E

(
E
(
Vk+1 |Xk

)
|πk(Xk,u)

)∥∥
p

= ‖V̂k+1−Vk+1‖p +
∥∥Pvk+1(Xk)−E

(
Pvk+1(Xk) |πk(Xk,u)

)∥∥
p

where we successively used the fact that conditional expectation is anLp-contraction
and thatE

(
Vk+1 |Xk

)
= E

(
vk+1(Xk+1) |Xk) = Pvk+1(Xk). Now

∥∥Pvk+1(Xk)−E
(
Pvk+1(Xk) |πk(Xk,u)

)∥∥
p
≤ cp

∥∥Pvk+1(Xk)−Pvk+1(πk(Xk,u)
)∥∥

p

with cp = 1 if p = 2 andcp = 2 otherwise, so that finally

∥∥∥E
(
V̂k+1 |πk(Xk,u)

)
−E(Vk+1 |Xk)

∥∥∥
p
≤
∥∥∥V̂k+1−Vk+1

∥∥∥
p

+cp
∥∥Pvk+1(Xk)−Pvk+1(πk(Xk,u)

)∥∥
p

≤
∥∥∥V̂k+1−Vk+1

∥∥∥
p
+cp[Pvk+1]Lip ‖Xk−πk(Xk,u)‖

p
.(4)
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On the other hand,
∫

R
d0
‖Xk−πk(Xk,u)‖

p
PUk

(du) =

∫

R
d0

(E|Xk−πk(Xk,u)|p)
1
p PUk

(du)

≤

(∫

R
d0

E|Xk−πk(Xk,u)|pPUk
(du)

) 1
p

=
(

E|Xk−πk(Xk,Uk)|
p
) 1

p

= ‖Xk− X̂k‖p

where we used Jensen’s Inequality (sincep≥ 1) in the second line. Consequently,
plugging this bound in thePU -integrated form of (4) and the resulting inequality
in (3), yields

‖Vk− V̂k‖p ≤ ‖V̂k+1−Vk+1‖p +
(
[hk]Lip +cp[Pvk+1]Lip

)
‖Xk− X̂k‖p.

Hence, for everyk∈ {0, . . . ,n},

‖Vk− V̂k‖p ≤
n

∑
ℓ=k

(
[hℓ]Lip +cp[P]Lip [vℓ+1]Lip

)
‖Xℓ− X̂ℓ‖p

≤
n

∑
ℓ=k

Cn,ℓ([P]Lip , [h.]Lip)‖Xℓ− X̂ℓ‖p

owing to the upper bound established in Step 1 for[vk]Lip . ♦

Example.We consider a jump diffusion solution to

dYt = b(t,Yt)dt + σ(t,Yt)dWt + κ(t,Yt−)dZt ,

whereW = (Wt)t∈[0,T] is an l -dimensional standard Brownian motion andZ =

(Zt)t∈[0,T ] is anl -dimensional square integrable compensated Lévy processwithout

Brownian component (so that its Lévy measureν satisfies
∫

Rl
|z|2ν(dz) < +∞).

The processesW andZ are defined on a probability space(Ω ,A ,P) and are
supposed to be independent. In particular,Zt is centered, has a second moment and
both

(Zt)t∈[0,T] and
(

ZtZ
∗
t − tE(Z1Z∗1)

)
t∈[0,T ]

areFW,Z
t -martingales (Z∗t stands for the transpose ofZt ). Assume thatb : [0,T]×

R
d → R, σ , κ : [0,T]× →M (d,q) are Lipschitz continuous functions in(t,x)

(these assumptions are not optimal).
Under these assumptions, the aboveSDEhas a strong solution starting from any

finite random vectorY0 independent of(W,Z) defined on(Ω ,A ,P).
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The “sampled process”(Ytnk
)0≤k≤n at the discretization timestn

k = kT
n , k= 0, . . . ,n,

is an homogenous Markov chain with transitionP(n) := PT
n

formally reading

PT
n
( f )(x) = Ex

(
f
(
YT

n

))
.

Such a Markov chain is usually not simulatable. However one may always associate
to such a diffusion process its Euler scheme with stepT

n recursively defined by
Ȳ0 = Y0 and, for everyk∈ {0, . . . ,n−1},

Ȳtnk+1
= Ȳtnk

+
T
n

b(tn
k ,Ytnk

)+ σ(tn
k ,Ytnk

)(Wtnk+1
−Wtnk

)+ κ(tn
k ,Ytnk

)(Ztnk+1
−Ztnk

).

The sequence(Ȳtnk
)0≤k≤n is a homogeneous Markov chain with transitionP̄(n) read-

ing on bounded or non-negative Borel functionsf ,

P̄(n)( f )(x) = E

(
f
(

x+b(x)
T
n

+ σ(x)

√
T
n

Ξ + κ(x)ZT
n

))
(5)

whereΞ ∼N (0;Iq) is independent ofZT
n
. For notational convenience we will often

noteP̄ for P̄(n).

Standard computations show that iff is Lipschitz continuous

|P̄(n)( f )(x)− P̄(n)( f )(x′)|2≤ [ f ]2Lip

(
1+[b]2Lip

(T
n

)2
+Cσ ,κ ,d,Z

T
n

)
|x−x′|2

whereCb,σ ,d,Z = d[σ ]2Lip + [κ ]2LipE|Z1|
2. Similar bounds can be obtained for the

jump diffusion at timeT
n using Itô’s formula with jumps. This leads to the following

proposition.

Proposition 2.2 There exists a real constant Cb,σ ,κ ,T,d,Z such that,

∀n≥ 1, [PT
n
]Lip ≤ 1+Cb,σ ,κ ,T,d,Z

T
n

and [P̄(n)]Lip ≤ 1+Cb,σ ,κ ,T,d,Z
T
n

.

As a consequence, if P= PT
n

or P = P̄(n)

sup
n≥1

max
0≤k≤n

[P]kLip ≤ eCb,σ ,κ,T,d,Z < +∞.

This proposition emphasizes that if one setXk = Ytnk
or Xk = Ȳtnk

, k = 0, . . . ,n,

and if, for example,hk = e−r T
n h, k = 0, . . . ,n, with h : R

d→ R+ a Lipschitz func-
tion, then the coefficientsCn,k([P]Lip, [h.]Lip) introduced in Proposition 2.1 remain
uniformly bounded since
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sup
n≥1

max
0≤k≤n

Cn,k([P]Lip , [h.]Lip)≤ eCb,σ ,κ,T,d,Z [h]Lip < +∞.

3 Optimal Voronoi and Delaunay quantizations

In this section we deal for a while with astatic problem: how to optimize the quan-
tization of a fixedRd-valued random vectorX. This is the purpose of optimal quan-
tization which consists in minimizing theLp-mean approximation error induced by
a quantization̂X of X that takes at mostN values. To be more precise, we aim at
minimizing‖X− X̂‖p over a certain class of discretely valued random vectorsX̂.

3.1 Optimal Voronoi quantization

In the case of Voronoi quantization this optimization problem reads

ep,N(X) = inf
{
‖X− X̂‖p : X̂ is a random vector with #̂X(Ω)≤ N

}
.

It turns out, seee.g. [Graf and Luschgy 2000], that this definition is equivalent to
the definition of the optimal quantization error as the minimal Lp-distance fromX
to a finite gridΓ ⊂ R

d with cardinality #Γ ≤ N, i.e.

ep,N(X) = inf
{
‖dist(X,Γ )‖p : Γ ⊂ R

d, #Γ ≤ N
}

= inf
{(

Emin
x∈Γ
|X−x|p

)1/p
: Γ ⊂ R

d, #Γ ≤ N
}

.

This equivalence is based on the construction of a Voronoi quantization by means
of the nearest neighbour projection. Therefore, letΓ = {x1, . . . ,xN} ⊂ R

d be a grid
and denote by(Ci(Γ ))1≤i≤N a Borel partition ofRd satisfying

Ci(Γ )⊂
{

ξ ∈ R
d : |ξ −xi| ≤ min

1≤ j≤N
|ξ −x j |

}
.

Such a partition is called aVoronoi partitiongenerated byΓ and we may define the
correspondingnearest neighbour projectionas

ProjΓ (ξ ) = ∑
1≤i≤N

xi1Ci(Γ )(ξ ). (6)

The discrete random vector

X̂Γ ,Vor = ProjΓ (X) = ∑
1≤i≤N

xi1Ci(Γ )(X).
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is calledVoronoi Quantizationof X induced byΓ and satisfies

Emin
x∈Γ
|X−x|p = E|X− X̂Γ ,Vor|p.

At this stage, the purpose of optimal quantization is to prove the existence of op-
timal grids of size at mostN which resulting quantization error attains the minimal
Lp-quantization errorep,N.

Proposition 1 (Optimal Voronoi quantizer). (see [Kieffer 1983, Graf and Luschgy 2000,
Pag̀es 1998])(a) Let p∈ [1,∞). For every integer N≥ 1, there exists at least one
optimal gridΓ ∗

N
of size at most N (or “at level N”) such that

‖X− X̂Γ ∗
N

,Vor‖p = ep,N(X)

and N 7→ ep,N(X) is (strictly) decreasing to0 (as long as it does not vanish).
Furthermore ep,N(X) = 0 if and only if supp(PX) has at most N elements and

if this support has at least N elements, then any optimal gridΓ ∗
N

has exactly N
pairwise distinct elements.

(b) If p = 2, any optimalΓ ∗
N

quantization grid satisfies thestationary property

E
(
X | X̂Γ ∗

N
,Vor) = X̂Γ ∗

N
,Vor. (7)

Furthermore, if d= 1 and X has an absolutely continuous distribution with alog-
concave probability density, then (see [Abaya and Wise 1982], [Abaya and Wise 1984],
[Trushkin 1982], [Kieffer 1983]) there is only one stationary quantizer which is nec-
essarily the unique optimal quantizer of X at level N.

The stationarity property (7) plays an important role in thenumerical aspects
of optimal Voronoi quantization although its proof is rather simple for an optimal
quantizer: by the very definition of conditional expectation as anL2(P)-orthogonal
projection

ep,N(X)≤ ‖X−E(X | X̂Γ ∗
N

,Vor)‖2 ≤ ‖X− X̂Γ ∗
N

,Vor‖2 = ep,N(X),

one derives (by uniqueness) thatE(X | X̂Γ ∗
N

,Vor) = X̂Γ ∗
N

,Vor a.s.

For further mathematical insights on optimal vector (or Voronoi) quantization or
for more details , we refer to [Graf and Luschgy 2000] and the references therein.

3.2 Optimal dual quantization

By contrast to the above construction of Voronoi quantizations as best possibleLp-
mean approximation, optimal dual quantization relies on the best approximation



Optimal Delaunay and Voronoi quantization schemes for pricing American style options 11

which can be achieved by a discrete random vectorX̂ that satisfies a certain station-
arity assumption on the extended probability space(Ω×Ω0,A ⊗A0,P⊗P0). That
is we define

dp,N(X) = inf
{
‖X− X̂‖p : X̂ : (Ω ×Ω0,A ⊗A0,P⊗P0)→ R

d,

#X̂(Ω ×Ω0)≤ N andE(X̂|X) = X
}
.

Then (see [Pagès and Wilbertz 2010a]), one may show that such a definition is
equivalent to

dp,N(X) = inf
{
‖Fp(X;Γ )‖p : Γ ⊂ R

d,#Γ ≤ N
}

for the local dual quantization functional

Fp(ξ ;Γ ) = inf

{( N

∑
i=1

λi |ξ −xi|
p
)1/p

: λi ∈ [0,1] and
N

∑
i=1

λixi = ξ ,
N

∑
i=1

λi = 1

}
.

If the grid Γ ⊂ R
d admits a Delaunay triangulation (e.g. the points inΓ are in

general position), then it was proved in [Pagès and Wilbertz 2010a] that we can con-
struct a dual quantization operator which is the counterpart of the nearest neighbour
projection for Voronoi quantization. This operator maps the random variableX ran-
domly to the vertices of the Delaunay triangle in whichX falls, where the probability
of mappingX to a vertexti is determined by thei-th barycentric coordinate ofX in
the (non-degenerated) “hyper-triangle” (ord-simplex) conv{t j : j = 1, . . . ,d+1}.

Mathematically speaking, let(Di(Γ ))1≤i≤m be a Delaunay partition of the convex
hull conv(Γ ) of Γ . Let us denote byλ k(ξ ) the barycentric coordinates ofξ in the
triangleDk(Γ ), with the conventionλ k

i (ξ ) = 0 if xi /∈ Dk(Γ ) and set

J u
Γ (ξ ) =

m

∑
k=1

[
N

∑
i=1

xi ·1{ i−1
∑

j=1
λ k

j (ξ )≤u<
i
∑
j=1

λ k
j (ξ )
}
]1Dk(Γ )(ξ ).

Then it holds

Fp(ξ ;Γ ) =
(

EP0|ξ −J U
Γ (ξ )|p

)1/p
,

whereU is defined on(Ω0,A0,P0) with a U
(
[0,1]

)
-distributed (so that the oper-

atorJ u
Γ (ξ ) is defined on this exogenous space). Then we define (on the product

probability space(Ω̃ ,Ã , P̃) ) hedual (or Delaunay) quantization

X̂Γ ,Del = J U
Γ (X)

so that
‖Fp(X;Γ )‖p = ‖X− X̂Γ ,Del‖p and E(X̂Γ ,Del|X) = X.



12 Gilles Pagès and Benedikt Wilbertz

As a matter of fact, this “strict”dual stationarity condition can only be fulfilled if
supp(PX) is bounded. To preserve as much intrinsic stationarity forX̂Γ as possible,
i.e. stationarity on conv(Γ ), we introduce the dual quantization for non-compactly
supported random vectorX as

̂̄X
Γ ,Del

= J U
Γ (X)1{X∈conv(Γ )}+ProjΓ (X)1{X/∈conv(Γ )}.

and denote theoptimal dual quantization errorin this case by

d̄p,N(X) = inf
{
‖X− ̂̄X

Γ ,Del
‖p : Γ ⊂ R

d,#Γ ≤ N
}
.

Optimal dual quantizers. In both settings, it is shown in [Pagès and Wilbertz 2010a],
under continuity assumption of the distribution ofX that for everyN≥ 1, there ex-
ists at least oneoptimal dual quantizerat levelN which has exactlyN components
for d̄p,N(X). Furthermored̄p,N(X)→ 0 asN → ∞. If the distribution ofX has a
compact support the same holds for the modulusdp,N(X) as soon asN≥ d+1.

3.3 Quantization rates

Both Regular (or Voronoi) and dual (or Delaunay) quantization error moduli satisfy
formally the same theorem.

Theorem 3.1 (Optimal Voronoi quantization) Let p, p′∈ (0,∞), p< p′.

(a) ASYMPTOTIC ERROR BOUND(ZADOR’ S THEOREM) (see e.g. [Zador 1982,
Bucklew and Wise 1982, Graf and Luschgy 2000]) Assume X∈ Lp′(Ω ,A ,P) with a
distributionPX (dξ )= h(ξ )λd(dξ )+νX(dξ ) where the finite measureνX is singular
w.r.t. the Lebesgue measureλd on (Rd,Bor(Rd)). Then

lim
N

N
1
d ep,N(X) = J̃vq

p,‖.‖
‖h‖

1
d

p
p+d

whereJ̃vq
p,‖.‖ = infN≥1 N

1
d ep,N(X)∈ (0,∞) corresponds to the uniform distribution

over the unit hypercube[0,1]d whenR
d is equipped with the norm‖ .‖.

(b) NON-ASYMPTOTIC ERROR BOUND(PIERCE’ S LEMMA) (see e.g. [Luschgy and Pag̀es 2008])
There exists a real constant Kvq

d,p,p′ ∈ (0,∞) such that, for every random vector

X : (Ω ,A ,P)→ R
d,

∀N≥ 1, ep,N(X)≤ Kvq
d,p,p′N

− 1
d min

a∈Rd
‖X−a‖p′.

In fact the above non-asymptotic bound is a slight improvement of that estab-
lished in [Luschgy and Pagès 2008] taking advantage of the obvious invariance of
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ep,N(X) by translation:ep,N(X) = ep,N(X + a), a∈ R
d(1) Note that all proofs of

Pierce’s Lemma need a random quantization argument (seee.g. [Graf and Luschgy 2000]).

Theorem 3.2 (Optimal dual quantization) ([Pagès and Wilbertz 2010b]) The above
theorem for Voronoi quantization also holds true, with appropriate real constants
J̃dq

p,‖.‖ ≥ J̃vq
p,‖.‖ and Kdq

d,p,p′ (≥ Kvq
d,p,p′) when replacing ep,N(X) by its counterpart the

minimal dual Lp-mean quantization errord̄p,N(X). However, the non-asymptotic
claim only holds true for N≥ Nd,p,p′ (depending only on d, p, p′)

When X has a compact support, the theorem holds true – with N≥ d + 1 –
with the error modulus dp,N(X) with same constants̃Jdq

p,‖.‖
and Kdq

d,p,p′ . When d= 1,

J̃dq
p,‖.‖ =

(
2p+1

p+2

) 1
p

J̃dq
d,p,p′ .

4 How to get optimal Voronoi and Delaunay quantizations

4.1 Optimal quadratic Voronoi Quantization

Throughout this section we focus on the quadratic case, although , at least formally,
all proposed algorithms have anLp counterpart forp≥ 2.

4.1.1 Original and randomized Lloyd’s I algorithm

When the dimensiond = 1 andp = 2 (quadratic case), one may identify a quantiza-
tion gridΓ of sizeN with anN-tuple with increasing componentsi.e. an element of
IN := {(x1, . . . ,xN)∈R

N | −∞ < x1 < · · ·< xN < +∞}. It has been originally shown
in [Kieffer 1983] that if the distribution of a random variable X has a log-concave
probability density function, then then there exists a unique stationary quantizer of
sizeN, denotedΓ ∗,N i.e. a quantizer satisfying

E
(
X | X̂Γ ∗,N)= X̂Γ ∗,N . (8)

Since a quadratic optimal quantizer at levelN of an absolutely continuous distri-
bution has exactlyN pairwise distinct components and is stationary (see Proposi-
tion 1), this stationary quantizerΓ ∗,N is also an optimalquadraticquantizer.

Kiefer provided (see [Kieffer 1982]) an alternative proof of the above facts by a
more constructive approach by considering the following so-called Lloyd’s I proce-

1 The fact that this holds for everyN ≥ 1 rather than for N ≥ Np,p′ ,d as stated
in [Luschgy and Pagès 2008] follows form the obvious facts that ep,N(X) ≤ ep′ ,N(X) ≤

mina∈Rd ‖X−a‖p′ so that the firstNp,p′,d−1 terms can be included in the real constantKvq
d,p,p′ .
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dure to update recursively a quantization gridΓ(m) (of sizeN), namely

X̂Γ(m+1) = E
(
X | X̂Γ(m)

)
, m∈ N, Γ(0)∈IN ∩H (PX ) (9)

whereH (PX ) = conv(supp(PX )). It is proved that the procedure “lives” inside
IN ∩H (PX ) and that, still under the log-concavity assumption,Γ(m) converges ex-
ponentially fast toward the unique stationaryN-quantizerΓ ∗,N. Written in a more
analytical form, (9) reads ifΓ(m) = {xm,1, . . . ,xm,N},

xm+1,i = E
(
X | X̂Γ(m) = xm,i

)
=

∫

Ci(Γ(m))
ξPX(dξ )

PX (Ci(Γ(m)))
, i = 1, . . . ,N,

where in this 1D-settingCi(Γ(m)) =
(xm,i−1 +xm,i

2
,
xm,i +xm,i+1

2

]
with xm,0 = −∞

andxm,N+1 = +∞.
It is straightforward that the procedure as defined by (9) canbe extended to the

d-dimensional setting. One defines recursively the sequenceof N-quantizersΓ(m),
m∈ N, by Γ(0) ⊂H (PX ), #Γ(0) = N and

xm+1,i = E
(
X | X̂Γ(m) = xm,i

)
=

E
(
X1{X∈Ci(Γ(m)}

)

P(X ∈Ci(Γ(m)))
, i = 1, . . . ,N,

with obvious notations. One easily checks that

‖X− X̂Γ(m+1)‖2 = ‖X−E
(
X | X̂Γ(m))

∥∥
2

= inf
{
‖X−ϕ(X̂Γ(m))‖2 : ϕ : R

d→ Γ(m),ϕ is Borel
}
≤ ‖X− X̂Γ(m)‖2

so that, this multi-dimensional Lloyd’s I procedure alwayslets the quadratic quan-
tization error decrease (except ifΓ(m) is itself stationary at finite range). Of course,
any stationary quantizer is a fixed point for the Lloyd’s I procedure and in higher
dimension there are always several stationary quantizers.As far as we know, no con-
vincing proof of pointwise convergence to a global minimum has been established
so far for the gridsΓ(m). However, from a practical point of view, one may reason-
ably hope that this convergence does hold, at least toward a local minimum of the
quadratic quantization error functionalΓ 7→ ‖X− X̂Γ ‖2.

As soon as the dimensiond of the state of the random vectorX is not lower
than 3 or 4, the Lloyd’s I procedure cannot be implemented by analytical means

since it becomes impossible to compute integrals like
∫

Ci (Γ )
f (ξ )dξ by any kind of

cubature formulas (hoxever see [Wilbertz 2005] for the low dimensional cases). The
alternative solution, when the random vectorX is simulatable, is to rely on a Monte
Carlo simulation at each stepm to compute for everyi∈ {1, . . . ,N},
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E
(
X |X ∈Ci(Γ(m))

)
= a.s.- lim

L→∞

∑L
ℓ=1Xℓ1{Xℓ∈Ci(Γ(m)}

∑L
ℓ=11{Xℓ∈Ci(Γ(m)}

.

Note thatXℓ ∈Ci(Γ(m)) if and only if xm,i is the nearest neighbour ofXℓ among all
componentsxm,i , i = 1, . . . ,N of the current gridΓ(m).

A huge literature has been devoted to practical aspects of Lloyd’s I procedure
and its applications in Signal Processing and Data compressing. For further insights
in that direction, seee.g. [Gersho and Gray 1992]. In Data Analysis (when the un-
derlying distribution of interest is the uniform distribution over the data set (i.e. the
empirical measure of this data set) the “batch” (for “non-randomized”) procedure is
known as thek-meansalgorithm. For some applications in Delaunay grid generation
see [Du and Gunzburger 2002]. On the other hand little has been done on theoretical
aspects, since the original work ([Kieffer 1982]).

4.1.2 The Competitive Learning Vector Quantization algorithm

The so-calledCLVQalgorithm is a stochastic gradient algorithm relying on thefact
that the squared quadratic quantization error, calleddistortion. We will make the ob-
vious abuse of notationconsisting in identifying grids of size at mostN andN-tuples
with possibly “repeated” components. The distorsion is then defined on(Rd)N by

Γ = (x1, . . . ,xN) 7−→DistorN(X;Γ ) := E min
1≤i≤N

|X−xi|
2.

This function is differentiable at everyN-tuplex= (x1, . . . ,xN)∈ (Rd)N having pair-
wise distinct components with a gradient∇xDistorN(X;Γ ) given by

∇xDistorN(X;Γ ) = 2
(
E
(
(xi−X)1{X∈Ci (Γ )}

))
1≤i≤N

.

If #suppPX ≥ N, the distortion function is differentiable at any minimum since it
has pairwise distinct components (see [Graf and Luschgy 2000]). Furthermore as
emphasized above its gradient has a representation as an expectation formally read-
ing

∇xDistorN(X;(x1, . . . ,xN)) = E
(
∇xdistorN

(
X;(x1, . . . ,xN)

))
.

The function defined onRd× (Rd)N by

(ξ ,Γ ) 7−→ ∇xdistorN
(
X;Γ

)

is sometimes called alocal gradientof the potential function DistorN. Then, the
paradigm of stochastic approximation says that under technical assumptions to be
specified the so-calledstochastic gradient descentdefined by
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Γ(m+1) = Γ(m)− γm+1∇xdistorN(Xm+1;Γ(m)), m≥ 1, Γ(0) ⊂ R
d, #Γ(0) = N,

where(Xm)m≥1 is an i.i.d. sequence of copies ofX and(γm)m≥1 is a sequence of gain
parameter satisfying thedecreasing step assumption”assumption∑m≥1 γm = +∞
and∑m≥1 γ2

m < +∞ which is standard in Stochastic Approximation Theory.

From a practical point of view, this abstract formula can be decomposed into two
phases: set for convenienceΓ(m) = (xm,1, . . . ,xm,N), m≥ 0.

(i) Competitive Phase:Search of the nearest neighbourxm,i∗(Xm+1) of Xm+1

among the components ofxm,i , i = 1, . . . ,N, of Γ(m) (using a “winning convention”
in case of conflict between two or more components).

(ii) Learning Phase:One moves the winning component towardsXm+1 using a
dilatationi.e.

xm+1,i∗(Xm+1) = Dilatation[Xm+1,1−γm+1](xm,i∗(Xm+1))

where the dilatation Dilatation[ξ ,λ ] centered atξ ∈R
d with ratioλ > 0 is defined by

∀y∈ R
d, Dilatation[ξ ,λ ](y) = ξ + λ (y− ξ ) = (1−λ )ξ + λy.

All other components stay still.

This procedure is useful for small or medium values ofN. For general back-
ground on stochastic approximation, we refer to [Benveniste et al. 1990, Duflo 1996,
Kushner and Yin 2003]. Unfortunately, theCLVQprocedure turns out to be singular
in the world of recursive stochastic approximation algorithms, and only “conditional
a.s. convergence” results have been obtained (also known asa.s. convergence in the
“Kushner-Clark sense”), see [Pagès 1998]. However, in a 1Dframework standard
a.s. convergence has been established at a regular CLT weak convergence rate for
distributions with compact support (see [Bouton and Pagès1993]).

This procedure has also given rise to many empirical investigations and heuristic
statements, especially in the artificial neural network community where theCLVQ
appears as a degenerate case of the Kohonen self-organizingmaps used in non-linear
automatic classification. Other optimization procedures have also been implemented
like evolutionary algorithms (seee.g. [Mrad and Ben Hamida 2006]).

4.1.3 Companion parameters

To fully elucidate the distribution of a quantization̂X of X, not only the grid
Γ = {x1, . . . ,xN} is necessary but also the weightspi = P(X̂ = xi). These weights
are often called “companion parameters”. Other companion parameters may be of
interest like the local inertiaE

(
1X∈{Ci(Γ )}|X−xi|

2
)
.
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⊲ Adaptive estimation (CLVQ).When performing theCLVQ algorithm, one may
devise a companion procedure to estimate these weightson-lineby setting

pi
(m+1) = pi

(m)− γ̃m+1

(
pi

(m)−1{i∗(Xm+1)=i}

)
, i = 1, . . . ,N

whereγ̃m = γm or γ̃m = 1/m (the second choice corresponds to the usual empirical
mean but with respect to the “moving grids”Γ(m)). No significant extra computation
is needed sincei∗(Xm+1) is already computed in the core of theCLVQprocedure.

⊲ Posterior estimation.From a practical point of view, it seems more efficient to
estimate by a standard Monte Carlo simulation the weightspi posterior to the grid
optimization: this amounts to “freezing”Γ(m) = Γ and setting̃γm = 1/m in the above
procedure (still based on repeated nearest neighbour searches).

4.1.4 More on practical aspects

⊲ Quasi-Monte Carlo. For formerly mentioned procedures, one may substitute
a sequence of quasi-random numbers to the usual pseudo-random sequence. This
often speeds up the rate of convergence of the method, although this remains mostly
heuristic in Stochastic Approximation (see however [Lapeyre et al. 1990]).

⊲ Inductive computation: the splitting method. The most important step to pre-
serve the accuracy of the quantization asN increases is to use the so-calledsplitting
methodwhich finds its origin in the proof of the existence of an optimalN-quantizer:
once the optimization of a quantization grid of sizeN is achieved, one specifies the
starting grid for the sizeN + 1 or more generallyN + ν, ν ≥ 1, by merging the
optimized grid of sizeNwith ν points sampled independently from the distribution

having a probability density proportional toϕ
d

d+2 whereϕ denotes the p.d.f. of the
distributionPX . This rather unexpected choice is motivated by the fact thatthis dis-
tribution provides the lowestin averagerandom quantization error (see [?]).

When simulation at a reasonable cost of the distributionϕ
d

d+2 (ξ )λd(dξ ) is im-
possible, one can still simulate insteadPX -distributed numbers. This is the adopted
strategy to compute the grids of thed-dimensional normal distribution available on
the website [Pagès and Printems 2005] (see below).

⊲ Nearest neighbour search.All the above procedures rely on repeated nearest
neighbour searches. The complexity of a naive implementation of this procedure
grows linearly withd×N and becomes very demanding asd increases. So reducing
its computational cost is strategic.

– The most basic (although quite efficient) method is thePartial Distance Search:
to check whether a record levelLrec is beaten or not by|x|= ((x1)2+ · · ·+(xd)2)1/2

one checks at each stepℓ if (x1)2 + · · ·+(xℓ)2 ≥ L2
rec. If so, one rejectsx and test a

new point.
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– A more sophisticate procedure has been originally devisedby Bentley and an-
alyzed in a the seminal paper [Friedman et al. 1977] . It is an efficient way to store
the data (theN points) based along a search tree calledk-d tree. It reduces the
complexity of the nearest neighbour search down toO(logN) (after a one shot pre-
processing of complexityO(N logN)). An improved version of thek-d tree, based
on a preliminaryPCA, has been developed in [McNames 2001] and is known as the
PAT algorithm (for Principle Axis Tree). Other search trees based on a preliminary
“rough” quantization have also been proposed (see [Corlay 2011]). The (relative)
efficiency of such methods first increases as the dimension ofthe state space grows
but becomes more limited for large dimension where “brute force” (unfortunately)
comes back in the game.

⊲ Still more on practical aspects.Many practical studies have been carried
out, including heuristic considerations about the above described procedures in
[Gersho and Gray 1992] with an orientation toward Signal Processing and Data
compressing. In [Pagès and Printems 2003] a first numericalstudy entirely devoted
to the multi-variate normal distribution has been developed which finally led to
make available optimized grids of multivariate normal distributions on the web-
site [Pagès and Printems 2005] devoted to optimal vector and functional quantiza-
tion.

These grids have been computed inductively using the splitting method by a combi-
nation ofCLVQ (for medium values ofN ) and Lloyd’s I algorithm, for dimension
running fromd = 1 up to d = 10 and sizesN running from 1 up to 10000. For
each gridΓ several “companion parameters (see below) are included in the files,
especially the weightswi = P(N (0;Id)∈ Ci(Γ )), i = 1, . . . ,N, but also the local
Lp-inertia

(
E|X−xi|

p1{X∈Ci(Γ )}

)
1≤i≤N

for p = 1, 2.

4.2 Dual quantization

In general, a grid which was optimized for Voronoi quantization will also serve as
a good grid for Delaunay quantization. As concerns practical applications, the most
important advantage of dual quantization is its intrinsic (dual) stationarity property

E(X̂Γ ,Del|X) = X (whereX̂Γ ,Del = J U
Γ (X))

which holds for any gridΓ with supp(PX) ⊂ conv{Γ } regardless of its optimality
with respect to the distribution ofX. Dual stationarity exclusively follows from the
way of defining the dual quantization weights as

pi = P(X̂Γ ,Del = xi).
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Nevertheless, we give here a short sketch of the couterpartsof Lloyd’s I proce-
dure and the CLVQ-algorithm for dual quantization.

4.2.1 Lloyd-type algorithm for dual quantization

In order to establish a Lloyd-type algorithm for the optimization of dual quantization
grids, we writeΓ(m) = {xm,1, . . . ,xm,N}⊂R

d for m∈N and denote by(DI (Γ ))I∈I a
Delaunay partition of conv(Γ ), where the index setI = I (Γ )⊂

{
I ⊂ {1, . . . ,N} :

#I = d + 1
}

defines a Delaunay triangulation inΓ . Moreover, if ξ ∈ DI (Γ ), we
write λ I

xi
(ξ ) for the barycentric coordinate ofξ ∈ conv{x j : j ∈ I} with respect to

the vertexxi .
Recall that each Delaunay triangleDI (Γ ) is characterized by the center of a

sphere spanned by the vertices{x j : j ∈ I} which contains no point ofΓ in its
interior. We then denote this center byzI = zI (Γ ) and define a Delaunay center by
mapping

ZΓ (ξ ) = ∑
I∈I

zI 1DI (Γ )(ξ ). (10)

Note moreover that those Delaunay centers are exactly the vertices of the corre-
sponding Voronoi tessellation since they are at the same distance to thex j , j∈ J.

If one considers the optimization problem (still with an abuse of notation)

Γ = (x1, . . . ,xN) 7−→DistorN(X;Γ ) := E|X−J U
Γ (X)|2 (11)

then it was shown in [Pagès and Wilbertz 2010a] that the gradient of this function
in Γ reads

∇Γ DistorN(X;Γ ) = 2
[
E
(
(xi−ZΓ (X))1{J U

Γ (X)=xi}

)]
1≤i≤N

.

The first order optimality condition therefore writes

E
(
ZΓ ∗(X)|J U

Γ ∗(X)
)

= J U
Γ ∗(X)

and can be regarded as a counterpart to (8). We may therefore define a Lloyd-type
method for dual quantization starting at some initial gridΓ(0) ⊂ R

d,#Γ(0) = N as

X̂Γ(m+1) = E
(
ZΓ(m)(X)|J U

Γ(m)
(X)
)
, m≥ 0.

Since it holds

P(J U
Γ (X) = xi) = ∑

I∈I : i∈I

∫

DI (Γ )
λ I

xi
(ξ )PX(dξ ),

we arrive form≥ 1 at
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xm+1,i =

∑
I∈I : i∈I

zI
∫

DI (Γ ) λ I
xi
(ξ )PX(dξ )

∑
I∈I : i∈I

∫
DI (Γ ) λ I

xi
(ξ )PX(dξ )

, i = 1, . . . ,N.

This means thatxm+1,i is chosen as a weighted sum of the Delaunay centerszI whose
triangles share the same vertexxm,i in Γ(m). It can be shown that such an algorithm is
in fact a Quasi-Newton method and therefore converges to a local minimum of (11)
(seee.g. [Iri et al. 1984] in the case of the regular Lloyd’s I method).

This algorithm, which is new to our knowledge, is the first tool we used to com-
pute optimal dual quantization grids like the one below obtained from the Brownian
motion at time 1 and its supremum over[0,1]. The second algorithm is the counter-
part of theCLVQand is described below.
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Fig. 1 Dual Quantization of the joint distribution a Brownian motion atT = 1 and its supremum
over [0,1] (N = 250).

4.2.2 CLVQ like procedure for dual quantization

Like for the “Voronoi”CLVQalgorithm, we consider thedual distortion function

Γ = (x1, . . . ,xN) 7−→ DistorN(X;Γ ) := E|X−J U
Γ (X)|2.
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Referring again to [Pagès and Wilbertz 2010a], it holds forthe gradient of the dual
distortion function

∇Γ DistorN(X;Γ ) = 2
[
E
(
(xi−ZΓ (X))1{J U

Γ (X)=xi}

)]
1≤i≤N

.

As above, the stochastic gradient method is given by

Γ(m+1) = Γ(m)− γm+1∇xdistorN(Xm+1;Γ(m)), m≥ 1, Γ(0) ⊂ R
d, #Γ(0) = N

where(Xm)m≥1 is an i.i.d. sequence of copies ofX and(γm)m≥1 is a sequence of
gain parameters satisfying the decreasing step assumption.

In practice that means that we generate a sequence(Xm)m≥1 of i.i.d copies ofX
and the two phases of the CLVQ-algorithm read as follows

(i) Competitive Phase:Search for the Delaunay triangleI∗(Xm+1) ∈ I (Γ(m))

which contains the realizationXm+1.

(ii) Learning Phase:One moves the winning triangle towards the Delaunay cen-
terZΓ(m)(Xm+1) using a dilatationi.e.

∀i ∈ I∗(Xm+1) : xm+1,i = Dilatation
[Z

Γ(m) (Xm+1),1−γm+1]
(xm,i).

4.2.3 Search for the matching Delaunay hyper-triangle

A crucial point in both above procedure, as well as in the weight computations later
on, is the search for the Delaunay triangleI∗(ξ ) ∈ I (Γ ), which contains a point
ξ ∈ conv(Γ ). This phase in dual quantization optimization is the exact counterpart
of nearest neighbour search for Voronoi quantization. Sucha search can be imple-
mented efficiently by a directed search on the Delaunay triangulation ofΓ . To be
more precise, one starts at a triangleI0 ∈I (Γ ) and then moves on to that neighbor
triangle of I0 which lies on the line defined by the Delaunay centerzI0 andξ . It
was shown in [Bowyer 1981] that such a procedure reaches the triangleI∗ ∈I (Γ )

which containsξ in average afterO(N1/d) steps, whereN is the number of points
in the gridΓ . For more details on such point location procedures in triangulations
we refer to [Devroye et al. 2004] and [Muecke et al. 1999].

We did not speak yet about the weight computation in this section although it
is a crucial step to fully determine the distribution ofX̂ (whatever quantization is
adopted) which in turn is necessary to produce quantizationbased cubature formu-
las. However, since we are interested in American option pricing, we postpone this
kind of question to the quantization tree below where we willshow how to compute
the transition weights of the tree for both types of quantization.
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5 Application to cubature formula for numerical integratio n

Let X̂ be a quantization based approximation of a random vectorX taking value in
a gridΓ = {x1, . . . ,xN} of sizeN≥ 1 (X̂ = ProjΓ (X) (Voronoi) orJ U

Γ (X) (Delau-
nay)) depending on the Voronoi or Delaunay nature of the quantization).

⊲ Lipschitz continuous functions. If F : R
d→ R is Lipschitz continuous

|EF(X)−EF(X̂)| ≤ [F ]LipE|X− X̂|= ‖X− X̂‖1.

This yields an approximate cubature formula since

EF(X̂) = ∑
1≤i≤N

piF(xi) where pi = P(X̂ = xi), i = 1, . . . ,N.

Furthermore, we know that Voronoi quantization is optimal in the following sense

sup{|EF(X)−EF(X̂)|, [F ]Lip ≤ 1}= e1,N(X).

⊲ Functions with Lipschitz continuous differential. Assume that̂Γ is stationary(i.e.
E(X | X̂)= X̂) or “dual stationary” (i.e. E(X̂ |X)= X), then (see [Pagès and Wilbertz 2010a])

|EF(X)−EF(X̂)| ≤ [DF]LipE|X− X̂|2

whereDF denotes the (Lipschitz continuous) differential ofF . At his stage, one
must have in mind that few gridsΓ (mainly the optimal quadratic grids) are station-
ary for Voronoi quantization whereasall grids are dual stationary by construction.

⊲ Convex functions.If F is convex andΓ is a stationary Voronoi quantizer, then

EF(X̂Γ ,vor)≤ EF(X) where X̂Γ ,vor = ProjΓ (X).

If X has compact support, for any gridΓ such that conv(Γ )⊃ supp(PX ),

EF(X)≤ EF(X̂Γ ,del) where X̂Γ ,del = J U
Γ (X).

Combining both quantization approaches yields adeterministic security interval.

6 Quantization tree

Let us come back to our Bermuda option pricing problem with the notations intro-
duced in Section 2. At each timek∈ {0, . . . ,n}, we consider a gridΓk of sizeNk

supposed to be an optimal (or at least a “good”) Voronoi/Delaunay quantization of
the Markov chainXk at timek.
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We define the discretization functionπk : R
d× [0,1]→R

d as

• Voronoi:A Borel nearest neighbour projection on the gridΓk (see (6))i.e.

∀ξ ∈ R
d, ∀u∈ [0,1], πk(ξ ,u) := ProjΓk

(ξ ). (12)

• Delaunay: A splitting operator on the gridΓk

∀ξ ∈ R
d, ∀u∈ [0,1], πk(ξ ,u) := J u

Γk
(ξ )1{ξ∈conv(Γk)}

+ProjΓk
(ξ )1{ξ /∈conv(Γk)}

.

(13)

Definition 6.1 A quantization tree of the Markov chain X= (Xk)0≤k≤n is made of

– a set of n+1 gridsΓk of size Nk ≥ 1, k = 0, . . . ,n, whose elements are denoted

Γk = {xk
1, . . . ,x

k
N
}, k = 0, . . . ,n;

– a set of transition matricespk =[pk
i j ]1≤i≤Nk,1≤ j≤Nk+1, k = 0, . . . ,n−1, defined by

pk
i j = P

(
X̂k+1 = xk+1

j | X̂k = xk
i

)
.

The resulting “quantized” dynamical programing principlederived from (2),
once written “in distribution”, reads

v̂n(x
n
i ) = hn(x

n
i ), i = 1, . . . ,Nn

v̂k(x
k
i ) = max

(
hk(x

k
i ),

Nk+1

∑
j=1

pk
i j v̂k+1(x

k+1
j )

)
, i = 1, . . . ,Nk, k = 0, . . . ,n−1.

Remarks. • Once the grids have been settled and the transition weight matrices
pk have been computed, on can perform the above backward quantization tree de-
scent as many times as necessary for different payoff functions. All the information
about the discretization of the Markov dynamics is “stored”in the quantization tree
(Γk,pk)0≤k≤n.

• The complexity of the backward descent of such a tree is clearly proportional to

∑
0≤k≤n−1

NkNk+1. For a given global budget ofN = N0+ · · ·+Nn (usually prescribed

by the memory limitations of the computing device). Up to edge effects the minimal
complexity is attained with constant size treesi.e. Nk = N

n+1, k = 0, . . . ,n. If X0 = x0,
thenN0 = 1 andNk = N−1

n , k = 1, . . . ,n. Other considerations (see below) may lead
to other specifications for the quantization tree
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6.1 Error bounds

By combining the error bounds of Proposition 2.1 and the non asymptotic bounds for
optimal quantization(s) we get the following proposition which takes advantage of
the non-asymptotic Zador’s Theorems (3.1(b) and 3.2(b)). It simplifies the original
presentation from [Bally and Pagès 2003a] and extends it todual quantization.

Proposition 6.3 Assume the Markov chain satisfies all the assumptions of Propo-
sition 2.1 and that furthermore,max0≤k≤n‖Xk‖p′ < +∞ for a p′ > 1. Assume that
the payoff functions hk, k = 0, . . . ,n are Lipschitz continuous. Assume the sequence
(X̂k)0≤k≤n is defined either by (12) or by (13) and that, for every k= 0, . . . ,n, the
quantization size Nk ≥ Nd,p,p′ (Nd,p,p′ = 1 in the Voronoi setting). Then for every
p∈ [1, p′), there exists a real constantκp,p′ > 0 such that, for every k∈ {0, . . . ,n},

‖vk(Xk)− v̂k(X̂k)‖p≤ κp,p′

n

∑
ℓ=k

Cn,ℓ([P]Lip, [h.]Lip)σp′(Xk)N
− 1

d
ℓ

whereσp(Xk) = mina∈Rd ‖Xk−a‖p, k= 0, . . . ,n.

For a second order scheme (based on Voronoi quantization) which takes full
advantage of the stationarity, we refer to [Sellami 2010]. For other other applica-
tions (cubature formulas, non-linear filtering, stochastic control, etc) we refer to
the surveys [Pagès et al. 2003], [Pagès and Printems 2009]and the reference therein
(Voronoi quantization) or [Pagès and Wilbertz 2010a] (dual quantization).

6.2 Design of an optimized quantization tree by simulation

6.2.1 Grid sizes

A first step (however not mandatory) is to minimize the error bound (at the origin)
obtained in Proposition 6.3 for a given budget of elementaryquantizersN0 + · · ·+

Nn≤N (this limitation is usually related to the memory devoted tothe computation).
An elementary optimization under constraint yields for thesizes of the grids

Nk =

⌊
akN

a0 + · · ·+an

⌋
with ak =

(
Ck,n([P]Lip, [h.]Lip)σp′(Xk)

) d
d+1

, k = 0, . . . ,n.

This allocation depends on the payoff but if max0≤k≤n[hk]Lip < +∞, one may re-
placeak by ãk = max0≤ℓ≤n−k[P]ℓLipσp′(Xk) or even ˜ak = σp′(Xk) if, one “controls”

max0≤k≤n[P]kLip (like in the example following Proposition 2.1). In the dualsetting,
this allocation is an heuristic since we have the additionalconstraintNk ≥ Nd,p,p′ .
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Example. Let Xk = Wtnk
, W Standard Brownian motion. Thenσp′(Xk) = cp′

√
tn
k ,

k = 0, . . . ,n.

6.2.2 Transition weight estimation

⊲ The “diffusion” method.Like for the grid optimization, a largeL-sample(X(ℓ))

of the chain is generated and sent “through” the grids. Then one estimates each
transition weight by

pk
i j = a.s.- lim

L→∞

∑L
ℓ=1P(πk(X

(ℓ)
k ,Uk) = xk

i ,πk+1(X
(ℓ)
k+1,Uk+1) = xk+1

j |X(ℓ)
k , X(ℓ)

k+1)

∑L
ℓ=1P(πk(X

(ℓ)
k ,Uk) = xk

i |X
(ℓ)
k )

(14)
whereπk is specified following the type of the quantization. We may assume that
the integration with respect toUk andUk+1 can be done explicitly by a closed form
solution (keeping in mind that(Uk) and(Xk) are independent). This holds trivially
true for Voronoi quantization, but also for dual quantization as we will see later on.

The strong consistency follows then from the Strong Law of large Numbers since

E

(
P(πk(X

(ℓ)
k ,Uk) = xk

i ,πk+1(X
(ℓ)
k+1,Uk+1) = xk+1

j |X(ℓ)
k , X(ℓ)

k+1)
)

= P(πk(X
(ℓ)
k ,Uk) = xk

i ,πk+1(X
(ℓ)
k+1,Uk+1) = xk+1

j )

and
E

(
P(πk(X

(ℓ)
k ,Uk) = xk

i |X
(ℓ)
k )
)

= P(πk(X
(ℓ)
k ,Uk) = xk

i ).

Whenπk does not depend on the exogenous noise (like for Voronoi quantization),
the above estimator coincide with the naive one, that is

pk
i j = a.s.- lim

L→∞

∑L
ℓ=11

{πk(X
(ℓ)
k ,Uk)=xk

i ,πk+1(X
(ℓ)
k+1,Uk+1)=xk+1

j }

∑L
ℓ=11

{πk(X
(ℓ)
k ,Uk)=xk

i }

.

⊲ More precisely, in the case of Voronoi quantization, it holds

πk(X
(ℓ)
k ,Uk) = xk

i ⇐⇒ X(ℓ)
k ∈Ci(Γk),

whereCi(Γk), i = 1, . . . ,Nk denotes a Voronoi partition ofRd, so that (14) finally
reads

pk
i j = a.s.- lim

L→∞

∑L
ℓ=11

{X
(ℓ)
k ∈Ci(Γk)∩X

(ℓ)
k+1∈Cj (Γk+1)}

∑L
ℓ=11

{X
(ℓ)
k ∈Ci(Γk)}

.

Note here, that from an implementational point of view, we donot need to con-
struct the whole Voronoi diagram of the gridsΓk. It is sufficient to perform a Nearest
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Neighbor search to estimate the transition probabilities as it can be seen in Algo-
rithm 1.

Algorithm 1 Transition probability estimation for Voronoi quantization
for ℓ = 1, . . . ,L do

x← x0, i← 0, pi
1← 1

for k = 1, . . . ,n do
SimulateXℓ

k givenXℓ
1 , . . .,Xℓ

k−1
Find Nearest Neighbor-Indexj of Xℓ

k in Γk

Set
pk

i j + = 1

pk+1
j + = 1

i← j
end for

end for

Setpk
ij ←

pk
i j

pk
i
, 1≤ i, j ≤Nk,1≤ k≤ n

⊲ In case of dual quantization it holds forXk ∈ conv(Γk), with the notation from
Section 4.2,

P(πk(X
(ℓ)
k ,Uk) = xk

i ) = ∑
I∈I (Γk): i∈I

∫

DI (Γk)
λ I

xk
i
(ξ )PX(dξ ),

whereDI (Γk), I ∈I (Γk) denotes a Delaunay partition of conv(Γk).
The estimation of the transition probabilitiespk

i j s then can be implemented as
shown in Algorithm 2.

Algorithm 2 Transition probability estimation for dual quantization
for ℓ = 1, . . . ,L do

x← x0, i← 0, pi
1← 1

for k = 1, . . . ,n do
SimulateXℓ

k givenXℓ
1 , . . .,Xℓ

k−1
Find Delaunay hyper-triangleτk of Xℓ

k in Γk

Updatepk
·,· w.r.t. barycentric coordinates of(Xℓ

k−1,X
ℓ
k) (τk−1,τk)

Updatepk+1
· w.r.t. barycentric coordinates ofXℓ

k in τk

end for
end for

Setpk
ij ←

pk
i j

pk
i
, 1≤ i, j ≤Nk,1≤ k≤ n

Although this transition probability estimation by Monte-Carlo simulation is
usually the most time consuming part of the quantization tree algorithm in prac-
tice, one has to emphasize here, that both above algorithms can be parallelized
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very efficiently. This is indeed of special importance sincethe availability of mas-
sive parallel computing device at very low price like as GPGPUs. It was shown
in [Pagès and Wilbertz 2011], that the computational time for transition probability
estimation can be reduced by a factor 200 when implemented ona GPGPU device.

⊲ The spray method.On can decouple the computation of the transitions at each
time steps by noting that

L
(

πk+1(Xk+1,Uk+1)= xk+1
j |πk(Xk,Uk)= xk

i

)
≈L

(
πk+1(Xk+1,Uk+1)= xk+1

j |Xk = xk
i

)
.

The distribution on the right hand side is easy to simulate (since the chain is sup-
posed to be simulatable). Consequently one can perform a Monte Carlo simulation
based on this distribution to estimate (approximately) thepk

i j s. As concerns Voronoi
quantization, it has been shown in [Pagès et al. 2003] that the error induced by such
an approximation is of second order if the gridsΓk are stationary.

Decoupling the estimation of the successive transition matrices makes possible to
perform a new parallelization of the estimation procedure (see [Bronstein et al. 2010])
with again a significant reduction of the computation time down to a few seconds
on a GPGPU device.

6.3 Martingale correction

When the structure process(Xk)0≤k≤nis a martingale (e.g. a discounted set ofd risky
assets under a risk neutral martingale probability, or a Brownian motion at timestn

k =
kT
n , etc) andX0 = x0, the quantization based approaches do not preserve naturally

this property (or any dynamical property). One way to proceed is to slightly modify
the gridsΓk as follows:

– Define by a backward inductioñΓn = Γn and for everyk = 0, . . . ,n−1,

Γ̃k =
{

xk
1, . . . ,x

k
Nk

}
where x̃k

i =
Nk+1

∑
j=1

pk
i j x̃

k+1
j , i = 1, . . . ,Nk.

– Re-center the grids by setting

Γ mart
k = Γ̃k +x0− x̃0.

The resulting quantization tree(Γ mart
k ,pk)0≤k≤n has the distribution of a martingale

starting atx0 at time 0. Although it often significantly improves numerical results,
theoretical error bounds no longer hold. It is observed thatthe translationx0− x̃0 is
negligible in practice.
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7 Numerical experiments

7.1 Swing Options

We begin the numerical illustrations by the example of the pricing of swing options
in a Gaussian 2-factor model. Such a problem consists in solving the normalized
stochastic control problem (interest rate is neglected)

esssup

{
E

(
n−1

∑
k=0

qk
(
vk(Xk)−K

)
|F0

)
,qk : (Ω ,Fk)→ [0,1], q̄n ∈ [Qmin,Qmax]

}

(15)
for global consumption couple(Qmin,Qmax)∈ N

2 andq̄k := ∑k−1
l=0 ql . As shown in

[Bardou et al. 2010b] there exists an optimal bang-bang control for this problem,
which leads, in combination with theBDPP, to

Pn
n ≡ 0

Pn
k (Qk) = max

{
x
(
vk(Xk)−K

)
+E(Pn

k+1(χn−k−1(Qk,x))|Xk);x∈ {0,1}∩ In−k−1
Qk

}

with admissible setIM
Qk := [(Qk

min−M)+∧1,Qk
max∧1] and

χM(Qk,x) :=
(
(Qk

min−x)+,(Qk
max−x)∧M

)
so thatPn

0 (Qmin,Qmax) is a solution to
(15).

A straightforward quantization of this problem then reads

P̂n
n ≡ 0

P̂n
k (Qk) = max

{
x
(
vk(X̂k)−K

)
+E(P̂n

k+1(χn−k−1(Qk,x))|X̂k);x∈ {0,1}∩ In−k−1
Qk

}

and error bounds have been established in [Bardou et al. 2010b]. Note here that
the computation of the conditional expectationsE

[
P̂n

k+1(χn−k−1(Qk,x))|X̂k = xk
i

]

becomes straightforward owing to Section 6 since it holdsE( f (X̂k+1)|X̂k = xk
i ) =

∑Nk+1
j=1 pk

i j f (xk+1
j ).

Furthermore we will focus here on the caseQmin = 0, Qmax = n so that the solu-
tion Pn

0 has the representation

Pn
0 =

n

∑
k=1

(vk(Xk)−K)+.

We therefore may hope that due to this simple structure as a strip of calls and
in view of section 5 that stationarity may play an important role for the numerical
results.

As underlying we have chosen as in [Bronstein et al. 2010] thetwo dimensional
Markov process
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Xk =

(∫ k∆ t

0
e−α1(k∆ t−s)dW1

s ,

∫ k∆ t

0
e−α2(k∆ t−s)dW2

s

)
.

so that the 2-factor underlying is given byvk(Xk) for vk(x1,x2) = s0exp
(
σ1x1 +

σ2x2−
1
2µt
)
. The numerical parameters here read in detail as

s0 = 20, α1 = 1.11, α2 = 5.4, σ1 = 0.36, σ2 = 0.21, ρ =−0.11, n = 30

i.e. we have a Gaussian process(Xk) with a true correlation. Note that in such a
setting the transformation of an optimal and stationary Voronoi quantization grid
for the bivariate standard normal distribution into one with correlationρ destroys
already the stationarity property in the transformed grid.In the case of dual quanti-
zation, stationarity for the transformed grid is at least preserved on conv(Γ ).

As it is shown in Figures 2 and 3 the dual methods outperforms clearly the
Voronoi approach, which is mainly caused by the intrinsic stationarity of the De-
launay quantization mapping.

Moreover; we already observe that Dual quantization tends to lead to an upper
bound whereas Voronoi quantization is approaching from below. (Both those obser-
vations hold in general true for convexF and precisely stationary quantizersX̂.)

Swing option: #exercise days: 30, K = 5.0
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Fig. 2 Convergence of the quantization methods as function of the average grid sizeN.
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Swing option: #exercise days: 30, K = 5.0
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Fig. 3 Convergence of the quantization methods as function of the average grid sizeN.

7.2 Bermuda options

First we recall the following basic fact: in classical non-arbitrage theory of contin-
gent claims, it is well-known that, in a complete market, thediscounted fair price
of a Bermuda option with payoff process(hk(Stk))0≤k≤n, 0= t0 < t1 < .. . < tk . . . <

tn = T, is the Snell envelope of the discounted payoff process so that

Premiumtk = S0
tk

SnellP∗

(
hk(Stk)

S0
tk

)

0≤k≤n

where(S0
t )t∈[0,T] is thenuḿeraire(also called “riskless asset”) andSt = (S1

t , . . . ,S
d
t )t∈[0,T ]

is the risky asset priceRd-valued process andP∗ is the risk-neutral probability. In
what follows Bermuda options appear as time approximation of American options
(see [Bally and Pagès 2003b] for various time discretization error bounds).

7.2.1 Geometric Exchange Option

We now consider the case of a geometric exchange put option ina multi-dimensional
Black Scholes model with maturiryT and 11 exercise datesk T

10, k = 0, . . . ,10. That
means that the underlyings(Si

t)t∈[0,T ], i = 1, . . . ,d are given by the (uncorrelated)
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Black-Scholes dynamics:

Si
t = si

0 exp
(
(r− δi−

σ2
i

2
)t + σiW

i
t

)
, si

0 > 0,

W = (W1, . . . ,Wd) standard Brownian motion, and the payoff of this option reads
for d = 2k

ϕ(S1
t , . . . ,S

d
t ) =

( k

∏
i=1

Si
t −

d

∏
i=k+1

Si
t

)
+
.

Example 1.As parameters we have chosen a Bermudan option with maturityT = 1,
11 exercise dates:k/10,k = 0, . . . ,10, and

si
0 = 40

2
d , i = 1, . . . ,k, si

0 = 40
2
d , i = k+1, . . . ,d, r = 0.05,

σi = 0.2, i = 1, . . . ,d, δi = 0.05, i = 1, . . . ,k, δi = 0.0, i = k+1, . . . ,d.

These settings can be reduced for anyd to a 2-dimensional exchange option for
which we computed reference values using a Boyle-Evnine-Gibbs tree with 10000
time steps.

The resulting log-log plots of the convergence for Voronoi and Dual quantization
can be found in Figures 4 and 5.
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Fig. 4 Log-Log plot of quantization methods for the geometric exchange option in dimension 2

One observes here again that dual quantization approach yields a slightly better
rate (cf. Table 1) than the Voronoi quantization approximation.

2d 4d
Voronoi Quantization0.73 0.36

Dual Quantization 0.86 0.38

Table 1 Rates of convergence for the exchange option.
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Fig. 5 Log-Log plot of quantization methods for the geometric exchange option in dimension 4

Note moreover that the upper bound in Proposition 6.3 promises only an optimal
rate of 0.5 in dimension 2 and 0.25 in dimension 4. Therefore it seems that also in
this example there is some more smoothness to capture which leads in practice to
better rates than those for the worst case error within classof Lipschitz functionals.

Due to the very smooth convergence seen in Figures 4 and 5, we furthermore
apply a Richardson-Romberg extrapolation on the error expansion

EF(X)≈ EF(X̂)+ κ N−α ,

which is a pure heuristic but has a theoretical justificationfor stationary quantizer
(see,e.g., [Pagès and Printems 2009]). We therefore use the ratesα from Table 1
and extrapolate the unknownκ using two different grids sizesN1 and N2. As a
result, we obtain in the above setting for

P̂Rom
0 = P̂N1

0 +
P̂N1

0 − P̂N2
0

N−α
2 −N−α

1

N−α
1

a stable and fast convergence as shown in Figures 6 and 7 for dimensions 2 and 4.
These experiments suggest to adopt themid-price0.5× (PriceVQ+PriceDQ).

Alternatively one may, following the commonly shared idea of including the pay-
off in the regression basis of Longstaff-Schwartz’s algorithm, use the European price
of the exchange option as a control variate. This means that the BDPP reads

Ṽn = ϕtn(Xn)−CEur
T−tn(Xn)

Ṽk = max
{

ϕtk(Xk)−CEur
T−tk(Xk); E

(
Ṽk+1

∣∣Xk
)}

, 0≤ k≤ n−1,

whereCEur
t (x) is the european price for maturityt and initial Stock pricex.

Consequently, the true priceV0 is given by
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Fig. 6 Convergence of the extrapolated quantization methods for the geometric exchange option
in dimension 2
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Fig. 7 Convergence of the extrapolated quantization methods for the geometric exchange option
in dimension 4

V0 = Ṽ0 +CEur
T (X0).

Numerical results for the above setting are given in Figures8 and 9.

7.2.2 Put-On-The-Min option

A final comparison is taken out on the example of an put-on-the-min option in a two
dimensional Black Scholes model. The payoff of this option reads

ϕ(S1
t ,S

2
t ) =

(
K−min(S1

t ,S
2
t )
)

+
.
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Fig. 8 Convergence of quantization methods with european controlvariate for the geometric ex-
change option in dimension 2
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Fig. 9 Convergence of quantization methods with european controlvariate for the geometric ex-
change option in dimension 4

Here again the reference values were computed using a Boyle-Evnine-Gibbs tree
with 10000 timesteps.

We compare the dual quantization approach including the martingale correction
of Section 6.3 to the Longstaff-Schwartz (L-S) approach from the Premia software
package(2). For theL-S procedure, we have chosen a family of 22 independent
functions (21 monomial functions+ the payoff function) and plotted in Figure 10
a Monte Carlo simulation with increasing number of sample paths ranging from
10.000 to 100000 and its 95% confidence interval.

2 Software developped by Projet MATHFI at Inria
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This setting was chosen to arrive at approximately equal computational times for
theL-Sapproach and the dual quantization method.

One clearly sees in Figure 10 that the quantization approachwith martingale
correction provides already for smallN a very good approximation to the true value
of the Bermuda option. In addition, theL-Sapproach suffers from a higher volatility,
since it is more depend on the Monte Carlo error than the quantization tree approach,
which contains the critical MC-Simulation only in the weight estimation.

Furthermore we have also plotted in Figure 10 the Monte Carloestimation by a
L-Sapproach from thePremiasoftware package in order to compare results.

Example 2.2-asset (correlated) Black-Scholes model with maturityT = 1 and 11
exercise timesk T

10, k = 0, . . . ,10,

s1
0 = s2

0 = 40, r = 0.05, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, K = 40,

for a put on the min,i.e. payoff

ϕ(S1
t ,S

2
t ) =

(
K−min(S1

t ,S
2
t )
)

+
.

As underlying Markov processXk we have chosen a 2-dimensional Brownian Mo-
tion W = (W1,W2) with correlationρ .
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Fig. 10 Convergence of quantization methods for a put-on-the-min option in dimension 2
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cations,23, Springer, 319p.
[Friedman et al. 1977] FRIEDMAN , J. H., BENTLEY, J.L. AND FINKEL R.A. [1977]: An Algo-

rithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathe-
matical Software, 3(3), 209-226.



Optimal Delaunay and Voronoi quantization schemes for pricing American style options 37
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[Gobet et al. 2005] GOBET, E., PAGÈS, G. PHAM , H. AND PRINTEMS, J. [2005] Discretization
and simulation for a class of SPDEs with applications to Zakai and McKean-Vlasov equation,
pre-pub. PMA-958.

[Gersho and Gray 1992] GERSHO, A. AND GRAY, R.M. [1992]:Vector Quantization and Signal
Compression. Kluwer, Boston.

[Graf and Luschgy 2000] GRAF, S. AND LUSCHGY, H. [2000]:Foundations of Quantization for
Probability Distributions. Lect. Notes in Math. 1730, Springer, Berlin, 230p.

[Iri et al. 1984] IRI, M., MUROTA, K., AND OHYA , T. A fast voronoi-diagram algorithm with
applications to geographical optimization problems. In P.Throft-Christensen, editor,Proceed-
ings of the 11th IFIP Conference Copenhagen, volume 59 ofLecture Notes in Control and
Information Science, 273–288.

[Kieffer 1982] KIEFFER, J.C. [1982]: Exponential rate of convergence for Lloyd’s Method I,
IEEE Trans. Inform. Theory, 28(2), 205-210.

[Kieffer 1983] KIEFFER, J.C. [1983]: Uniqueness of locally optimal quantizer for log-concave
density and convex error weighting functions,IEEE Trans. Inform. Theory, 29, 42-47.

[Kushner and Yin 2003] KUSHNER, H. J., YIN , G. G. [2003]:Stochastic approximation and re-
cursive algorithms and applications. Second edition. Applications of Mathematics35. Stochas-
tic Modelling and Applied Probability. Springer-Verlag, New York, 474p.

[Lapeyre et al. 1990] LAPEYRE, B., SAB , K. AND PAGÈS, G. [1990]: Sequences with low dis-
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[Pagès and Printems 2003] PAGÈS, G. AND PRINTEMS, J. [2003]: Optimal quadratic quantiza-
tion for numerics: the Gaussian case,Monte Carlo Methods and Appl., 9(2), 135-165.
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spaces,Tartu Ülikooli Toimetised, 893, 17-287.

[Pham et al. 2005] PHAM , H. SELLAMI , A. AND RUNGGALDIER W. [2005] Approximation by
quantization of the filter process and applications to optimal stopping problems under partial
observation,Monte Carlo Methods and Applications, 11(1):57-81.

[Pollard 1982] POLLARD , D. [1982]: Quantization and the method ofk-means.IEEE Trans. In-
form. Theory, 28(2), 199-205.

[Sellami 2010] SELLAMI A. [2010] Quantization Based Filtering Method Using First Order Ap-
proximation,SIAM J. on Num. Anal., 47(6), 4711-4734.

[Sellami 2009] SELLAMI , A. [2010] Comparative survey on nonlinear filtering methods: the
quantization and the particle filtering approaches, Journal of Statistical Computation and Sim-
ulation,78(2):93-113.

[Trushkin 1982] TRUSHKIN, A.V. [1982]: Sufficient conditions for uniqueness of a locally op-
timal quantizer for a class of convex error weighting functions, IEEE Trans. Inform. Theory,
28(2), 187-198.

[Wilbertz 2005] WILBERTZ, B. (2005): Computational aspects of functional quantization for
Gaussian measures and applications, diploma thesis, Univ.Trier (Germany).

[Zador 1963] ZADOR, P.L. [1963]: Development and evaluation of procedures forquantizing
multivariate distributions. Ph.D. dissertation, Stanford Univ. (USA).

[Zador 1982] ZADOR, P.L. [1982]: Asymptotic quantization error of continuoussignals and the
quantization dimension.IEEE Trans. Inform. Theory, 28(2), 139-149.


