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Optimal Delaunay and Voronoi quantization
schemes for pricing American style options

Gilles Pages and Benedikt Wilbertz

Abstract We review in this article pure quantization methods for thieipg of mul-
tiple exercise options. These quantization methods haedmmon advantage, that
they allow a straightforward implementation of the Backsv@ynamic Program-
ming Principle for optimal stopping and stochastic conmalblems. Moreover we
present here for the first time a unified discussion of thisctégr Voronoi and
Delaunay quantization and illustrate the performancesotti lmethods by several
numerical examples.

1 Introduction

This paper is focused on pure quantization method for pyiomlti-asset Ameri-
can style options (by contrast with hybrid Monte Carlo-diation approaches).

It continues two goals: it is partly a survey on the pricinglaé family of options

by optimal Voronoi quantization techniques. It is also ampangpunity to present
our first attempt to implement in a multi-dimensional seftthe new quantization
method called dual (dDelaunay quantization recently developed and investigated
in [Pagés and Wilbertz 2010a] and [Pages and Wilbertz BDIthis approach re-
lies on the Delaunay triangulation of a grid whereas usuetorequantization re-
lies on its Voronoi diagram, hence its name since the Delatriengulation is and
Voronoi diagrams are in duality (see [Okabe et al. 2000])alDquantization has
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been originally introduced in [Pagés and Wilbertz 2009jdmpute the expectation
of functionals of nonhomogenous Bernoulli random walkslagd in the pricing
of CDO'’s (in a static copula model).

Optimal Voronoi quantization, which is an old story goinghkéhe the 1950’s has
been originally developed for Signal transmission purpatsine Bell Laboratory,
has been implemented as a numerical method for the pricintutif-asset Ameri-
can — strictly speaking Bermuda — options in a series of ga]iaily et al. 2001],
[Bally and Pagées 2003a], [Bally and Pages 2003b], [Ballgle2003], [Bally et al. 2005].
Other fields of application have been developed, often imeotion with financial
problems like numerical integration [Pages 1993], [Rat@98], [Pages and Printems 2003],
non-linear filtering(see [Pages and Pham 2005], [Pham 208k], [Sellami 2010],
[Sellami 2009] with application to stochastic volatilitpdels, stochastic control
with application to portfolio management (see [Pages.€t@04]) and swing option
pricing (see [Bardou et al. 2010a], [Bardou et al. 2010h§cttization of stochas-
tic PDE’s (typically Zakai and Mc Kean Vlasov equationss §éobet et al. 2007],
[Gobet et al. 2005]). We also refer to the surveys [Pagek 2083] and [Pages and Printems 2009]
and the references therein, as well as to the website detm@ptimal quantization
(see [Pages and Printems 2005]).

Quantization methods consists in approximating/disziregianR9-valued ran-
dom vectorX by a random vector often denotﬁdaking into a grid™ of sizeN>1
so as to makéX — )A(||p as small as possible. As concerns Voronoi quantizakon,
is a projection following the nearest neighbour rule on drief sizeN. For dual
quantizationX is the result of a randorsplitting operatomwhich projectsX on one
of the vertices of a “minimalT -valuedd-simplex which containX, with a proba-
bility ruled by the barycentric coordinatesXf In a quadratic Euclidean framework
optimal Voronoi quantizers satisfy the so-called statigraropertyX = E(X | X)
whereasall dual quantizers satisfy the reverse stationarity propérty E(X | X).
WhenX has an unbounded support, one extends the splitting opénatonearest
neighbour projection outside the convex hull of the drid

In order to solve dynamic optimization problems related t@izcrete time)
Markov chain (Xy)o<k<n, ONe introduces quantization trees that is quantization
grids Iy of the marginalX, and some transition matrices approximating the the
Markov transition of the chain. The stationarity of the gridsed in the quanti-
zation schemes designed on such quantization tree playpartant role to pre-
serve the numerical efficiency/accuracy: the easiest wagetoconvinced is to
check that such grids lead to quantization based cubatuneufas of second or-
der (see [Pages 1993, Pages and Wilbertz 2010a]). Althnatas prominent when
dealing with less linear problems (Bermuda option pricfilgring, stochastic con-
trol, etc), stationarity turns out to be crucial when deglivith numerical implemen-
tation. Now, only optimal Voronoi quantization grid shahéstproperty whereas it
is shared by all dual quantization grids. This makes duahtizaion more flexi-
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ble than the Voronoi one: when switching from a distributioranother like in an
iterative calibration procedure, one only has to modifysleéghts of a dual quanti-
zation grid to preserve the stationarity (even if the résglguantization is no longer
optimal). This can be dorn lineby a regular Monte Carlo simulation in a few sec-
onds or even less with the help of high performance masspasigllel computation
device (GPGPU). When dealing with Voronoi quantizatioregerving stationarity
requires to re-adjust both the grids and the weights.

In Section 2 we propose in a Markovian framework a unified appin to provide
somea priori error bounds for Voronoi and Delaunay quantization scheneggng
on a non asymptotic version of Zador’s theorem (about treahtiecay of thé.P-
guantization error). This improves and simplifies the rissnl[Bally and Pagés 2003a].
The resulting bound is the (weighted) sum of the quantinagioors of the marginals
of the Markovian dynamics.

In Section 3, we present with more details both Voronoi anth®ay quan-
tization. In Section 4, we briefly describe several stodbagitimization methods
to optimize grids. Those related to Voronoi quantizatiam@assical (Lloyd’s | and
CLV Q whereas their counterpart have been recently devise@ge®and Wilbertz 2010a]
or completely new. In section 6, we propose methods — somieeoi theuristic —
to optimize the structure of the quantization tree. In Secf, numerical test are
carried out on several American payoff functions (swingi@ptexchange option
between geometric indices and call option on minimum of tasets) in a multi-
dimensional setting. We determine emirically rates of agence, discuss several
improvement possibilities and finally establish a comparigith the Longstaff-
Schwartz algorithm.

NOTATION: |.| denotes the canonical Euclidean norm on the vector sgéoef
column vectors. corpA) denotes the convex hull @ c R¢.

2 Quantized Backward Dynamic Programming Principle

Let (Xk)o<k<n be anR%-valued homogeneous Feller Markov chain defined on a
probability spacéQ,.«7,P) with transitionP(x,dy). The homogeneity assumption
is essentially made for convenience in order to to allewiatitions but the exten-
sion to a non-homogeneous framework is straightforwardamenake the slightly
more stringent assumption that the chain is in fact “Lipscheller”: this means that
the transition is not simply Feller but also preserves unily Lipschitz continuous
functions: there exists a (finite) real consté®it i, such that

vi:RY - RI, [PflLip < [PlLip[f]Lip-
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where[f]Lip = sup.y W Without loss of generality we may assume that

[PlLip = sup [Pf]Lip.

[f]Lipfl
Lethe:RY — R,, 0< k < n, be a sequence of Borel functions satisfying

max [I(Xio, < +oo.
Let 7% = (FX)o<k<n denote the natural filtration of the cha It is classical
background from Optimal Stopping Theory that if one defing#lbluction the so-
calledBackward Dynamical Programming Princip(8DPP) by

Vo= (%), Vie= max( hi(Xo), E(Vice1 | %) ) 1)

then
Vo= sup{]E(hr(XT)), T:Q —{0,...,n} .#*-stopping tim%

and more generally
Vk:esssug[E(hr(XT) 9{), T:Q — {k,...,n} .#X-stopping tim%, k=0,...,n.

The sequenc@Vk)o<k<n is known as théP, .#*)-Snell envelopef the so-called
obstacle procesgh(Xx))o<k<n-

The paradigmof Quantized Backward Dynamic Programing Principsetwo
folded and can be described as follows:

> discretization As a first step, we consider an abstract approximation psoces
of the Markov Chain(Xy)o<k<n by a sequencé)A(k)ogkgn of the form

)/(\k:ni((xkauk)a k:07"'7n7

where(Ug)o<k<n is an i.i.d. sequence @t%-valued random vectandependenof
FX (i.e. of (X)o<k<n) and the mappingsg : RY x R% — RY are Borel functions.
As concerns numerical implementation we will of course dmkahain(Xy)o<k<n
and the exogenous simulation no{&k )o<k<n to be to be simulatable (at reasonable
cost) and the mappinz to take values in finite sef% (calledgrids).

We will see further on that these random vectdysepresent an exogenous noise
involved in the simulation processﬁ;{ “from” Xy (so will be the case when dealing
with dual quantization). One can always achieve such a framework fiyidg the
sequencéUi) on a probability spaceQg, «%,Pg) and by considering the product
probability spacéQ, .7, P) = (Q x Qo, o ® A, PR Py).
> Quantized Backward Dynamic Programming Principhs a second step, we
introduce a dynamic programming formula involving the Xy; obtained by sim-
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ply mimicking the regulaBDPP related to the Snell envelope ¢fic(Xk))o<k<n;

in practice this essentially amounts to “forcing” the Markaroperty although the
sequence‘g)?k)ogkgn has no reason to be a Markov chain. To be precise, we define a
sequencéVi)o<k<n

~

Vo=h(X), V= max(hk()/(\k)vE(karl | )/(\k)) )

Then the following (new) result holds about the rate of agpnation of the
Snell envelopgVi)o<k<n by its quantized counterpdﬁk)ogkgn.

Proposition 2.1 Let pe [1,+o). Assume that

max (1l + 1%l ) < +eo

0<k<n

and assume that all the functiong, k= 0,...,n, are Lipschitz continuous. Then,
for every ke {0,...,n},

M= Vi, < /Z(Cn,z([F’]Lip, [h Juip) X = Xl

where
Crk([PLip, [N ]Lip) = cp Max ([P]fﬂjk[hé]up)

k</<n
with ¢, = 1if p = 2 and G, = 2 otherwise.

Proof. STEP 1. The functions yare Lipschitz.One first shows by induction using
the Markov property that

Vk =w(X), k=0,...,n,
where the functionsy are Lipschitz continuous satisfying
va=hn and vg=maxhy,Pv;i1), k=0,...,n—1
In particular, for everk=0,...,n—1,
idLip < max([hiLip, [PlLip [Vics a]Lip)

where we used the elementary inequalispine, & — supe bi| < supg, |ai — bil.
Then standard computations yield that

VidLip < max ([p]ﬁ)k[hf]up).

STEP 2. Induction on||Vi — V|| ,- It follows from the quantize@DPPthat
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Vi = Vi (X) wherevi i RS - R, k=0,...,n
are Borel functions. Then

V= Vidlp < I1(%) = M 1 + I (Vi1 1 %) = EVipa | X,
< [hiuip 1% — Xl + 1E(Vier 11 X6) = E(Vier 1] %) ],

Now, one easily checks that
E(VieaI%) = B (V2| 0% Un)
= [ E (Ve |70 ) By (0

sinceX, = & (X, Uk), Uk and(\7k+1,xk) are independent (keep in mind thAlﬁtH is

0 (Xy1)-measurable and (Xc;1) C (X 1,Uk11))-
It follows from the generalized Minkowski inequality that

BVt 21%) — BV |60 | —H [ [EGe11%0 B (Viea  mow ) |, @)
p
< [ B2 1%0 ~E(Vesn | %) | B (i
Now, for everyu e R%,

2 (B ) ) ~ B (a3 |

< Eher VeI 806 ) |+ [E V110 ~ B O W)
< IVhern =Viesallp + 1B (Ve %) = E (B (Vi | ) |74 ) ||
= H\7k+1—Vk+1||p+ ||PVk+1(Xk) _]E(P\/k+1 ) | & (X, u )H

where we successively used the fact that conditional eafientis arL_P-contraction
and thaff (Vi1 Xe) = E (Vi1 (X 1) [ Xe) = PVip1(Xe). Now

[P 1 (%) = B (Pt 1 (%) | T8 (X ) [| < Cp[PMher 1 (%) = Pk 1 (T X)) ||
with ¢, = 1if p= 2 andcp = 2 otherwise, so that finally
[ (et 00 -E Vs 30| < [Fhsn = Vi |
+Cp [[P¥er 1 (%) — PV (TR (X W) ||

< [Via = V| +eplPuisaluip X~ TR(Xi, ) 4)
p
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On the other hand,

L = OS], By (@) = [ (EPX— RO 0) )P B (0

R%
1
< ([ B nulP, @)

1
= (Ep%—m(XUI?) "
= [1%—Xll,
where we used Jensen’s Inequality (simce 1) in the second line. Consequently,

plugging this bound in th&,-integrated form of (4) and the resulting inequality
in (3), yields

V= Vidlp < Ve 2 = Vierall, + ([ Lip + CplPYrlLip) Xk — Xl -

Hence, for everke {0,...,n},
IV — Vi, < ;l(([he]up +CplPluip[Veraluip) X = Xell,
< /gkcn,z([P]Lip, [ ]Lip) X — Xl

owing to the upper bound established in Step 1¥@iip. ¢

Example.We consider a jump diffusion solution to
d¥ = b(t,Y)dt + o (t, Y)W + K (t, % )dZ,

whereW = (W)co,r) is anl-dimensional standard Brownian motion a#d=
(Zt)tejo,7) Is anl-dimensional square integrable compensated Lévy proviéissut

Brownian component (so that its Lévy measnmaatisfies/I 12?v(d2) < +oo).
R

The processe®/ andZ are defined on a probability spa¢@,.«/,P) and are
supposed to be independent. In particufais centered, has a second moment and
both

(Z)eor and (22 —tE@:Z))

te[0,T]

are%w’z-martingaleslt* stands for the transpose #@f). Assume thab: [0, T] x
RY - R, 0,k : [0,T]x — .#(d,q) are Lipschitz continuous functions ift, x)
(these assumptions are not optimal).

Under these assumptions, the ab8\E has a strong solution starting from any
finite random vectoYy independent ofW, Z) defined on(Q, <7, P).
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The “sampled proces$%E)0§k§n atthe discretization timeg = kTT k=0,...,n,
is an homogenous Markov chain with transiti®# := Pr formally reading

P%(f)(x):EX(f(Y%)).

Such a Markov chain is usually not simulatable. However oag aiways associate
to such a diffusion process its Euler scheme with s}ﬁemcursively defined by
Yo =Yp and, for evernke {0,...,n—1},

k+1

T
Y., = Y £ Dt V) + O (8 V) (Wep, | — W)+ K (8, Y (Zp, — Z2p).

The sequencé?tc)ogkgn is a homogeneous Markov chain with transiti®f) read-
ing on bounded or non-negative Borel functidns

ﬁm(f)(x)—E(f(”b(X)%+“<X>\/§5+K(X>ZE)> ?

where= ~ 47(0;lq) isindependent o 1 . For notational convenience we will often
— — n
noteP for P(",

Standard computations show thafi$ Lipschitz continuous
T\2 T
[P (£)(x) — P (£)(X)]? < [f]fip <1+ [b]fip (ﬁ) +C0’K’d,zﬁ> Ix—X|?

whereCy 5.4z = d[0]f, + [K]FipE|Z1[?. Similar bounds can be obtained for the
jump diffusion at time% using Itd’s formula with jumps. This leads to the following
proposition.

Proposition 2.2 There exists a real constant© « 7,4,z such that,
T Sin) T
vn>1, [P%]Lip < 1+Cb’o',K!T,d’Zﬁ and [P"W]p < 1+Cb,G,K,T,d,ZH-
As a consequence, ifPPr orP = p(n)

sup max [Pk, < eboxTaz .
ngfogg)ﬁ[ Iiip < < e
This proposition emphasizes that if one 3gt= YtE or X = VIE k=0,...,n,
and if, for examplehy = e*r%h, k=0,...,n, withh:RY — R, a Lipschitz func-
tion, then the coefficientS; x([P]Lip, [h]Lip) introduced in Proposition 2.1 remain
uniformly bounded since
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=] hliin) < Ch.ok.T,d.2 hly: .
ﬁgfo?éﬁcn,k([ Juips [N uip) <€ [Nluip < 0

3 Optimal Voronoi and Delaunay quantizations

In this section we deal for a while withstatic problemhow to optimize the quan-
tization of a fixedR9-valued random vectoX. This is the purpose of optimal quan-
tization which consists in minimizing tHe’-mean approximation error induced by
a quantizatiorX of X that takes at mostl values. To be more precise, we aim at
minimizing ||X — X|| p over a certain class of discretely valued random vedtors

3.1 Optimal Voronoi quantization

In the case of Voronoi quantization this optimization peshlreads
epn(X) = inf{||x —X||p: X is a random vector with ¥(Q) < N}.

It turns out, see.g. [Graf and Luschgy 2000], that this definition is equivalent t
the definition of the optimal quantization error as the mialitoP-distance fromX
to a finite gridr ¢ RY with cardinality #~ < N, i.e.

epn(X) = inf{ndisr(x,r)np M CRY#IM < N}
1/p
i i _y|P . d
= Iﬂf{(Er}gl{[ﬂX X| ) T CRY#I gN}.

This equivalence is based on the construction of a Voronantjgation by means
of the nearest neighbour projection. Therefore[let {xy,...,xy} C RY be a grid
and denote byCi(I"))1<i<n @ Borel partition ofR? satisfying

G(r)c {& eRY: &~ x| < min & —xj[}.

Such a partition is called#oronoi partitiongenerated by and we may define the
correspondingearest neighbour projectioas

Proj- (&) = Z Xl (&) (6)

The discrete random vector

X" Ver = Proj- (X) = Xile r)(X).-
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is calledVoronoi Quantizatiorof X induced byl™ and satisfies
Emin|X — x|P = E|X — X" Ver|p,
xel

At this stage, the purpose of optimal quantization is to pritne existence of op-
timal grids of size at mod¥l which resulting quantization error attains the minimal
LP-quantization erroep n.

Proposition 1 (Optimal Voronoi quantizer). (see [Kieffer 1983, Graf and Luschgy 2000,
Pages 1998])(a) Let pe [1,). For every integer N> 1, there exists at least one
optimal gridF" " of size at most N (or “at level N”) such that

X — XNV = epn(X)

and N— ey n(X) is (strictly) decreasing t@ (as long as it does not vanish).

Furthermore g n(X) = 0 if and only if supgPx) has at most N elements and
if this support has at least N elements, then any optimal gidhas exactly N
pairwise distinct elements.

(b) If p =2, any optimal, " quantization grid satisfies thetationary property
IE(X | XI'N*,Vor) _ S(\I'N*,Vor. )

Furthermore, if d= 1 and X has an absolutely continuous distribution witltog-
concave probability density, then (see [Abaya and Wise [1 98R3aya and Wise 1984],
[Trushkin 1982], [Kieffer 1983]) there is only one statiayajuantizer which is nec-
essarily the unique optimal quantizer of X at level N.

The stationarity property (7) plays an important role in themerical aspects
of optimal Voronoi quantization although its proof is ratlsémple for an optimal
quantizer: by the very definition of conditional expectatas an_?(PP)-orthogonal
projection

epn(X) < [[X—EX XNV, < X = XNV, = epn(X),

one derives (by uniqueness) thiftX | X'n Vo) = X'n VO as,
For further mathematical insights on optimal vector (ordfui) quantization or
for more details , we refer to [Graf and Luschgy 2000] and #ierences therein.

3.2 Optimal dual quantization

By contrast to the above construction of Voronoi quant&tias best possible’-
mean approximation, optimal dual quantization relies am lilest approximation
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which can be achieved by a discrete random veXttirat satisfies a certain station-
arity assumption on the extended probability sp@eex Qo, & ® o, P@Pp). That
is we define

dpNn(X) = inf X—X|p:X: Q x Qo, A ® op,PRPg) — RY,
P, p
#X(Q x Qo) <N andE(X|X) = X}.

Then (see [Pageés and Wilbertz 2010a]), one may show thdit audefinition is
equivalent to

don(X) = inf{||Fp(X;M)|lp: I C RY#M <N}

for the local dual quantization functional

Fo(&;7) = inf{(i)\ilf —>q|p)1/p ‘A €[0,1] and_i)\ixi _ E,i)\i _ 1}.

If the grid " ¢ RY admits a Delaunay triangulatioe.¢. the points in" are in
general positiol, then it was proved in [Pages and Wilbertz 2010a] that vneccan-
struct a dual quantization operator which is the counteégfdhe nearest neighbour
projection for Voronoi quantization. This operator maps thndom variabl&X ran-
domly to the vertices of the Delaunay triangle in whiCkalls, where the probability
of mappingX to a vertex; is determined by theth barycentric coordinate of in
the (non-degenerated) “hyper-triangle” (bsimplex) con{t; : j =1,...,d+1}.

Mathematically speaking, [€D;(I" ))1<i<m be a Delaunay partition of the convex
hull con(I") of . Let us denote by ¥(&) the barycentric coordinates éfin the
triangleDy(I" ), with the conventiodX(&) = 0 if x; ¢ Dy(I") and set

m [N
(&)= i1 i 1 )
Jr(€) k; inx. {j21A1k<f><“<121Ajk<f>}] oe(r)(€)

Then it holds e
Fo(&:) = (Exol€ = 2P (E)P) ",

whereU is defined on(Qo, <%, Po) with a % ([0, 1])-distributed (so that the oper-
ator 7/(&) is defined on this exogenous space). Then we define (on theigirod
probability spacéQ, <7 ,P) ) hedual (or Delaunay quantization

XIS = 7P (%)

so that
[Fo(X;M)|[p= X =X"P, and E(XPe|X) = X.
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As a matter of fact, this “strictlual stationarity condition can only be fulfilled if
supfPx) is bounded. To preserve as much intrinsic stationarity?fbras possible,
i.e. stationarity on con{/" ), we introduce the dual quantization for non-compactly
supported random vectdras

=[ Del U .
X = fl’ (X)l{Xeconv(l')} + PI‘Oj,— (X)l{x¢conv(l')}-

and denote theptimal dual quantization erroin this case by
— . = Del d
dpN(X) =inf{|IX=X " [lp: [ CRY#I <N}.

Optimal dual quantizers. In both settings, itis shown in [Pages and Wilbertz 2010a],
under continuity assumption of the distribution)othat for everyN > 1, there ex-

ists at least oneptimal dual quantizeat levelN which has exactiyN components

for dpn(X). Furthermored, n(X) — 0 asN — oo, If the distribution ofX has a
compact support the same holds for the moddls(X) as soon adl > d + 1.

3.3 Quantization rates

Both Regular (or Voronoi) and dual (or Delaunay) quantmagrror moduli satisfy
formally the same theorem.

Theorem 3.1 (Optimal Voronoi quantization) Let p,p’ € (0,), p< p'.

(a) ASYMPTOTIC ERROR BOUND(ZADOR’'S THEOREM) (see ey. [Zador 1982,
Bucklew and Wise 1982, Graf and Luschgy 2000]) AssuméX(Q, o7, P) with a
distributionP, (d&) = h(&)Aq(d&) + v, (d&) where the finite measurg, is singular
w.r.t. the Lebesgue measuxgon (RY, Zor(RY)). Then

. 1 _ 3Vvq
|I,(ln Ndepn(X) = JpaH-H [[h|

T| Qe
o

where\]A"J’j*"H = ianlealep,N(X) € (0,) corresponds to the uniform distribution

over the unit hypercubf®, 1]¢ whenR¢ is equipped with the north. ||.

(b) NON-ASYMPTOTIC ERROR BOUND(PIERCE S LEMMA) (see &g. [Luschgy and Pags 2008])
There exists a real constantg?é‘p, € (0,0) such that, for every random vector

X:(Q, o P)—RY,
_1 .
YN>1,  epn(X) <K N9 min |IX—ally.

In fact the above non-asymptotic bound is a slight improvenoé that estab-
lished in [Luschgy and Pagés 2008] taking advantage of biv@as invariance of
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epn(X) by translation:epn(X) = epn(X +a), a€ RI(Y) Note that all proofs of
Pierce’s Lemma need arandom quantization argumene(@gd&raf and Luschgy 2000]).

Theorem 3.2 (Optimal dual quantization) ([Pages and Wilbertz 2010b]) The above
theorem for Voronoi quantization also holds true, with agpiate real constants
7dq 7vq q vg i i

‘]p,H-H > Jp-,H-H and lﬂp,ﬂ (> Kd,p,p’) when rgplacmg gn(X) by its counterpart the
minimal dual [P-mean quantization errodpn(X). However, the non-asymptotic

claim only holds true for N> Ny , y (depending only on @, p')
When X has a compact support, the theorem holds true — withd\+ 1 —
with the error modulus g (X) with same constant%f‘H.H and qu When d= 1,

1 PP
34 ,(2p+1)5jdq
pl-l T\ P2 d,p,p’*

4 How to get optimal Voronoi and Delaunay quantizations

4.1 Optimal quadratic Voronoi Quantization

Throughout this section we focus on the quadratic casepadih, at least formally,
all proposed algorithms have &R counterpart fop > 2.

4.1.1 Original and randomized Lloyd’s | algorithm

When the dimensiod = 1 andp = 2 (quadratic case), one may identify a quantiza-
tion grid " of sizeN with anN-tuple with increasing componerits. an element of
I ={(Xe, Xy ) ERN| —00 < %1 < -+ < X, < +}. It has been originally shown
in [Kieffer 1983] that if the distribution of a random variabX has a log-concave
probability density function, then then there exists a urigtationary quantizer of
sizeN, denoted™ *N i.e. a quantizer satisfying

E(X|XT) =%, ®)

Since a quadratic optimal quantizer at ledebf an absolutely continuous distri-
bution has exactl\N pairwise distinct components and is stationary (see Propos
tion 1), this stationary quantizér*N is also an optimatjuadraticquantizer.

Kiefer provided (see [Kieffer 1982]) an alternative proétioe above facts by a
more constructive approach by considering the followingalted Lloyd’s | proce-

1 The fact that this holds for everyN > 1 rather than forN > Nppd as stated
in [Luschgy and Pages 2008] follows form the obvious fadstte,n(X) < ey n(X) <
MiNyega X — &y so that the firsN, y ¢ — 1 terms can be included in the real constejff, .
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dure to update recursively a quantization dfig (of sizeN), namely
Xmin =E(X|X' ™), meN, g e fNA P (9)

where 77 (P, ) = conVsupfP, )). It is proved that the procedure “lives” inside
Sy NI (Py) and that, still under the log-concavity assumptigg, converges ex-
ponentially fast toward the unique stationayquantizer™ “N. Written in a more
analytical form, (9) reads ifn) = {Xm1,-.-,XmN},

[ &me)
L AI—<m) _ N\ Cl(r(m)) L
Xm+1,I—E(x|X —Xm,l)—m,l—l,...,N,
X m
where in this D-settingGCi(Iy)) = (Xmﬁi*12+xm,i ’ Xm,i +2Xm,i+1] With Yo = —eo

andxm,NJrl = +00,

It is straightforward that the procedure as defined by (9)lmaextended to the
d-dimensional setting. One defines recursively the sequehbequantizers,,
me N, by gy C 7 (Py ), #I0) = N and

E(XL{xeG (M }) |
P(X €Ci(Mm))

with obvious notations. One easily checks that

Xmyri = E(X [ XM = xpnj) = —1,... N,

X — X5 = X~ E(X X)),

:inf{||x_¢(7<F Nia: ¢ R — Iy ¢.sBore|}<||x X |

so that, this multi-dimensional Lloyd’s | procedure alwdgts the quadratic quan-
tization error decrease (excepfify is itself stationary at finite range). Of course,
any stationary quantizer is a fixed point for the Lloyd’s | pedure and in higher
dimension there are always several stationary quanti&sifar as we know, no con-
vincing proof of pointwise convergence to a global minimuas lbeen established
so far for the gridd",,. However, from a practical point of view, one may reason-
ably hope that this convergence does hold, at least towavdad ininimum of the
quadratic quantization error functional— || X — X" ||2.

As soon as the dimensiah of the state of the random vect¥r is not lower
than 3 or 4, the Lloyd’s | procedure cannot be implementedrajfydical means

since it becomes impossible to compute integrals yke f(&)d& by any kind of
cubature formulas (hoxever see [Wilbertz 2005] for the lawehsional cases). The

alternative solution, when the random vecXois simulatable, is to rely on a Monte
Carlo simulation at each stepto compute for everye {1,...,N},
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L
1 X 1ixeq

E(X|X €G(Ty) = as- fim 2t G )

L= Y Lxeci (M)

Note thatX, € Ci(l'(m)) if and only if Xn is the nearest neighbour ¥ among all
componentsgni, i =1,...,N of the current grid]m).

A huge literature has been devoted to practical aspectsayidid | procedure
and its applications in Signal Processing and Data comipigedsor further insights
in that direction, see.g. [Gersho and Gray 1992]. In Data Analysis (when the un-
derlying distribution of interest is the uniform distrilimm over the data set.€. the
empirical measure of this data set) the “batch” (for “nonelamized”) procedure is
known as th&-meanslgorithm. For some applications in Delaunay grid generati
see [Du and Gunzburger 2002]. On the other hand little has theee on theoretical
aspects, since the original work ([Kieffer 1982]).

4.1.2 The Competitive Learning Vector Quantization algorthm

The so-calle€CLV Qalgorithm is a stochastic gradient algorithm relying onfeet
that the squared quadratic quantization error, callstbrtion We will make the ob-
vious abuse of notationconsisting in identifying gridsiaksat mostN andN-tuples
with possibly “repeated” components. The distorsion isittiefined on(R9)N by

_ ; Y ; WY

[ =(X,...,%y) — Disto(X; ") := ElglgnN X =x|°.

This function is differentiable at evety-tuplex = (xq, ..., x,) € (RY)N having pair-
wise distinct components with a gradiénDistony (X; ") given by

OxDistory (X; ) = 2 (E((% _X)l{X€Q(F)}))1gigN'

If #sup@®, > N, the distortion function is differentiable at any minimumee it
has pairwise distinct components (see [Graf and Luschg@]20Burthermore as
emphasized above its gradient has a representation as ectatkpn formally read-

ing
OxDistor (X; (X1, - .-, %)) = E (Oxdistor (X; (X1, ..., %)) -

The function defined oR® x (RY)N by
(&,1) — Oxdiston (X; 1)

is sometimes called cal gradientof the potentialfunction Distog. Then, the
paradigm of stochastic approximation says that under teahassumptions to be
specified the so-callestochastic gradient descedéfined by



16 Gilles Pages and Benedikt Wilbertz
Fimr1) = Moy = Vi 1 ExdiStON (Xim .13 My ), M > 1, Fgy © RY, #M70) = N,

where(Xm)m>1 is ani.i.d. sequence of copiesXfand(ym)m>1 is @ sequence of gain
parameter satisfying the@ecreasing step assumptio@ssumptiorty ,>q Ym = +
andy -1 y2, < 4o which is standard in Stochastic Approximation Theory.

From a practical point of view, this abstract formula can beaimposed into two
phases: set for convenienGg, = (Xm1,---,XmN), m>0.

(i) Competitive PhaseSearch of the nearest neighbayy«(x..,) Of Xmi1
among the components g, i = 1,...,N, of I, (using a “winning convention”
in case of conflict between two or more components).

(i) Learning PhaseOne moves the winning component towag 1 using a
dilatationi.e.

X Li* (X 1) = D"atatioquﬂ,lf Ym+1] (Xm-,i* (Xm+1))

where the dilatation Dilatatign, centered af € RY with ratioA > 0 is defined by
Vye RY,  Dilatationg »(y) =& +A(y—&) = (1-A)E+Ay.

All other components stay still.

This procedure is useful for small or medium valued\ofFor general back-
ground on stochastic approximation, we refer to [Benverestal. 1990, Duflo 1996,
Kushner and Yin 2003]. Unfortunately, ti&V Qprocedure turns out to be singular
in the world of recursive stochastic approximation aldoris, and only “conditional
a.s. convergence” results have been obtained (also knowrsasonvergence in the
“Kushner-Clark sense”), see [Pagés 1998]. However, in drabework standard
a.s. convergence has been established at a regular CLT weakrgemoe rate for
distributions with compact support (see [Bouton and P4§&8]).

This procedure has also given rise to many empirical ingastins and heuristic
statements, especially in the artificial neural network camity where theCLV Q
appears as a degenerate case of the Kohonen self-orgamiapsgused in non-linear
automatic classification. Other optimization proceduasetalso been implemented
like evolutionary algorithms (seeg. [Mrad and Ben Hamida 2006]).

4.1.3 Companion parameters

To fully elucidate the distribution of a quantizatio?] of X, not only the grid
I ={x,...,X,} is necessary but also the weiglpis= P(X = ). These weights
are often called “companion parameters”. Other compan&arpeters may be of
interest like the local inertil (1yc (g (ryy IX —%[%).
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> Adaptive estimation (CLV Q)Vhen performing th&€LV Q algorithm, one may
devise a companion procedure to estimate these weighlige by setting

pi(m+1) = pi(m) - )~’m+1(pi(m) - 1{i*(xm+1):i}), i=1,....,N

whereym = ym or yim = 1/m (the second choice corresponds to the usual empirical
mean but with respect to the “moving gridg}, ). No significant extra computation
is needed since (Xm1) is already computed in the core of 8¢V Qprocedure.

> Posterior estimationFrom a practical point of view, it seems more efficient to
estimate by a standard Monte Carlo simulation the weighfsosterior to the grid
optimization: this amounts to “freezing(y, = I and settingm = 1/min the above
procedure (still based on repeated nearest neighbouthssrc

4.1.4 More on practical aspects

> Quasi-Monte Carlo. For formerly mentioned procedures, one may substitute
a sequence of quasi-random numbers to the usual pseudornasetjuence. This
often speeds up the rate of convergence of the method, glitbis remains mostly
heuristic in Stochastic Approximation (see however [Lapest al. 1990]).

> Inductive computation: the splitting method. The most important step to pre-
serve the accuracy of the quantizatio\asicreases is to use the so-calkglitting
methodwhich finds its origin in the proof of the existence of an o@liN-quantizer:
once the optimization of a quantization grid of sés achieved, one specifies the
starting grid for the sizeN + 1 or more generallN + v, v > 1, by merging the
optimized grid of sizeNwith v points sampled independently from the distribution
having a probability density proportional itoa% where¢ denotes the p.d.f. of the
distributionP, . This rather unexpected choice is motivated by the factttfisdis-
tribution provides the lowesh averagerandom quantization error (seg).

When simulation at a reasonable cost of the distribuﬁ@qﬁ(f)/\d(df) is im-
possible, one can still simulate insteBg-distributed numbers. This is the adopted
strategy to compute the grids of tdedimensional normal distribution available on
the website [Pages and Printems 2005] (see below).

> Nearest neighbour searchAll the above procedures rely on repeated nearest
neighbour searches. The complexity of a naive implementaif this procedure
grows linearly withd x N and becomes very demandingisicreases. So reducing
its computational cost is strategic.

—The most basic (although quite efficient) method isRarial Distance Search
to check whether a record levigk, is beaten or not bix| = ((x1)2+- - - 4 (x4)2)%/2
one checks at each stéfif (x!)?+---+ (x')2 > L2,.. If so, one rejects and test a
new point.
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— A more sophisticate procedure has been originally de\ngeglentley and an-
alyzed in a the seminal paper [Friedman et al. 1977] . It isfAcient way to store
the data (theN points) based along a search tree caltedl tree. It reduces the
complexity of the nearest neighbour search dow®¢mgN) (after a one shot pre-
processing of complexit®(NlogN)). An improved version of th&-d tree, based
on a preliminaryPCA, has been developed in [McNames 2001] and is known as the
PAT algorithm (for Principle Axis Tree). Other search treesdubsn a preliminary
“rough” quantization have also been proposed (see [CoildylP. The (relative)
efficiency of such methods first increases as the dimensitmedastate space grows
but becomes more limited for large dimension where “brutedb (unfortunately)
comes back in the game.

> Still more on practical aspects.Many practical studies have been carried
out, including heuristic considerations about the abovecidleed procedures in
[Gersho and Gray 1992] with an orientation toward SignalcBssing and Data
compressing. In [Pages and Printems 2003] a first numestigel entirely devoted
to the multi-variate normal distribution has been devetbpéich finally led to
make available optimized grids of multivariate normal ilgttions on the web-
site [Pagées and Printems 2005] devoted to optimal vectdifamctional quantiza-
tion.

These grids have been computed inductively using theisglithethod by a combi-
nation of CLV Q (for medium values oN ) and Lloyd’s | algorithm, for dimension
running fromd = 1 up tod = 10 and sizes\ running from 1 up to 10000. For
each gridl several “companion parameters (see below) are includeldeiriiles,
especially the weights; = P(4°(0;l4) € Gi(I")), i = 1,...,N, but also the local
LP-inertia (E[X —xi|P1ixec ) forp=1,2.

1<i<N

4.2 Dual quantization

In general, a grid which was optimized for Voronoi quantizatwill also serve as
a good grid for Delaunay quantization. As concerns pralctipplications, the most
important advantage of dual quantization is its intrinsied]) stationarity property

E(XPeX)=X  (whereX"Pel= gV (X))

which holds for any gridl™ with supgPx) C con{TI } regardless of its optimality
with respect to the distribution of. Dual stationarity exclusively follows from the
way of defining the dual quantization weights as

pi — P()’(\I—,Del _ Xi)
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Nevertheless, we give here a short sketch of the couterpiiieyd’s | proce-
dure and the CLVQ-algorithm for dual quantization.

4.2.1 Lloyd-type algorithm for dual quantization

In order to establish a Lloyd-type algorithm for the optiatinn of dual quantization
grids, we writel ;) = {Xmz1,...,Xmn} C RY forme N and denote byD|(IM))cr a
Delaunay part|t|on of corf¥" ), where the index se¥ = .# (") c {I c {1,...,N}:
#| = d+ 1} defines a Delaunay triangulation In. Moreover, ifé € D|(I'), we
write )\;i (&) for the barycentric coordinate @fe cony{x; : j € |} with respect to
the vertexx;.

Recall that each Delaunay triandlg (") is characterized by the center of a
sphere spanned by the verticgs : j € I} which contains no point of in its
interior. We then denote this center y= 7 (I") and define a Delaunay center by
mapping

ZN&) =3 zlp (&) (10)

les

Note moreover that those Delaunay centers are exactly tiiees of the corre-
sponding Voronoi tessellation since they are at the sanardis to thej, j € J.
If one considers the optimization problem (still with an sbwf notation)

I =(x,...,%,) — Distony(X; ) ;== E|X — 7 (X)|? (11)

then it was shown in [Pagés and Wilbertz 2010a] that theigraaf this function
inI" reads

Or Distory (X; ") = 2[E((>q _zr (X))ﬂ{/HX):Xi})LKN'
The first order optimality condition therefore writes

E(Z7(X)| 77 (X)) = AP (X)

and can be regarded as a counterpart to (8). We may therefine @ Lloyd-type
method for dual quantization starting at some initial dig C Rd,#l'(o) =Nas

Xlmi1) = B (Z"m (X)|/F<Jm> (X)), m>o0.

Since it holds

(fl’ |€;I€|/D| >I<| ]PX dE)

we arrive form> 1 at
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> 2 o, (r) A% (&) Px (dE)
Xm+1i:|€j:IEI . , =1
’ Y Joyr M (§)Px(dE)

les:iel

N.

This means thaiy 1 is chosen as a weighted sum of the Delaunay centevBose
triangles share the same vertgy in [y, . It can be shown that such an algorithm is
in fact a Quasi-Newton method and therefore converges toad ininimum of (11)
(seeeq. [Iri et al. 1984] in the case of the regular Lloyd’s | method).

This algorithm, which is new to our knowledge, is the firstltwe used to com-
pute optimal dual quantization grids like the one below woied from the Brownian
motion at time 1 and its supremum ovér1]. The second algorithm is the counter-
part of theCLV Qand is described below.
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Fig. 1 Dual Quantization of the joint distribution a Brownian nwtiatT = 1 and its supremum
over|[0,1] (N = 250).

4.2.2 CLVQ like procedure for dual quantization

Like for the “Voronoi” CLV Qalgorithm, we consider th@ual distortion function

I =(Xg,...,%) — Distoy(X; ) :=EX - _#F (X)[2.
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Referring again to [Pages and Wilbertz 2010a], it holddliergradient of the dual
distortion function

Or Distory (X;I7) = Z[E((Xi -z (X)L sy (X>:Xi})} 1<i<N’

As above, the stochastic gradient method is given by
i1y = M) — Yins 10xdiStOR (Xma 13 Mmy)» M= 1, [g) CRY, #I7g) =N

where (Xm)m>1 is an i.i.d. sequence of copies ¥fand (ym)m>1 is @ sequence of
gain parameters satisfying the decreasing step assumption

In practice that means that we generate a sequ@tgR>1 of i.i.d copies ofX
and the two phases of the CLVQ-algorithm read as follows

(i) Competitive PhaseSearch for the Delaunay trianglé(Xm:1) € -7 (Im))
which contains the realizatiog. ;.

(i) Learning Phase©One moves the winning triangle towards the Delaunay cen-
ter '™ (Xm.1) using a dilatatior.e.

Viie I* (Xmp1) : Xmili = Dilatatior}zqm)( ](M,i).

Xmi1),1=Yme1

4.2.3 Search for the matching Delaunay hyper-triangle

A crucial point in both above procedure, as well as in the Wet@mputations later
on, is the search for the Delaunay triangfé¢) € .7 (I"), which contains a point
& € conVIM). This phase in dual quantization optimization is the exacinterpart
of nearest neighbour search for Voronoi quantization. Susharch can be imple-
mented efficiently by a directed search on the Delaunaydtiktion of". To be
more precise, one starts at a trianigle .# (I" ) and then moves on to that neighbor
triangle oflp which lies on the line defined by the Delaunay cemgrand &. It
was shown in [Bowyer 1981] that such a procedure reachesigmglel* € .7 (")
which containst in average afte©(NY/9) steps, wherl is the number of points
in the gridl". For more details on such point location procedures in gridations
we refer to [Devroye et al. 2004] and [Muecke et al. 1999].

We did not speak yet about the weight computation in thisieealthough it
is a crucial step to fully determine the distribution¥f(whatever quantization is
adopted) which in turn is necessary to produce quantizéi@sed cubature formu-
las. However, since we are interested in American optiotinyi we postpone this
kind of question to the quantization tree below where we stibw how to compute
the transition weights of the tree for both types of quartitira
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5 Application to cubature formula for numerical integratio n

Let X be a quantization based approximation of a random vettaking value in
agridl = {xy,...,x,} of sizeN>1 (X = Proj- (X) (Voronoi) or 7 (X) (Delau-
nay)) depending on the Voronoi or Delaunay nature of the tizetion).

o> Lipschitz continuous function F : RY — R is Lipschitz continuous

[EF(X) ~EF (X)] < [FILpEIX —X| = [X = X]I,.
This yields an approximate cubature formula since

EF(X) = Z piF(x) where p=P(X=x),i=1,...,N.

1<Ii<N

Furthermore, we know that Voronoi quantization is optinmathie following sense
sup{[EF (X) — EF(X)], [Flup < 1} = ern(X).

> Functions with Lipschitz continuous differentidlssume thaf is stationary(i.e.
E(X|X) = X) or “dual stationary”{(.e. E(X | X) = X), then (see [Pagés and Wilbertz 2010a])

|EF (X) — EF(X)| < [DF]LpE[X — X[?

whereDF denotes the (Lipschitz continuous) differentialFof At his stage, one
must have in mind that few grids (mainly the optimal quadratic grids) are station-
ary for Voronoi quantization whereadl grids are dual stationary by construction.

> Convex functiondf F is convex and” is a stationary Voronoi quantizer, then
EF (X" <EF(X) where XV = Proj(X).

If X has compact support, for any gifidsuch that coni/”") > supgP, ),
EF(X) <EF(X") where X" = zY(X).

Combining both quantization approaches yieldegerministic security interval

6 Quantization tree

Let us come back to our Bermuda option pricing problem withrbtations intro-
duced in Section 2. At each timec {0,...,n}, we consider a gridy of size Ng
supposed to be an optimal (or at least a “good”) Voronoi/Detsy quantization of
the Markov chair¥y at timek.
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We define the discretization functiog : RY x [0,1] — RY as

e \oronoi‘A Borel nearest neighbour projection on the gridsee (6)).e.
VEERY, Vue [0,1], 7g(&,u) = Proj (). (12)
e Delaunay: A splitting operator on the grig

vEeRY, Yue [0,1], 7i(&,u) = 78 (&)Ligcconvry) + Prok €)1z goonvriy) -
(13)

Definition 6.1 A quantization tree of the Markov chain=X (Xy)o<k<n is made of
—asetof n- 1gridslg of size N > 1, k=0,...,n, whose elements are denoted

M=K, X}, k=0,...,n;

N

— a set of transition matrices* = [pX 1<i<n 1<j<N,,, K=0,...,n—1, defined by
pij = P(ikn =X X = &k)-

The resulting “quantized” dynamical programing princiglerived from (2),
once written “in distribution”, reads

Nic+-1

vk(xik) = max(hk(xik)a Z p|kj vk+1(XT+l)) ) = 1. Ny, k= 0,....,n—1
j=1

Remarks. e Once the grids have been settled and the transition weigtrices
pK have been computed, on can perform the above backward zaimi tree de-
scent as many times as necessary for different payoff fomgtiAll the information
about the discretization of the Markov dynamics is “storiethe quantization tree

(M, P¥)o<k<n-
e The complexity of the backward descent of such a tree islgl@aoportional to

NNk 1. For a given global budget &f = No+ - - - + N, (usually prescribed
0<k<n-1
by the memory limitations of the computing device). Up toeéffects the minimal

complexity is attained with constant size tréesNy = % k=0,...,n.If Xo =Xo,

thenNg = 1 andNy = ¥ k=1,...,n. Other considerations (see below) may lead
to other specifications for the quantization tree
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6.1 Error bounds

By combining the error bounds of Proposition 2.1 and the rsymgptotic bounds for
optimal quantization(s) we get the following propositiohieh takes advantage of
the non-asymptotic Zador’s Theorems (&Jland 3.2b)). It simplifies the original
presentation from [Bally and Pages 2003a] and extendsdiiéd quantization.

Proposition 6.3 Assume the Markov chain satisfies all the assumptions ofoProp
sition 2.1 and that furthermorenaxo<k<n [|[X/|y < + for a p > 1. Assume that
the payoff functionsihk =0, ...,n are Lipschitz continuous. Assume the sequence
()?k)ogkgn is defined either by (12) or by (13) and that, for everzK,...,n, the
quantization size N> Ny p v (Ngp,y = 1 in the Voronoi setting). Then for every

pe [1,p), there exists a real constar}, y > 0 such that, for every & {0,...,n},

1

[IVi(X) — %(X) | p < Kp,pr chn,é([P]Lipa [ ]Lip) O (XN, @

wheregp(Xg) = Min, pa || X« —al|p, k=0,...,n.

For a second order scheme (based on Voronoi quantizatioichviakes full
advantage of the stationarity, we refer to [Sellami 201@}. ther other applica-
tions (cubature formulas, non-linear filtering, stochlastntrol, etc) we refer to
the surveys [Pages et al. 2003], [Pages and Printems 20@3he reference therein
(Voronoi quantization) or [Pages and Wilbertz 2010a] (auentization).

6.2 Design of an optimized quantization tree by simulation

6.2.1 Grid sizes

A first step (however not mandatory) is to minimize the erroud (at the origin)
obtained in Proposition 6.3 for a given budget of elementantizerdNg + - - - +
Nnh < N (this limitation is usually related to the memory devoteth®computation).
An elementary optimization under constraint yields for ¢$imes of the grids

axN . a1
Ny = {mJ with ay = (Ck,n([P]Lim[h.]Lip)Gp’(xk)) ,k=0,...,n.
This allocation depends on the payoff but if rgagn[hi]Lip < 4+, one may re-
placeay by & = mamgggn,k[P]f_ip Oy (Xk) or evenay = gy (X) if, one “controls”
mamgkgn[P]‘,fip (like in the example following Proposition 2.1). In the dsalting,
this allocation is an heuristic since we have the additieoabtraintNy > Ng , .
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Example. Let Xy = WE' W Standard Brownian motion. Themyy (X¢) = Cy \/t_n
k=0,...,n.

6.2.2 Transition weight estimation
> The “diffusion” method Like for the grid optimization, a large-sample(X ()

of the chain is generated and sent “through” the grids. Thes estimates each
transition weight by

5 _ s im 2t PUROCT U =X a4 ) = 421X, X0
bt S PO U =X 1)

(14)
whererg is specified following the type of the quantization. We magusse that
the integration with respect td, andUy 1 can be done explicitly by a closed form
solution (keeping in mind thgy) and(X) are independent). This holds trivially

true for Voronoi quantization, but also for dual quantiaatas we will see later on.
The strong consistency follows then from the Strong Law aféaNumbers since

E(]P’(rq((xéé),uk) =X, T&+1(Xé?17Uk+1) = |J_<+1 | Xéé)v xk(?l))
= P(ri(X, Ui) = %, T 14, Uiy 1) = X6

and
¢ ¢ ¢
E(Pra(x”, U0 =X ) = PO Ui = %),
Whenrg does not depend on the exogenous noise (like for Voronoitmadion),
the above estimator coincide with the naive one, that is

L
1
201 {W(Xé/)aUk):Xik’T¢<+1(X1£?1’Uk+1)lef+l}

k .
pj =as- I|moo L
) 261y x0 Bo=4)

> More precisely, in the case of Voronoi quantization, it tsold
w4 U =X = xecn),

whereGi(l),i = 1,...,Nx denotes a Voronoi partition dk%, so that (14) finally
reads

Si1lio o 0 o
{X¢ T€Ci(N) N X 1€Cj (Mkra)}

k .
pij =as.- lim 5
- 2610 )
Note here, that from an implementational point of view, werat need to con-
struct the whole Voronoi diagram of the grifis It is sufficient to perform a Nearest
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Neighbor search to estimate the transition probabilite# aan be seen in Algo-
rithm 1.

Algorithm 1 Transition probability estimation for Voronoi quantizati
for/=1,...,Ldo
X Xg, 1«0, pil<—l
for k=1,...,ndo
Simulatex! givenX{,..., X! ,
Find Nearest Neighbor-Indejof X{ in I
Set
P+ =1
plj<+1+ -1
I« |
end for
end for

> In case of dual quantization it holds f& € conyI), with the notation from
Section 4.2,

|
Ie/%):ie /D| (M) /\XIK(E)PX(dE)’

¢
(%, Ui) =) =
whereD, (I), | € .#(Ik) denotes a Delaunay partition of c@fy).
The estimation of the transition probabilitiqaﬁs then can be implemented as
shown in Algorithm 2.

Algorithm 2 Transition probability estimation for dual quantization
for/=1,...,Ldo

X Xg, i+ 0, pilHl

for k=1,...,ndo
Simulatex{ givenX{,..., X! ,
Find Delaunay hyper-trianglg of X,f in Iy
UpdatepX. w.r.t. barycentric coordinates 6K, ;,X¢) (Tk_1, Tk)
Updatep!t? w.r.t. barycentric coordinates of in i

end for

end for

pii

Setpi‘} = o
1

1<i,j<Ng1<k<n

Although this transition probability estimation by Mon@arlo simulation is
usually the most time consuming part of the quantizatioa alkgorithm in prac-
tice, one has to emphasize here, that both above algoritamse parallelized
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very efficiently. This is indeed of special importance sittee availability of mas-
sive parallel computing device at very low price like as GRIGPIt was shown
in [Pagés and Wilbertz 2011], that the computational tiorefansition probability
estimation can be reduced by a factor 200 when implemented&RGPU device.

> The spray methodOn can decouple the computation of the transitions at each
time steps by noting that

«Z(Tﬁwl(xkﬂvukﬂ) = le(+l| Th(Xi, Uk) = Xlk) ~ g(m+1(xk+17Uk+l) = le(+1 [ Xe= Xik)-

The distribution on the right hand side is easy to simulaitecésthe chain is sup-
posed to be simulatable). Consequently one can perform daeMearlo simulation
based on this distribution to estimate (approximately)pﬁ\e. As concerns Voronoi
quantization, it has been shown in [Pageés et al. 2003] ieagtror induced by such
an approximation is of second order if the grigsare stationary.

Decoupling the estimation of the successive transitiomioes makes possible to
perform a new parallelization of the estimation procedsee (Bronstein et al. 2010])
with again a significant reduction of the computation timevddo a few seconds
on a GPGPU device.

6.3 Martingale correction

When the structure proce®%)o<k<nis @ martingaled.g. a discounted set af risky
assets under a risk neutral martingale probability, or avBian motion at timeg' =

kTT, etc) andXy = Xg, the quantization based approaches do not preserve natural
this property (or any dynamical property). One way to pradséo slightly modify

the gridsly as follows:

— Define by a backward inductidh = I, and for everyjk =0,...,n—1,
= K K ok YKokl
I‘k:{xl,...,xNk} where %= % X =1, N

=1

— Re-center the grids by setting
rret = M+ X0 — Ro.

The resulting quantization tre{ﬁkma”, pk)ogkgn has the distribution of a martingale
starting atxp at time 0. Although it often significantly improves numetioasults,
theoretical error bounds no longer hold. It is observedttatranslationg — Xg is
negligible in practice.
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7 Numerical experiments
7.1 Swing Options

We begin the numerical illustrations by the example of theipg of swing options
in a Gaussian 2-factor model. Such a problem consists iringpthe normalized
stochastic control problem (interest rate is neglected)

esssur{ (Z O (Vie (X |/o> Gk (2, ) — [0,1],0n € [Qmin, Qmax

(15)
for global consumption couplQmin, Qmax) € N2 anddy := 2:‘;& gi- As shown in
[Bardou et al. 2010b] there exists an optimal bang-bangrobfur this problem,
which leads, in combination with tH&DPP, to

P'=0
PR(QY) = max{ x(v(X) — K) +E(R 3 (X" 1(Q%0) Xoix € {0,213 15

with admissible e, := [(QKin— M)+ AL, QKAL) and
XM(Q4%) = ((QKin — X+, (Qax— X) AM) so thatP)(Qmin, Qmax) is a solution to
(15).

A straightforward quantization of this problem then reads

Ph=0
BE(QY) = max{x(w(Ro) — K) + B(RL (X" Q)[R xe (0.2} 151}

and error bounds have been established in [Bardou et alb20ldte here that
the computation of the conditional expectatidBgPy, ; (x"*~1(QX,x))|X¢ = X]

becomes straightforward owing to Section 6 since it hdlds(Xq. 1) Xk = X€) =

N,
ZJkJrll p” ( k+1)-

Furthermore we will focus here on the ca3gin = 0, Qmax = N so that the solu-
tion P has the representation

n

PI=3 (V%) — K)o

=1

~

We therefore may hope that due to this simple structure aspddtcalls and
in view of section 5 that stationarity may play an importasierfor the numerical
results.

As underlying we have chosen as in [Bronstein et al. 2010}wloedimensional
Markov process
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kAt kAt
X — (/O efal(kAtfs)dV\él’/o eaz(kms)dv\éz)

so that the 2-factor underlying is given ly(Xy) for v (xq,x2) = soexp(ay(ﬁ-
OxXo — %ut). The numerical parameters here read in detail as

$=2000=1110a,=5.4,0,=0.36,0,=0.21, p=-0.11,n=30

i.e. we have a Gaussian procgs&) with a true correlation. Note that in such a
setting the transformation of an optimal and stationaryoviei quantization grid
for the bivariate standard normal distribution into onehngorrelationp destroys
already the stationarity property in the transformed dgridhe case of dual quanti-
zation, stationarity for the transformed grid is at leastsgrved on corfy" ).

As it is shown in Figures 2 and 3 the dual methods outperforiearly the
Voronoi approach, which is mainly caused by the intrinsatieharity of the De-
launay quantization mapping.

Moreover; we already observe that Dual quantization teadsad to an upper
bound whereas Voronoi quantization is approaching froraveg|Both those obser-
vations hold in general true for convExand precisely stationary quantizéts

Swing option: #exercise days: 30, K =5.0
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2.675
2.670 -0,0100
2.665
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0,0025
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uonelraq |12l

—-0,0025

-0,0075

-0,0125
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quantizer size

—regular Quantization —dual Quantization —ref value

Fig. 2 Convergence of the quantization methods as function ofibeage grid sizé\.
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Swing option: #exercise days: 30, K =5.0
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g 2.695
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Fig. 3 Convergence of the quantization methods as function ofibeage grid sizé\.

7.2 Bermuda options

First we recall the following basic fact: in classical notirage theory of contin-
gent claims, it is well-known that, in a complete market, thecounted fair price
of a Bermuda option with payoff procefis(S, ))o<k<n, 0=t <ty < ... <tx... <
thy =T, is the Snell envelope of the discounted payoff processato th

Premiung, = & Snelb- <M>
Sﬁ 0<k<n

Where(S))te[O,T] is thenunéraire (also called “riskless asset”) agd= (S, ... ,$)te[0;]
is the risky asset pricR9-valued process an is the risk-neutral probability. In
what follows Bermuda options appear as time approximatfolnoerican options
(see [Bally and Pagés 2003b] for various time discretiagirror bounds).

7.2.1 Geometric Exchange Option
We now consider the case of a geometric exchange put opteominti-dimensional

Black Scholes model with maturifly and 11 exercise datk%, k=0,...,10. That
means that the underlyinqs')te[oﬂ, i=1,...,d are given by the (uncorrelated)



Optimal Delaunay and Voronoi quantization schemes foripgiémerican style options 31

Black-Scholes dynamics:

. . 2 ) )
S :%exp((r—d —%‘)t+0iV\4')7 g >0,

W = (W1,...,WY) standard Brownian motion, and the payoff of this option eead
ford =2k

k d
s )= (s _-:ﬂ1$)+'

Example 1As parameters we have chosen a Bermudan option with maiueityt ,
11 exercise dateky/10,k=0,...,10, and

d=408,i=1,... .k <=403i=k+1...,d, r=0.05
G =02i=1,..d &=005i=1..k &=00i=Kkt1...d.

These settings can be reduced for drtp a 2-dimensional exchange option for
which we computed reference values using a Boyle-Evnird&iree with 10000
time steps.

The resulting log-log plots of the convergence for Voronad ®ual quantization
can be found in Figures 4 and 5.

0

T vg ——
DQ -

-0.5 |

-15 |

-25 |

-35

L L L L L
35 4 45 5 55 6 6.5
N

Fig. 4 Log-Log plot of quantization methods for the geometric etle option in dimension 2

One observes here again that dual quantization approalcts deslightly better
rate (cf. Table 1) than the Voronoi quantization approxiorat

| 2d | 4d |
Voronoi Quantizatiof0.73|0.36
Dual Quantization |0.86{0.38,

Table 1 Rates of convergence for the exchange option.
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Fig. 5 Log-Log plot of quantization methods for the geometric erae option in dimension 4

Note moreover that the upper bound in Proposition 6.3 presmasly an optimal
rate of 05 in dimension 2 and.@5 in dimension 4. Therefore it seems that also in
this example there is some more smoothness to capture wéadls in practice to
better rates than those for the worst case error within dikgpschitz functionals.

Due to the very smooth convergence seen in Figures 4 and Suniveefmore
apply a Richardson-Romberg extrapolation on the erroresipa

EF (X) ~ EF (X)+KkN 9,

which is a pure heuristic but has a theoretical justificafmmstationary quantizer
(see,e.g., [Pages and Printems 2009]). We therefore use the matesm Table 1
and extrapolate the unknown using two different grids sizell; andN,. As a
result, we obtain in the above setting for
pRom _ lf‘)Nl A(')\ll — |5(')\12
R
a stable and fast convergence as shown in Figures 6 and 7nfiendions 2 and 4.
These experiments suggest to adopttiig-price0.5 x (Priceyg+ Pricepg).
Alternatively one may, following the commonly shared idéaoluding the pay-
off in the regression basis of Longstaff-Schwartz’s altjon, use the European price
of the exchange option as a control variate. This meanshk&DPP reads

Vi = ¢, (%n) — CF14, (%n)
Vi = max{¢tk(xk) — CFY, (%); B (Vipa | %) }, 0<k<n-1,

whereCEY"(x) is the european price for maturityand initial Stock price.
Consequently, the true pri&g is given by
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Fig. 6 Convergence of the extrapolated quantization methodhfgéometric exchange option
in dimension 2
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Fig. 7 Convergence of the extrapolated quantization methodsh&geometric exchange option
in dimension 4

Vo =Vo+CF(X0).

Numerical results for the above setting are given in Fig8raad 9.
7.2.2 Put-On-The-Min option

A final comparison is taken out on the example of an put-oratieoption in a two
dimensional Black Scholes model. The payoff of this optieads

$(s) = (K-min(s".§)) .
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Fig. 8 Convergence of quantization methods with european covarite for the geometric ex-
change option in dimension 2
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Fig. 9 Convergence of quantization methods with european covarite for the geometric ex-
change option in dimension 4

Here again the reference values were computed using a Boylge-Gibbs tree
with 10000 timesteps.

We compare the dual quantization approach including theimgaie correction
of Section 6.3 to the Longstaff-Schwartz$) approach from the Premia software
package}). For theL-S procedure, we have chosen a family of 22 independent
functions (21 monomial functions the payoff function) and plotted in Figure 10
a Monte Carlo simulation with increasing number of sampléh@aanging from
10.000 to 100000 and its 95% confidence interval.

2 Software developped by Projet MATHFI at Inria
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This setting was chosen to arrive at approximately equaleaational times for
theL-Sapproach and the dual quantization method.

One clearly sees in Figure 10 that the quantization appredithmartingale
correction provides already for smalla very good approximation to the true value
of the Bermuda option. In addition, theSapproach suffers from a higher volatility,
since itis more depend on the Monte Carlo error than the ueditn tree approach,
which contains the critical MC-Simulation only in the wetgistimation.

Furthermore we have also plotted in Figure 10 the Monte Gzstonation by a
L-Sapproach from th€remiasoftware package in order to compare results.

Example 22-asset (correlated) Black-Scholes model with matuFity 1 and 11
exercise time&4;, k=0,...,10,
S$==40r=005 0, =02 0,=0.3,p=05K =40,

for a put on the mini.e. payoff

6(5. ) = (K—min(s )

As underlying Markov proces¥, we have chosen a 2-dimensional Brownian Mo-
tionW = (W1, W?) with correlationp.
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Fig. 10 Convergence of quantization methods for a put-on-the-mtioo in dimension 2
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