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We review in this article pure quantization methods for the pricing of multiple exercise options. These quantization methods have the common advantage, that they allow a straightforward implementation of the Backward Dynamic Programming Principle for optimal stopping and stochastic control problems. Moreover we present here for the first time a unified discussion of this topic for Voronoi and Delaunay quantization and illustrate the performances of both methods by several numerical examples.

Introduction

This paper is focused on pure quantization method for pricing multi-asset American style options (by contrast with hybrid Monte Carlo-quantization approaches). It continues two goals: it is partly a survey on the pricing of this family of options by optimal Voronoi quantization techniques. It is also an opportunity to present our first attempt to implement in a multi-dimensional setting the new quantization method called dual (or Delaunay) quantization recently developed and investigated in [Pagès and Wilbertz 2010a] and [Pagès and Wilbertz 2010b]. This approach relies on the Delaunay triangulation of a grid whereas usual vector quantization relies on its Voronoi diagram, hence its name since the Delaunay triangulation is and Voronoi diagrams are in duality (see [START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF]). Dual quantization has Gilles Pagès LPMA, UPMC, case 188, 4 pl. Jussieu, F-75252 Paris cedex 5; e-mail: gilles.pages@upmc.fr Benedikt Wilbertz LPMA, UPMC, case 188, 4 pl. Jussieu, F-75252 Paris cedex 5; e-mail: benedikt.wilbertz@upmc.fr been originally introduced in [START_REF] Pagès | [END_REF] to compute the expectation of functionals of nonhomogenous Bernoulli random walks involved in the pricing of CDO's (in a static copula model).

Optimal Voronoi quantization, which is an old story going back the the 1950's has been originally developed for Signal transmission purpose at the Bell Laboratory, has been implemented as a numerical method for the pricing of multi-asset American -strictly speaking Bermuda -options in a series of papers [START_REF] Bally | A Stochastic quantization method for nonlinear problems[END_REF]], [Bally and Pagès 2003a], [Bally and Pagès 2003b], [START_REF] Bally | First order schemes in the numerical quantization method[END_REF]], [START_REF] Bally | A quantization tree method for pricing and hedging multidimensional American options[END_REF]]. Other fields of application have been developed, often in connection with financial problems like numerical integration [Pagès 1993], [START_REF] Pagès | [END_REF]], [START_REF] Pagès | [END_REF], non-linear filtering(see [START_REF] Pagès | [END_REF], [START_REF] Pham | Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation[END_REF]], [Sellami 2010], [Sellami 2009] with application to stochastic volatility lodels, stochastic control with application to portfolio management (see [Pagès et al. 2004]) and swing option pricing (see [Bardou et al. 2010a], [Bardou et al. 2010b]), discretization of stochastic PDE's (typically Zakaï and Mc Kean Vlasov equations, see [START_REF] Gobet | Discretization and simulation of the Zakai Equation[END_REF]], [START_REF] Gobet | Discretization and simulation for a class of SPDEs with applications to Zakai and McKean-Vlasov equation[END_REF]). We also refer to the surveys [Pagès et al. 2003] and [Pagès and Printems 2009] and the references therein, as well as to the website devoted to Optimal quantization (see [Pagès and Printems 2005]).

Quantization methods consists in approximating/discretizing an R d -valued random vector X by a random vector often denoted X taking into a grid Γ of size N ≥ 1 so as to make X -X p as small as possible. As concerns Voronoi quantization, X is a projection following the nearest neighbour rule on grid Γ of size N. For dual quantization, X is the result of a random splitting operator which projects X on one of the vertices of a "minimal" Γ -valued d-simplex which contains X, with a probability ruled by the barycentric coordinates of X. In a quadratic Euclidean framework optimal Voronoi quantizers satisfy the so-called stationary property X = E(X | X) whereas all dual quantizers satisfy the reverse stationarity property X = E( X | X). When X has an unbounded support, one extends the splitting operator by a nearest neighbour projection outside the convex hull of the grid Γ .

In order to solve dynamic optimization problems related to a (discrete time) Markov chain (X k ) 0≤k≤n , one introduces quantization trees that is quantization grids Γ k of the marginal X k and some transition matrices approximating the the Markov transition of the chain. The stationarity of the grids used in the quantization schemes designed on such quantization tree plays a important role to preserve the numerical efficiency/accuracy: the easiest way to get convinced is to check that such grids lead to quantization based cubature formulas of second order (see [Pagès 1993, Pagès andWilbertz 2010a]). Although not as prominent when dealing with less linear problems (Bermuda option pricing, filtering, stochastic control, etc), stationarity turns out to be crucial when dealing with numerical implementation. Now, only optimal Voronoi quantization grid share this property whereas it is shared by all dual quantization grids. This makes dual quantization more flexi-ble than the Voronoi one: when switching from a distribution to another like in an iterative calibration procedure, one only has to modify the weights of a dual quantization grid to preserve the stationarity (even if the resulting quantization is no longer optimal). This can be done on line by a regular Monte Carlo simulation in a few seconds or even less with the help of high performance massively parallel computation device (GPGPU). When dealing with Voronoi quantization, preserving stationarity requires to re-adjust both the grids and the weights.

In Section 2 we propose in a Markovian framework a unified approach to provide some a priori error bounds for Voronoi and Delaunay quantization schemes, relying on a non asymptotic version of Zador's theorem (about the rate of decay of the L pquantization error). This improves and simplifies the results in [Bally and Pagès 2003a]. The resulting bound is the (weighted) sum of the quantization errors of the marginals of the Markovian dynamics.

In Section 3, we present with more details both Voronoi and Delaunay quantization. In Section 4, we briefly describe several stochastic optimization methods to optimize grids. Those related to Voronoi quantization are classical (Lloyd's I and CLV Q) whereas their counterpart have been recently devised in [Pagès and Wilbertz 2010a] or completely new. In section 6, we propose methods -some of them heuristicto optimize the structure of the quantization tree. In Section 7, numerical test are carried out on several American payoff functions (swing option, exchange option between geometric indices and call option on minimum of two assets) in a multidimensional setting. We determine emirically rates of convergence, discuss several improvement possibilities and finally establish a comparison with the Longstaff-Schwartz algorithm. NOTATION: | . | denotes the canonical Euclidean norm on the vector space R d of column vectors. conv(A) denotes the convex hull of A ⊂ R d .

Quantized Backward Dynamic Programming Principle

Let (X k ) 0≤k≤n be an R d -valued homogeneous Feller Markov chain defined on a probability space (Ω , A , P) with transition P(x, dy). The homogeneity assumption is essentially made for convenience in order to to alleviate notations but the extension to a non-homogeneous framework is straightforward. We will make the slightly more stringent assumption that the chain is in fact "Lipschitz Feller": this means that the transition is not simply Feller but also preserves uniformly Lipschitz continuous functions: there exists a (finite) real constant [P] Lip such that

∀ f : R d → R d , [P f ] Lip ≤ [P] Lip [ f ] Lip . where [ f ] Lip = sup x =y | f (x)-f (y)] |x-y]
. Without loss of generality we may assume that

[P] Lip = sup [ f ] Lip ≤1 [P f ] Lip . Let h k : R d → R + , 0 ≤ k ≤ n, be a sequence of Borel functions satisfying max 0≤k≤n h k (X k ) p < +∞.
Let F X = (F X k ) 0≤k≤n denote the natural filtration of the chain X. It is classical background from Optimal Stopping Theory that if one defines by induction the socalled Backward Dynamical Programming Principle (BDPP) by

V n = h n (X n ), V k = max h k (X k ), E V k+1 | X k (1) then V 0 = sup E h τ (X τ ) , τ : Ω → {0, . . ., n} F X -stopping time
and more generally

V k = esssup E h τ (X τ ) F X k , τ : Ω → {k, . . . , n} F X -stopping time , k = 0, . . ., n.
The sequence (V k ) 0≤k≤n is known as the (P, F X )-Snell envelope of the so-called obstacle process (h(X k )) 0≤k≤n .

The paradigm of Quantized Backward Dynamic Programing Principle is two folded and can be described as follows:

⊲ discretization. As a first step, we consider an abstract approximation process of the Markov Chain (X k ) 0≤k≤n by a sequence ( X k ) 0≤k≤n of the form

X k = π k (X k ,U k ), k = 0, . . . , n,
where (U k ) 0≤k≤n is an i.i.d. sequence of R d 0 -valued random vector independent of F X n (i.e. of (X k ) 0≤k≤n ) and the mappings π k : R d × R d 0 → R d are Borel functions. As concerns numerical implementation we will of course ask the chain (X k ) 0≤k≤n and the exogenous simulation noise (U k ) 0≤k≤n to be to be simulatable (at reasonable cost) and the mapping π k to take values in finite sets Γ k (called grids).

We will see further on that these random vectors U k represent an exogenous noise involved in the simulation process of X k "from" X k (so will be the case when dealing with dual quantization). One can always achieve such a framework by defining the sequence (U k ) on a probability space (Ω 0 , A 0 , P 0 ) and by considering the product probability space ( Ω , A , P) = (Ω × Ω 0 , A ⊗ A 0 , P ⊗ P 0 ).

⊲ Quantized Backward Dynamic Programming Principle. As a second step, we introduce a dynamic programming formula involving the r.v; X k , obtained by sim-ply mimicking the regular BDPP related to the Snell envelope of (h k (X k )) 0≤k≤n ; in practice this essentially amounts to "forcing" the Markov property although the sequence ( X k ) 0≤k≤n has no reason to be a Markov chain. To be precise, we define a sequence

( V k ) 0≤k≤n V n = h( X n ), V k = max h k ( X k ), E V k+1 | X k .
(2)

Then the following (new) result holds about the rate of approximation of the Snell envelope (V k ) 0≤k≤n by its quantized counterpart

( V k ) 0≤k≤n . Proposition 2.1 Let p ∈ [1, +∞). Assume that max 0≤k≤n X k p + X k p < +∞
and assume that all the functions h k , k = 0, . . . , n, are Lipschitz continuous. Then, for every k ∈ {0, . . . , n},

V k -V k p ≤ n ∑ ℓ=k C n,ℓ ([P] Lip , [h . ] Lip ) X -X k p where C n,k ([P] Lip , [h . ] Lip ) = c p max k≤ℓ≤n [P] ℓ-k Lip [h ℓ ] Lip with c p = 1 if p = 2 and c p = 2 otherwise.
Proof. STEP 1. The functions v k are Lipschitz. One first shows by induction using the Markov property that

V k = v k (X k ), k = 0, . . . , n,
where the functions v k are Lipschitz continuous satisfying

v n = h n and v k = max(h k , Pv k+1 ), k = 0, . . . , n -1.
In particular, for every k = 0, . . . , n -1,

[v k ] Lip ≤ max [h k ] Lip , [P] Lip [v k+1 ] Lip
where we used the elementary inequality

| sup i∈I a i -sup i∈I b i | ≤ sup i∈I |a i -b i |.
Then standard computations yield that

[v k ] Lip ≤ max k≤ℓ≤n [P] ℓ-k Lip [h ℓ ] Lip . STEP 2. Induction on V k -V k p . It follows from the quantized BDPP that V k = v k ( X k ) where v k : R d → R + , k = 0, . . . , n.
are Borel functions. Then

V k -V k p ≤ h k (X k ) -h k ( V k ) p + E(V k+1 | X k ) -E( V k+1 | X k ) p ≤ [h k ] Lip X k -X k p + E(V k+1 | X k ) -E( V k+1 | X k ) p .
Now, one easily checks that

E V k+1 | X k = E V k+1 | π k (X k ,U k ) = R d 0 E V k+1 | π k (X k , u) P U k (du) since X k = π k (X k ,U k ), U k and ( V k+1 , X k ) are independent (keep in mind that V k+1 is σ ( X k+1 )-measurable and σ ( X k+1 ) ⊂ σ (X k+1 ,U k+1 )).
It follows from the generalized Minkowski inequality that u) p where we successively used the fact that conditional expectation is an L p -contraction and that

E(V k+1 | X k ) -E( V k+1 | X k ) p = R d 0 E(V k+1 | X k ) -E V k+1 | π k (X k , u) P U k (du) p ≤ R d 0 E(V k+1 | X k ) -E V k+1 | π k (X k , u) p P U k (du). (3) Now, for every u ∈ R d 0 , E V k+1 | π k (X k , u) -E V k+1 | X k p ≤ E V k+1 -V k+1 | π k (X k , u) p + E(V k+1 | X k ) -E V k+1 | π k (X k , u) p ≤ V k+1 -V k+1 p + E V k+1 | X k -E E V k+1 | X k | π k (X k , u) p = V k+1 -V k+1 p + Pv k+1 (X k ) -E Pv k+1 (X k ) | π k (X k ,
E V k+1 | X k = E v k+1 (X k+1 ) | X k ) = Pv k+1 (X k ). Now Pv k+1 (X k ) -E Pv k+1 (X k ) | π k (X k , u) p ≤ c p Pv k+1 (X k ) -Pv k+1 (π k (X k , u) p
with c p = 1 if p = 2 and c p = 2 otherwise, so that finally

E V k+1 | π k (X k , u) -E(V k+1 | X k ) p ≤ V k+1 -V k+1 p +c p Pv k+1 (X k ) -Pv k+1 (π k (X k , u) p ≤ V k+1 -V k+1 p +c p [Pv k+1 ] Lip X k -π k (X k , u) p . (4) 
On the other hand,

R d 0 X k -π k (X k , u) p P U k (du) = R d 0 (E|X k -π k (X k , u)| p ) 1 p P U k (du) ≤ R d 0 E|X k -π k (X k , u)| p P U k (du) 1 p = E|X k -π k (X k ,U k )| p 1 p = X k -X k p
where we used Jensen's Inequality (since p ≥ 1) in the second line. Consequently, plugging this bound in the P U -integrated form of (4) and the resulting inequality in (3), yields

V k -V k p ≤ V k+1 -V k+1 p + [h k ] Lip + c p [Pv k+1 ] Lip X k -X k p .
Hence, for every k ∈ {0, . . . , n},

V k -V k p ≤ n ∑ ℓ=k [h ℓ ] Lip + c p [P] Lip [v ℓ+1 ] Lip X ℓ -X ℓ p ≤ n ∑ ℓ=k C n,ℓ ([P] Lip , [h . ] Lip ) X ℓ -X ℓ p owing to the upper bound established in Step 1 for [v k ] Lip . ♦
Example. We consider a jump diffusion solution to

dY t = b(t,Y t )dt + σ (t,Y t )dW t + κ(t,Y t-)dZ t ,
where W = (W t ) t∈[0,T ] is an l-dimensional standard Brownian motion and Z = (Z t ) t∈[0,T ] is an l-dimensional square integrable compensated Lévy process without Brownian component (so that its Lévy measure ν satisfies

R l |z| 2 ν(dz) < +∞).
The processes W and Z are defined on a probability space (Ω , A , P) and are supposed to be independent. In particular, Z t is centered, has a second moment and both d,q) are Lipschitz continuous functions in (t, x) (these assumptions are not optimal). Under these assumptions, the above SDE has a strong solution starting from any finite random vector Y 0 independent of (W, Z) defined on (Ω , A , P).

(Z t ) t∈[0,T ] and Z t Z * t -tE(Z 1 Z * 1 ) t∈[0,T ] are F W,Z t -martingales (Z * t stands for the transpose of Z t ). Assume that b : [0, T ] × R d → R, σ , κ : [0, T ]× → M (
The "sampled process" (Y t n k ) 0≤k≤n at the discretization times t n k = kT n , k = 0, . . . , n, is an homogenous Markov chain with transition P (n) 

:= PT n formally reading PT n ( f )(x) = E x f YT n .
Such a Markov chain is usually not simulatable. However one may always associate to such a diffusion process its Euler scheme with step T n recursively defined by Ȳ0 = Y 0 and, for every k ∈ {0, . . . , n -1},

Ȳt n k+1 = Ȳt n k + T n b(t n k ,Y t n k ) + σ (t n k ,Y t n k )(W t n k+1 -W t n k ) + κ(t n k ,Y t n k )(Z t n k+1 -Z t n k ).
The sequence ( Ȳt n k ) 0≤k≤n is a homogeneous Markov chain with transition P(n) reading on bounded or non-negative Borel functions f ,

P(n) ( f )(x) = E f x + b(x) T n + σ (x) T n Ξ + κ(x)Z T n (5)
where Ξ ∼ N (0; I q ) is independent of Z T n

. For notational convenience we will often note P for P(n) .

Standard computations show that if f is Lipschitz continuous

| P(n) ( f )(x) -P(n) ( f )(x ′ )| 2 ≤ [ f ] 2 Lip 1 + [b] 2 Lip T n 2 + C σ ,κ,d,Z T n |x -x ′ | 2 where C b,σ ,d,Z = d[σ ] 2 Lip + [κ] 2
Lip E|Z 1 | 2 . Similar bounds can be obtained for the jump diffusion at time T n using Itô's formula with jumps. This leads to the following proposition.

Proposition 2.2 There exists a real constant C b,σ ,κ,T,d,Z such that,

∀ n ≥ 1, [PT n ] Lip ≤ 1 + C b,σ ,κ,T,d,Z T n and [ P(n) ] Lip ≤ 1 + C b,σ ,κ,T,d,Z T n . As a consequence, if P = PT n or P = P(n) sup n≥1 max 0≤k≤n [P] k Lip ≤ e C b,σ,κ,T,d,Z < +∞.
This proposition emphasizes that if one set σ,κ,T,d,Z [h] Lip < +∞.

X k = Y t n k or X k = Ȳt n k , k = 0, . . . ,
C n,k ([P] Lip , [h . ] Lip ) ≤ e C b,

Optimal Voronoi and Delaunay quantizations

In this section we deal for a while with a static problem: how to optimize the quantization of a fixed R d -valued random vector X. This is the purpose of optimal quantization which consists in minimizing the L p -mean approximation error induced by a quantization X of X that takes at most N values. To be more precise, we aim at minimizing X -X p over a certain class of discretely valued random vectors X.

Optimal Voronoi quantization

In the case of Voronoi quantization this optimization problem reads e p,N (X) = inf X -X p : X is a random vector with # X(Ω ) ≤ N .

It turns out, see e.g. [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF], that this definition is equivalent to the definition of the optimal quantization error as the minimal L p -distance from X to a finite grid

Γ ⊂ R d with cardinality #Γ ≤ N, i.e. e p,N (X) = inf dist(X,Γ ) p : Γ ⊂ R d , #Γ ≤ N = inf E min x∈Γ |X -x| p 1/p : Γ ⊂ R d , #Γ ≤ N .
This equivalence is based on the construction of a Voronoi quantization by means of the nearest neighbour projection. Therefore, let Γ = {x 1 , . . . , x N } ⊂ R d be a grid and denote by

(C i (Γ )) 1≤i≤N a Borel partition of R d satisfying C i (Γ ) ⊂ ξ ∈ R d : |ξ -x i | ≤ min 1≤ j≤N |ξ -x j | .
Such a partition is called a Voronoi partition generated by Γ and we may define the corresponding nearest neighbour projection as

Proj Γ (ξ ) = ∑ 1≤i≤N x i ½ C i (Γ ) (ξ ). (6) 
The discrete random vector

X Γ ,Vor = Proj Γ (X) = ∑ 1≤i≤N x i ½ C i (Γ ) (X).
is called Voronoi Quantization of X induced by Γ and satisfies

E min x∈Γ |X -x| p = E|X -X Γ ,Vor | p .
At this stage, the purpose of optimal quantization is to prove the existence of optimal grids of size at most N which resulting quantization error attains the minimal L p -quantization error e p,N .

Proposition 1 (Optimal Voronoi quantizer). (see [Kieffer 1983, Graf and Luschgy 2000[START_REF] Pagès | [END_REF]]) (a) Let p ∈ [1, ∞). For every integer N ≥ 1, there exists at least one optimal grid Γ *

N of size at most N (or "at level N") such that

X -X Γ * N ,Vor p = e p,N (X)
and N → e p,N (X) is (strictly) decreasing to 0 (as long as it does not vanish). Furthermore e p,N (X) = 0 if and only if supp(P X ) has at most N elements and if this support has at least N elements, then any optimal grid Γ * N has exactly N pairwise distinct elements. (b) If p = 2, any optimal Γ * N quantization grid satisfies the stationary property

E X | X Γ * N ,Vor ) = X Γ * N ,Vor . (7) 
Furthermore, if d = 1 and X has an absolutely continuous distribution with a logconcave probability density, then (see [START_REF] Abaya | On the existence of optimal quantizers[END_REF], [START_REF] Abaya | Some remarks on the existence of optimal quantizers[END_REF], [Trushkin 1982], [Kieffer 1983]) there is only one stationary quantizer which is necessarily the unique optimal quantizer of X at level N.

The stationarity property (7) plays an important role in the numerical aspects of optimal Voronoi quantization although its proof is rather simple for an optimal quantizer: by the very definition of conditional expectation as an L 2 (P)-orthogonal projection

e p,N (X) ≤ X -E(X | X Γ * N ,Vor ) 2 ≤ X -X Γ * N ,Vor 2 = e p,N (X), one derives (by uniqueness) that E(X | X Γ * N ,Vor ) = X Γ * N ,Vor a.s.
For further mathematical insights on optimal vector (or Voronoi) quantization or for more details , we refer to [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]] and the references therein.

Optimal dual quantization

By contrast to the above construction of Voronoi quantizations as best possible L pmean approximation, optimal dual quantization relies on the best approximation which can be achieved by a discrete random vector X that satisfies a certain stationarity assumption on the extended probability space (Ω × Ω 0 , A ⊗ A 0 , P ⊗ P 0 ). That is we define

d p,N (X) = inf X -X p : X : (Ω × Ω 0 , A ⊗ A 0 , P ⊗ P 0 ) → R d , # X(Ω × Ω 0 ) ≤ N and E( X|X) = X .
Then (see [Pagès and Wilbertz 2010a]), one may show that such a definition is equivalent to

d p,N (X) = inf F p (X;Γ ) p : Γ ⊂ R d , #Γ ≤ N for the local dual quantization functional F p (ξ ;Γ ) = inf N ∑ i=1 λ i |ξ -x i | p 1/p : λ i ∈ [0, 1] and N ∑ i=1 λ i x i = ξ , N ∑ i=1 λ i = 1 .
If the grid Γ ⊂ R d admits a Delaunay triangulation (e.g. the points in Γ are in general position), then it was proved in [Pagès and Wilbertz 2010a] that we can construct a dual quantization operator which is the counterpart of the nearest neighbour projection for Voronoi quantization. This operator maps the random variable X randomly to the vertices of the Delaunay triangle in which X falls, where the probability of mapping X to a vertex t i is determined by the i-th barycentric coordinate of X in the (non-degenerated) "hyper-triangle" (or d-simplex) conv{t j : j = 1, . . . , d + 1}.

Mathematically speaking, let (D i (Γ )) 1≤i≤m be a Delaunay partition of the convex hull conv(Γ ) of Γ . Let us denote by λ k (ξ ) the barycentric coordinates of ξ in the triangle D k (Γ ), with the convention

λ k i (ξ ) = 0 if x i / ∈ D k (Γ ) and set J u Γ (ξ ) = m ∑ k=1 N ∑ i=1 x i • ½ i-1 ∑ j=1 λ k j (ξ ) ≤ u< i ∑ j=1 λ k j (ξ ) ½ D k (Γ ) (ξ ).
Then it holds

F p (ξ ;Γ ) = E P 0 |ξ -J U Γ (ξ )| p 1/p ,
where U is defined on (Ω 0 , A 0 , P 0 ) with a U [0, 1] -distributed (so that the operator J u Γ (ξ ) is defined on this exogenous space). Then we define (on the product probability space ( Ω , A , P) ) he dual (or Delaunay) quantization

X Γ ,Del = J U Γ (X) so that F p (X;Γ ) p = X -X Γ ,Del p and E( X Γ ,Del |X) = X.
As a matter of fact, this "strict" dual stationarity condition can only be fulfilled if supp(P X ) is bounded. To preserve as much intrinsic stationarity for X Γ as possible, i.e. stationarity on conv(Γ ), we introduce the dual quantization for non-compactly supported random vector X as

XΓ ,Del = J U Γ (X)1 {X∈conv(Γ )} + Proj Γ (X)1 {X / ∈conv(Γ )} .
and denote the optimal dual quantization error in this case by

dp,N (X) = inf X - XΓ ,Del p : Γ ⊂ R d , #Γ ≤ N .
Optimal dual quantizers. In both settings, it is shown in [Pagès and Wilbertz 2010a], under continuity assumption of the distribution of X that for every N ≥ 1, there exists at least one optimal dual quantizer at level N which has exactly N components for dp,N (X). Furthermore dp,N (X) → 0 as N → ∞. If the distribution of X has a compact support the same holds for the modulus d p,N (X) as soon as N ≥ d + 1.

Quantization rates

Both Regular (or Voronoi) and dual (or Delaunay) quantization error moduli satisfy formally the same theorem.

Theorem 3.1 (Optimal Voronoi quantization) Let p, p ′ ∈ (0, ∞), p < p ′ . (a) ASYMPTOTIC ERROR BOUND (ZADOR'S THEOREM) (see e.g. [Zador 1982, Bucklew and Wise 1982, Graf and Luschgy 2000]) Assume X ∈ L p ′ (Ω , A , P) with a distribution P X (dξ ) = h(ξ )λ d (dξ )+ ν X (dξ ) where the finite measure ν X is singular w.r.t. the Lebesgue measure λ d on (R d , Bor(R d )). Then 

g. [Luschgy and Pagès 2008])

There exists a real constant K vq d,p,p ′ ∈ (0, ∞) such that, for every random vector X :

(Ω , A , P) → R d , ∀ N ≥ 1, e p,N (X) ≤ K vq d,p,p ′ N -1 d min a∈R d X -a p ′ .
In fact the above non-asymptotic bound is a slight improvement of that established in [Luschgy and Pagès 2008] taking advantage of the obvious invariance of e p,N (X) by translation: e p,N (X) = e p,N (X + a), a ∈ R d (1 ) Note that all proofs of Pierce's Lemma need a random quantization argument (see e.g. [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF] 4 How to get optimal Voronoi and Delaunay quantizations

Optimal quadratic Voronoi Quantization

Throughout this section we focus on the quadratic case, although , at least formally, all proposed algorithms have an L p counterpart for p ≥ 2.

Original and randomized Lloyd's I algorithm

When the dimension d = 1 and p = 2 (quadratic case), one may identify a quantization grid Γ of size N with an N-tuple with increasing components i.e. an element of

I N := {(x 1 , . . . , x N )∈ R N | -∞ < x 1 < • • • < x N < +∞}.
It has been originally shown in [Kieffer 1983] that if the distribution of a random variable X has a log-concave probability density function, then then there exists a unique stationary quantizer of size N, denoted Γ * ,N i.e. a quantizer satisfying

E X | X Γ * ,N = X Γ * ,N . (8) 
Since a quadratic optimal quantizer at level N of an absolutely continuous distribution has exactly N pairwise distinct components and is stationary (see Proposition 1), this stationary quantizer Γ * ,N is also an optimal quadratic quantizer.

Kiefer provided (see [Kieffer 1982]) an alternative proof of the above facts by a more constructive approach by considering the following so-called Lloyd's I proce-dure to update recursively a quantization grid Γ (m) (of size N), namely

X Γ (m+1) = E X | X Γ (m) , m ∈ N, Γ (0) ∈ I N ∩ H (P X ) (9)
where H (P X ) = conv(supp(P X )). It is proved that the procedure "lives" inside I N ∩ H (P X ) and that, still under the log-concavity assumption, Γ (m) converges ex- ponentially fast toward the unique stationary N-quantizer Γ * ,N . Written in a more analytical form, (9) reads if Γ (m) = {x m,1 , . . . , x m,N },

x m+1,i = E X | X Γ (m) = x m,i = C i (Γ (m) )
ξ P X (dξ )

P X (C i (Γ (m) )) , i = 1, . . . , N,
where in this 1D-setting

C i (Γ (m) ) = x m,i-1 + x m,i 2 , x m,i + x m,i+1 2 with x m,0 = -∞ and x m,N+1 = +∞.
It is straightforward that the procedure as defined by ( 9) can be extended to the d-dimensional setting. One defines recursively the sequence of N-quantizers

Γ (m) , m ∈ N, by Γ (0) ⊂ H (P X ), #Γ (0) = N and x m+1,i = E X | X Γ (m) = x m,i = E X1 {X∈C i (Γ (m) } P(X ∈ C i (Γ (m) )) , i = 1, . . . , N,
with obvious notations. One easily checks that

X -X Γ (m+1) 2 = X -E X | X Γ (m) ) 2 = inf X -ϕ( X Γ (m) ) 2 : ϕ : R d → Γ (m) , ϕ is Borel ≤ X -X Γ (m) 2
so that, this multi-dimensional Lloyd's I procedure always lets the quadratic quantization error decrease (except if Γ (m) is itself stationary at finite range). Of course, any stationary quantizer is a fixed point for the Lloyd's I procedure and in higher dimension there are always several stationary quantizers. As far as we know, no convincing proof of pointwise convergence to a global minimum has been established so far for the grids Γ (m) . However, from a practical point of view, one may reason- ably hope that this convergence does hold, at least toward a local minimum of the quadratic quantization error functional Γ → X -X Γ 2 . As soon as the dimension d of the state of the random vector X is not lower than 3 or 4, the Lloyd's I procedure cannot be implemented by analytical means since it becomes impossible to compute integrals like

C i (Γ )
f (ξ )dξ by any kind of cubature formulas (hoxever see [Wilbertz 2005] for the low dimensional cases). The alternative solution, when the random vector X is simulatable, is to rely on a Monte Carlo simulation at each step m to compute for every i ∈ {1, . . . , N},

E X | X ∈ C i (Γ (m) ) = a.s.-lim L→∞ ∑ L ℓ=1 X ℓ 1 {X ℓ ∈C i (Γ (m) } ∑ L ℓ=1 1 {X ℓ ∈C i (Γ (m) }
.

Note that X ℓ ∈ C i (Γ (m) ) if and only if x m,i is the nearest neighbour of X ℓ among all components x m,i , i = 1, . . . , N of the current grid Γ (m) .

A huge literature has been devoted to practical aspects of Lloyd's I procedure and its applications in Signal Processing and Data compressing. For further insights in that direction, see e.g. [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF]. In Data Analysis (when the underlying distribution of interest is the uniform distribution over the data set (i.e. the empirical measure of this data set) the "batch" (for "non-randomized") procedure is known as the k-means algorithm. For some applications in Delaunay grid generation see [START_REF] Du | Grid generation and optimization based on centroidal Voronoi tessellations[END_REF]. On the other hand little has been done on theoretical aspects, since the original work ([Kieffer 1982]).

The Competitive Learning Vector Quantization algorithm

The so-called CLV Q algorithm is a stochastic gradient algorithm relying on the fact that the squared quadratic quantization error, called distortion. We will make the obvious abuse of notationconsisting in identifying grids of size at most N and N-tuples with possibly "repeated" components. The distorsion is then defined on (R d ) N by

Γ = (x 1 , . . . , x N ) -→ Distor N (X;Γ ) := E min 1≤i≤N |X -x i | 2 .
This function is differentiable at every N-tuple x = (x 1 , . . . , x N )∈ (R d ) N having pairwise distinct components with a gradient ∇ x Distor N (X;Γ ) given by

∇ x Distor N (X;Γ ) = 2 E (x i -X)1 {X∈C i (Γ )} 1≤i≤N .
If #suppP X ≥ N, the distortion function is differentiable at any minimum since it has pairwise distinct components (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]). Furthermore as emphasized above its gradient has a representation as an expectation formally reading

∇ x Distor N (X; (x 1 , . . . , x N )) = E ∇ x distor N X; (x 1 , . . . , x N ) .
The function defined on

R d × (R d ) N by (ξ ,Γ ) -→ ∇ x distor N X;Γ
is sometimes called a local gradient of the potential function Distor N . Then, the paradigm of stochastic approximation says that under technical assumptions to be specified the so-called stochastic gradient descent defined by

Γ (m+1) = Γ (m) -γ m+1 ∇ x distor N (X m+1 ;Γ (m) ), m ≥ 1, Γ (0) ⊂ R d , #Γ (0) = N,
where (X m ) m≥1 is an i.i.d. sequence of copies of X and (γ m ) m≥1 is a sequence of gain parameter satisfying the decreasing step assumption" assumption ∑ m≥1 γ m = +∞ and ∑ m≥1 γ 2 m < +∞ which is standard in Stochastic Approximation Theory. From a practical point of view, this abstract formula can be decomposed into two phases: set for convenience Γ (m) = (x m,1 , . . . , x m,N ), m ≥ 0.

(i) Competitive Phase: Search of the nearest neighbour x m,i * (X m+1 ) of X m+1 among the components of x m,i , i = 1, . . . , N, of Γ (m) (using a "winning convention" in case of conflict between two or more components).

(ii) Learning Phase: One moves the winning component towards X m+1 using a dilatation i.e.

x m+1,i * (X m+1 ) = Dilatation [X m+1 ,1-γ m+1 ] (x m,i * (X m+1 ) )
where the dilatation Dilatation [ξ ,λ ] centered at ξ ∈ R d with ratio λ > 0 is defined by

∀ y ∈ R d , Dilatation [ξ ,λ ] (y) = ξ + λ (y -ξ ) = (1 -λ )ξ + λ y.
All other components stay still. This procedure is useful for small or medium values of N. For general background on stochastic approximation, we refer to [START_REF] Benveniste | Adaptive algorithms and stochastic approximations, Translated from the French[END_REF], Duflo 1996, Kushner and Yin 2003]. Unfortunately, the CLV Q procedure turns out to be singular in the world of recursive stochastic approximation algorithms, and only "conditional a.s. convergence" results have been obtained (also known as a.s. convergence in the "Kushner-Clark sense"), see [START_REF] Pagès | [END_REF]]. However, in a 1D framework standard a.s. convergence has been established at a regular CLT weak convergence rate for distributions with compact support (see [Bouton and Pagès 1993]).

This procedure has also given rise to many empirical investigations and heuristic statements, especially in the artificial neural network community where the CLV Q appears as a degenerate case of the Kohonen self-organizing maps used in non-linear automatic classification. Other optimization procedures have also been implemented like evolutionary algorithms (see e.g. [Mrad and Ben Hamida 2006]).

Companion parameters

To fully elucidate the distribution of a quantization X of X, not only the grid Γ = {x 1 , . . . , x N } is necessary but also the weights p i = P( X = x i ). These weights are often called "companion parameters". Other companion parameters may be of interest like the local inertia

E 1 X∈{C i (Γ )} |X -x i | 2 .
⊲ Adaptive estimation (CLV Q). When performing the CLV Q algorithm, one may devise a companion procedure to estimate these weights on-line by setting

p i (m+1) = p i (m) -γ m+1 p i (m) -1 {i * (X m+1 )=i} , i = 1, . . . , N
where γ m = γ m or γ m = 1/m (the second choice corresponds to the usual empirical mean but with respect to the "moving grids" Γ (m) ). No significant extra computation is needed since i * (X m+1 ) is already computed in the core of the CLV Q procedure.

⊲ Posterior estimation. From a practical point of view, it seems more efficient to estimate by a standard Monte Carlo simulation the weights p i posterior to the grid optimization: this amounts to "freezing" Γ (m) = Γ and setting γ m = 1/m in the above procedure (still based on repeated nearest neighbour searches).

More on practical aspects

⊲ Quasi-Monte Carlo. For formerly mentioned procedures, one may substitute a sequence of quasi-random numbers to the usual pseudo-random sequence. This often speeds up the rate of convergence of the method, although this remains mostly heuristic in Stochastic Approximation (see however [START_REF] Lapeyre | Sequences with low discrepancy. Generalization and application to Robbins-Monro algorithm[END_REF]).

⊲ Inductive computation: the splitting method. The most important step to preserve the accuracy of the quantization as N increases is to use the so-called splitting method which finds its origin in the proof of the existence of an optimal N-quantizer: once the optimization of a quantization grid of size N is achieved, one specifies the starting grid for the size N + 1 or more generally N + ν, ν ≥ 1, by merging the optimized grid of size Nwith ν points sampled independently from the distribution having a probability density proportional to ϕ d d+2 where ϕ denotes the p.d.f. of the distribution P X . This rather unexpected choice is motivated by the fact that this distribution provides the lowest in average random quantization error (see [?]).

When simulation at a reasonable cost of the distribution ϕ d d+2 (ξ )λ d (dξ ) is impossible, one can still simulate instead P X -distributed numbers. This is the adopted strategy to compute the grids of the d-dimensional normal distribution available on the website [Pagès and Printems 2005] (see below).

⊲ Nearest neighbour search. All the above procedures rely on repeated nearest neighbour searches. The complexity of a naive implementation of this procedure grows linearly with d × N and becomes very demanding as d increases. So reducing its computational cost is strategic.

-The most basic (although quite efficient) method is the Partial Distance Search: to check whether a record level L rec is beaten or not by |x| = ((

x 1 ) 2 + • • • + (x d ) 2 ) 1/2 one checks at each step ℓ if (x 1 ) 2 + • • • + (x ℓ ) 2 ≥ L 2 rec .
If so, one rejects x and test a new point.

-A more sophisticate procedure has been originally devised by Bentley and analyzed in a the seminal paper [START_REF] Friedman | An Algorithm for Finding Best Matches in Logarithmic Expected Time[END_REF] . It is an efficient way to store the data (the N points) based along a search tree called k-d tree. It reduces the complexity of the nearest neighbour search down to O(log N) (after a one shot preprocessing of complexity O(N log N)). An improved version of the k-d tree, based on a preliminary PCA, has been developed in [McNames 2001] and is known as the PAT algorithm (for Principle Axis Tree). Other search trees based on a preliminary "rough" quantization have also been proposed (see [Corlay 2011]). The (relative) efficiency of such methods first increases as the dimension of the state space grows but becomes more limited for large dimension where "brute force" (unfortunately) comes back in the game.

⊲ Still more on practical aspects. Many practical studies have been carried out, including heuristic considerations about the above described procedures in [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF] with an orientation toward Signal Processing and Data compressing. In [START_REF] Pagès | [END_REF] a first numerical study entirely devoted to the multi-variate normal distribution has been developed which finally led to make available optimized grids of multivariate normal distributions on the website [Pagès and Printems 2005] devoted to optimal vector and functional quantization.

These grids have been computed inductively using the splitting method by a combination of CLV Q (for medium values of N ) and Lloyd's I algorithm, for dimension running from d = 1 up to d = 10 and sizes N running from 1 up to 10 000. For each grid Γ several "companion parameters (see below) are included in the files, especially the weights w i = P(N (0; I d ) ∈ C i (Γ )), i = 1, . . . , N, but also the local L p -inertia E|Xx i | p 1 {X∈C i (Γ )} 1≤i≤N for p = 1, 2.

Dual quantization

In general, a grid which was optimized for Voronoi quantization will also serve as a good grid for Delaunay quantization. As concerns practical applications, the most important advantage of dual quantization is its intrinsic (dual) stationarity property

E( X Γ ,Del |X) = X (where X Γ ,Del = J U Γ (X))
which holds for any grid Γ with supp(P X ) ⊂ conv{Γ } regardless of its optimality with respect to the distribution of X. Dual stationarity exclusively follows from the way of defining the dual quantization weights as

p i = P( X Γ ,Del = x i ).
Nevertheless, we give here a short sketch of the couterparts of Lloyd's I procedure and the CLVQ-algorithm for dual quantization.

Lloyd-type algorithm for dual quantization

In order to establish a Lloyd-type algorithm for the optimization of dual quantization grids, we write Γ (m) = {x m,1 , . . x i (ξ ) for the barycentric coordinate of ξ ∈ conv{x j : j ∈ I} with respect to the vertex x i .

Recall that each Delaunay triangle D I (Γ ) is characterized by the center of a sphere spanned by the vertices {x j : j ∈ I} which contains no point of Γ in its interior. We then denote this center by z I = z I (Γ ) and define a Delaunay center by mapping

Z Γ (ξ ) = ∑ I∈I z I ½ D I (Γ ) (ξ ).
(10) Note moreover that those Delaunay centers are exactly the vertices of the corresponding Voronoi tessellation since they are at the same distance to the x j , j ∈ J.

If one considers the optimization problem (still with an abuse of notation)

Γ = (x 1 , . . . , x N ) -→ Distor N (X;Γ ) := E|X -J U Γ (X)| 2 (11)
then it was shown in [Pagès and Wilbertz 2010a] that the gradient of this function in Γ reads

∇ Γ Distor N (X;Γ ) = 2 E (x i -Z Γ (X))½ {J U Γ (X)=x i } 1≤i≤N
.

The first order optimality condition therefore writes

E Z Γ * (X)|J U Γ * (X) = J U Γ * (X)
and can be regarded as a counterpart to (8). We may therefore define a Lloyd-type method for dual quantization starting at some initial grid

Γ (0) ⊂ R d , #Γ (0) = N as X Γ (m+1) = E Z Γ (m) (X)|J U Γ (m) (X) , m ≥ 0.
Since it holds

P(J U Γ (X) = x i ) = ∑ I∈I : i∈I D I (Γ ) λ I x i (ξ ) P X (dξ ),
we arrive for m ≥ 1 at

x m+1,i = ∑ I∈I : i∈I z I D I (Γ ) λ I x i (ξ ) P X (dξ ) ∑ I∈I : i∈I D I (Γ ) λ I x i (ξ ) P X (dξ ) , i = 1, . . . , N.
This means that x m+1,i is chosen as a weighted sum of the Delaunay centers z I whose triangles share the same vertex x m,i in Γ (m) . It can be shown that such an algorithm is in fact a Quasi-Newton method and therefore converges to a local minimum of (11) (see e.g. [Iri et al. 1984] in the case of the regular Lloyd's I method). This algorithm, which is new to our knowledge, is the first tool we used to compute optimal dual quantization grids like the one below obtained from the Brownian motion at time 1 and its supremum over [0, 1]. The second algorithm is the counterpart of the CLV Q and is described below. 

CLVQ like procedure for dual quantization

Like for the "Voronoi" CLV Q algorithm, we consider the dual distortion function

Γ = (x 1 , . . . , x N ) -→ Distor N (X;Γ ) := E|X -J U Γ (X)| 2 .
Referring again to [Pagès and Wilbertz 2010a], it holds for the gradient of the dual distortion function

∇ Γ Distor N (X;Γ ) = 2 E (x i -Z Γ (X))½ {J U Γ (X)=x i } 1≤i≤N
.

As above, the stochastic gradient method is given by

Γ (m+1) = Γ (m) -γ m+1 ∇ x distor N (X m+1 ;Γ (m) ), m ≥ 1, Γ (0) ⊂ R d , #Γ (0) = N
where (X m ) m≥1 is an i.i.d. sequence of copies of X and (γ m ) m≥1 is a sequence of gain parameters satisfying the decreasing step assumption.

In practice that means that we generate a sequence (X m ) m≥1 of i.i.d copies of X and the two phases of the CLVQ-algorithm read as follows (i) Competitive Phase: Search for the Delaunay triangle I * (X m+1 ) ∈ I (Γ (m) ) which contains the realization X m+1 .

(ii) Learning Phase: One moves the winning triangle towards the Delaunay center Z Γ (m) (X m+1 ) using a dilatation i.e. ∀i ∈ I * (X m+1 ) :

x m+1,i = Dilatation [Z Γ (m) (X m+1 ),1-γ m+1 ]
(x m,i ).

Search for the matching Delaunay hyper-triangle

A crucial point in both above procedure, as well as in the weight computations later on, is the search for the Delaunay triangle I * (ξ ) ∈ I (Γ ), which contains a point ξ ∈ conv(Γ ). This phase in dual quantization optimization is the exact counterpart of nearest neighbour search for Voronoi quantization. Such a search can be implemented efficiently by a directed search on the Delaunay triangulation of Γ . To be more precise, one starts at a triangle I 0 ∈ I (Γ ) and then moves on to that neighbor triangle of I 0 which lies on the line defined by the Delaunay center z I 0 and ξ . It was shown in [Bowyer 1981] that such a procedure reaches the triangle I * ∈ I (Γ ) which contains ξ in average after O(N 1/d ) steps, where N is the number of points in the grid Γ . For more details on such point location procedures in triangulations we refer to [START_REF] Devroye | Expected time analysis for Delaunay point location[END_REF]] and [START_REF] Muecke | [END_REF]].

We did not speak yet about the weight computation in this section although it is a crucial step to fully determine the distribution of X (whatever quantization is adopted) which in turn is necessary to produce quantization based cubature formulas. However, since we are interested in American option pricing, we postpone this kind of question to the quantization tree below where we will show how to compute the transition weights of the tree for both types of quantization.

Application to cubature formula for numerical integration

Let X be a quantization based approximation of a random vector X taking value in a grid Γ = {x 1 , . . . , x N } of size N ≥ 1 ( X = Proj Γ (X) (Voronoi) or J U Γ (X) (Delaunay)) depending on the Voronoi or Delaunay nature of the quantization).

⊲ Lipschitz continuous functions.

If F : R d → R is Lipschitz continuous |E F(X) -E F( X)| ≤ [F] Lip E|X -X| = X -X 1 .
This yields an approximate cubature formula since

E F( X) = ∑ 1≤i≤N p i F(x i ) where p i = P( X = x i ), i = 1, . . . , N.
Furthermore, we know that Voronoi quantization is optimal in the following sense

sup{|E F(X) -E F( X)|, [F] Lip ≤ 1} = e 1,N (X).
⊲ Functions with Lipschitz continuous differential. Assume that Γ is stationary (i.e. E(X | X) = X) or "dual stationary" (i.e. E( X | X) = X), then (see [Pagès and Wilbertz 2010a])

|E F(X) -E F( X)| ≤ [DF] Lip E|X -X| 2
where DF denotes the (Lipschitz continuous) differential of F. At his stage, one must have in mind that few grids Γ (mainly the optimal quadratic grids) are stationary for Voronoi quantization whereas all grids are dual stationary by construction.

⊲ Convex functions. If F is convex and Γ is a stationary Voronoi quantizer, then E F( X Γ ,vor ) ≤ E F(X) where X Γ ,vor = Proj Γ (X).
If X has compact support, for any grid Γ such that conv(Γ ) ⊃ supp(P X ),

E F(X) ≤ E F( X Γ ,del ) where X Γ ,del = J U Γ (X).
Combining both quantization approaches yields a deterministic security interval.

Quantization tree

Let us come back to our Bermuda option pricing problem with the notations introduced in Section 2. At each time k ∈ {0, . . . , n}, we consider a grid Γ k of size N k supposed to be an optimal (or at least a "good") Voronoi/Delaunay quantization of the Markov chain X k at time k.

We define the discretization function π k : R d × [0, 1] → R d as

• Voronoi:A Borel nearest neighbour projection on the grid Γ k (see ( 6)) i.e.

∀ ξ ∈ R d , ∀ u ∈ [0, 1], π k (ξ , u) := Proj Γ k (ξ ). (12) 
• Delaunay: A splitting operator on the grid Γ k

∀ ξ ∈ R d , ∀ u ∈ [0, 1], π k (ξ , u) := J u Γ k (ξ )1 {ξ ∈conv(Γ k )} + Proj Γ k (ξ )1 {ξ / ∈conv(Γ k )} . ( 13 
) Definition 6.1 A quantization tree of the Markov chain X = (X k ) 0≤k≤n is made of -a set of n + 1 grids Γ k of size N k ≥ 1, k = 0, . . . , n, whose elements are denoted Γ k = {x k 1 , . . . , x k N }, k = 0, . . . , n; -a set of transition matrices p k = [p k i j ] 1≤i≤N k ,1≤ j≤N k+1 , k = 0, . . . , n-1, defined by p k i j = P X k+1 = x k+1 j | X k = x k i .
The resulting "quantized" dynamical programing principle derived from (2), once written "in distribution", reads

v n (x n i ) = h n (x n i ), i = 1, . . . , N n v k (x k i ) = max h k (x k i ), N k+1 ∑ j=1 p k i j v k+1 (x k+1 j ) , i = 1, . . . , N k , k = 0, . . . , n -1.
Remarks. • Once the grids have been settled and the transition weight matrices p k have been computed, on can perform the above backward quantization tree descent as many times as necessary for different payoff functions. All the information about the discretization of the Markov dynamics is "stored" in the quantization tree (Γ k , p k ) 0≤k≤n .

• The complexity of the backward descent of such a tree is clearly proportional to

∑ 0≤k≤n-1 N k N k+1 . For a given global budget of N = N 0 + • • • + N n (usually prescribed
by the memory limitations of the computing device). Up to edge effects the minimal complexity is attained with constant size trees i.e.

N k = N n+1 , k = 0, . . . , n. If X 0 = x 0 , then N 0 = 1 and N k = N-1 n , k = 1, . . . , n.
Other considerations (see below) may lead to other specifications for the quantization tree

Error bounds

By combining the error bounds of Proposition 2.1 and the non asymptotic bounds for optimal quantization(s) we get the following proposition which takes advantage of the non-asymptotic Zador's Theorems (3.1(b) and 3.2(b)). It simplifies the original presentation from [Bally and Pagès 2003a] and extends it to dual quantization. Proposition 6.3 Assume the Markov chain satisfies all the assumptions of Proposition 2.1 and that furthermore, max 0≤k≤n X k p ′ < +∞ for a p ′ > 1. Assume that the payoff functions h k , k = 0, . . . , n are Lipschitz continuous. Assume the sequence ( X k ) 0≤k≤n is defined either by ( 12) or by ( 13) and that, for every k = 0, . . . , n, the quantization size N k ≥ N d,p,p ′ (N d,p,p ′ = 1 in the Voronoi setting). Then for every p ∈ [1, p ′ ), there exists a real constant κ p,p ′ > 0 such that, for every k ∈ {0, . . . , n},

v k (X k ) -v k ( X k ) p ≤ κ p,p ′ n ∑ ℓ=k C n,ℓ ([P] Lip , [h . ] Lip ) σ p ′ (X k )N -1 d ℓ where σ p (X k ) = min a∈R d X k -a p , k = 0, . . . , n.
For a second order scheme (based on Voronoi quantization) which takes full advantage of the stationarity, we refer to [Sellami 2010]. For other other applications (cubature formulas, non-linear filtering, stochastic control, etc) we refer to the surveys [Pagès et al. 2003], [Pagès and Printems 2009] and the reference therein (Voronoi quantization) or [Pagès and Wilbertz 2010a] (dual quantization).

Design of an optimized quantization tree by simulation

Grid sizes

A first step (however not mandatory) is to minimize the error bound (at the origin) obtained in Proposition 6.3 for a given budget of elementary quantizers N 0 + • • • + N n ≤ N (this limitation is usually related to the memory devoted to the computation). An elementary optimization under constraint yields for the sizes of the grids

N k = a k N a 0 + • • • + a n with a k = C k,n ([P] Lip , [h . ] Lip )σ p ′ (X k ) d d+1 , k = 0, . . . , n.

This allocation depends on the payoff but if max 0≤k≤n

[h k ] Lip < +∞, one may re- place a k by ãk = max 0≤ℓ≤n-k [P] ℓ Lip σ p ′ (X k ) or even ãk = σ p ′ (X k ) if, one "controls" max 0≤k≤n [P] k
Lip (like in the example following Proposition 2.1). In the dual setting, this allocation is an heuristic since we have the additional constraint

N k ≥ N d,p,p ′ . Example. Let X k = W t n k , W Standard Brownian motion. Then σ p ′ (X k ) = c p ′ t n k , k = 0, . . . , n.

Transition weight estimation

⊲ The "diffusion" method. Like for the grid optimization, a large L-sample (X (ℓ) ) of the chain is generated and sent "through" the grids. Then one estimates each transition weight by

p k i j = a.s.-lim L→∞ ∑ L ℓ=1 P(π k (X (ℓ) k ,U k ) = x k i , π k+1 (X (ℓ) k+1 ,U k+1 ) = x k+1 j | X (ℓ) k , X (ℓ) k+1 ) ∑ L ℓ=1 P(π k (X (ℓ) k ,U k ) = x k i | X (ℓ) k ) (14) 
where π k is specified following the type of the quantization. We may assume that the integration with respect to U k and U k+1 can be done explicitly by a closed form solution (keeping in mind that (U k ) and (X k ) are independent). This holds trivially true for Voronoi quantization, but also for dual quantization as we will see later on.

The strong consistency follows then from the Strong Law of large Numbers since

E P(π k (X (ℓ) k ,U k ) = x k i , π k+1 (X (ℓ) k+1 ,U k+1 ) = x k+1 j | X (ℓ) k , X (ℓ) k+1 ) = P(π k (X (ℓ) k ,U k ) = x k i , π k+1 (X (ℓ) k+1 ,U k+1 ) = x k+1 j ) and E P(π k (X (ℓ) k ,U k ) = x k i | X (ℓ) k ) = P(π k (X (ℓ) k ,U k ) = x k i ).
When π k does not depend on the exogenous noise (like for Voronoi quantization), the above estimator coincide with the naive one, that is

p k i j = a.s.-lim L→∞ ∑ L ℓ=1 1 {π k (X (ℓ) k ,U k )=x k i ,π k+1 (X (ℓ) k+1 ,U k+1 )=x k+1 j } ∑ L ℓ=1 1 {π k (X (ℓ) k ,U k )=x k i }
.

⊲ More precisely, in the case of Voronoi quantization, it holds

π k (X (ℓ) k ,U k ) = x k i ⇐⇒ X (ℓ) k ∈ C i (Γ k ),
where C i (Γ k ), i = 1, . . . , N k denotes a Voronoi partition of R d , so that (14) finally reads

p k i j = a.s.-lim L→∞ ∑ L ℓ=1 1 {X (ℓ) k ∈C i (Γ k ) ∩ X (ℓ) k+1 ∈C j (Γ k+1 )} ∑ L ℓ=1 1 {X (ℓ) k ∈C i (Γ k )}
.

Note here, that from an implementational point of view, we do not need to construct the whole Voronoi diagram of the grids Γ k . It is sufficient to perform a Nearest

Neighbor search to estimate the transition probabilities as it can be seen in Algorithm 1.

Algorithm 1 Transition probability estimation for Voronoi quantization

for ℓ = 1, . . ., L do x ← x 0 , i ← 0, p i 1 ← 1 for k = 1, . . ., n do Simulate X ℓ k given X ℓ 1 , . . ., X ℓ k-1 Find Nearest Neighbor-Index j of X ℓ k in Γ k Set p k i j + = 1 p k+1 j + = 1 i ← j end for end for Set p k ij ← p k i j p k i , 1 ≤ i, j ≤ N k , 1 ≤ k ≤ n
⊲ In case of dual quantization it holds for X k ∈ conv(Γ k ), with the notation from Section 4.2,

P(π k (X (ℓ) k ,U k ) = x k i ) = ∑ I∈I (Γ k ): i∈I D I (Γ k ) λ I x k i (ξ ) P X (dξ ),
where D I (Γ k ), I ∈ I (Γ k ) denotes a Delaunay partition of conv(Γ k ).

The estimation of the transition probabilities p k i j s then can be implemented as shown in Algorithm 2.

Algorithm 2 Transition probability estimation for dual quantization

for ℓ = 1, . . ., L do x ← x 0 , i ← 0, p i 1 ← 1 for k = 1, . . ., n do Simulate X ℓ k given X ℓ 1 , . . ., X ℓ k-1 Find Delaunay hyper-triangle τ k of X ℓ k in Γ k Update p k •,• w.r.t. barycentric coordinates of (X ℓ k-1 , X ℓ k ) (τ k-1 , τ k ) Update p k+1 • w.r.t. barycentric coordinates of X ℓ k in τ k end for end for Set p k ij ← p k i j p k i , 1 ≤ i, j ≤ N k , 1 ≤ k ≤ n
Although this transition probability estimation by Monte-Carlo simulation is usually the most time consuming part of the quantization tree algorithm in practice, one has to emphasize here, that both above algorithms can be parallelized very efficiently. This is indeed of special importance since the availability of massive parallel computing device at very low price like as GPGPUs. It was shown in [START_REF] Pagès | [END_REF], that the computational time for transition probability estimation can be reduced by a factor 200 when implemented on a GPGPU device.

⊲ The spray method. On can decouple the computation of the transitions at each time steps by noting that

L π k+1 (X k+1 ,U k+1 ) = x k+1 j | π k (X k ,U k ) = x k i ≈ L π k+1 (X k+1 ,U k+1 ) = x k+1 j | X k = x k i .
The distribution on the right hand side is easy to simulate (since the chain is supposed to be simulatable). Consequently one can perform a Monte Carlo simulation based on this distribution to estimate (approximately) the p k i j s. As concerns Voronoi quantization, it has been shown in [Pagès et al. 2003] that the error induced by such an approximation is of second order if the grids Γ k are stationary.

Decoupling the estimation of the successive transition matrices makes possible to perform a new parallelization of the estimation procedure (see [START_REF] Bronstein | A quantization tree algorithm: improvements and financial applications for swing options[END_REF]) with again a significant reduction of the computation time down to a few seconds on a GPGPU device.

Martingale correction

When the structure process (X k ) 0≤k≤n is a martingale (e.g. a discounted set of d risky assets under a risk neutral martingale probability, or a Brownian motion at times t n k = kT n , etc) and X 0 = x 0 , the quantization based approaches do not preserve naturally this property (or any dynamical property). One way to proceed is to slightly modify the grids Γ k as follows:

-Define by a backward induction Γ n = Γ n and for every k = 0, . . . , n -1,

Γ k = x k 1 , . . . , x k N k where x k i = N k+1 ∑ j=1 p k i j x k+1 j , i = 1, . . . , N k .
-Re-center the grids by setting

Γ mart k = Γ k + x 0 -x 0 .
The resulting quantization tree (Γ mart k , p k ) 0≤k≤n has the distribution of a martingale starting at x 0 at time 0. Although it often significantly improves numerical results, theoretical error bounds no longer hold. It is observed that the translation x 0x 0 is negligible in practice.

Numerical experiments

Swing Options

We begin the numerical illustrations by the example of the pricing of swing options in a Gaussian 2-factor model. Such a problem consists in solving the normalized stochastic control problem (interest rate is neglected)

esssup E n-1 ∑ k=0 q k v k (X k ) -K |F 0 , q k : (Ω , F k ) → [0, 1], qn ∈ [Q min , Q max ] (15) for global consumption couple (Q min , Q max ) ∈ N 2 and qk := ∑ k-1 l=0 q l .
As shown in [Bardou et al. 2010b] there exists an optimal bang-bang control for this problem, which leads, in combination with the BDPP, to

P n n ≡ 0 P n k (Q k ) = max x v k (X k ) -K + E(P n k+1 (χ n-k-1 (Q k , x))|X k ); x ∈ {0, 1} ∩ I n-k-1 Q k with admissible set I M Q k := [(Q k min -M) + ∧ 1, Q k max ∧ 1] and χ M (Q k , x) := (Q k min -x) + , (Q k max -x) ∧ M so that P n 0 (Q min , Q max ) is a solution to (15).
A straightforward quantization of this problem then reads

Pn n ≡ 0 Pn k (Q k ) = max x v k ( Xk ) -K + E( Pn k+1 (χ n-k-1 (Q k , x))| Xk ); x ∈ {0, 1} ∩ I n-k-1 Q k
and error bounds have been established in [Bardou et al. 2010b]. Note here that the computation of the conditional expectations E Pn

k+1 (χ n-k-1 (Q k , x))| Xk = x k i becomes straightforward owing to Section 6 since it holds E( f ( Xk+1 )| Xk = x k i ) = ∑ N k+1 j=1 p k i j f (x k+1 j
). Furthermore we will focus here on the case Q min = 0, Q max = n so that the solution P n 0 has the representation

P n 0 = n ∑ k=1 (v k (X k ) -K) + .
We therefore may hope that due to this simple structure as a strip of calls and in view of section 5 that stationarity may play an important role for the numerical results.

As underlying we have chosen as in [START_REF] Bronstein | A quantization tree algorithm: improvements and financial applications for swing options[END_REF]] the two dimensional Markov process

X k = k∆t 0 e -α 1 (k∆t-s) dW 1 s , k∆t 0 e -α 2 (k∆t-s) dW 2 s .
so that the 2-factor underlying is given by v

k (X k ) for v k (x 1 , x 2 ) = s 0 exp σ 1 x 1 + σ 2 x 2 -1 2 µ t .
The numerical parameters here read in detail as s 0 = 20, α 1 = 1.11, α 2 = 5.4, σ 1 = 0.36, σ 2 = 0.21, ρ = -0.11, n = 30

i.e. we have a Gaussian process (X k ) with a true correlation. Note that in such a setting the transformation of an optimal and stationary Voronoi quantization grid for the bivariate standard normal distribution into one with correlation ρ destroys already the stationarity property in the transformed grid. In the case of dual quantization, stationarity for the transformed grid is at least preserved on conv(Γ ).

As it is shown in Figures 2 and3 the dual methods outperforms clearly the Voronoi approach, which is mainly caused by the intrinsic stationarity of the Delaunay quantization mapping.

Moreover; we already observe that Dual quantization tends to lead to an upper bound whereas Voronoi quantization is approaching from below. (Both those observations hold in general true for convex F and precisely stationary quantizers X.)

Swing option: #exercise days: 30, K = 5.0 

Bermuda options

First we recall the following basic fact: in classical non-arbitrage theory of contingent claims, it is well-known that, in a complete market, the discounted fair price of a Bermuda option with payoff process (h k (S t k )) 0≤k≤n , 0 = t 0 < t 1 < . . . < t k . . . < t n = T , is the Snell envelope of the discounted payoff process so that

Premium t k = S 0 t k Snell P * h k (S t k ) S 0 t k 0≤k≤n
where (S 0 t ) t∈[0,T ] is the numéraire (also called "riskless asset") and S t = (S 1 t , . . . , S d t ) t∈[0,T ] is the risky asset price R d -valued process and P * is the risk-neutral probability. In what follows Bermuda options appear as time approximation of American options (see [Bally and Pagès 2003b] for various time discretization error bounds).

Geometric Exchange Option

We now consider the case of a geometric exchange put option in a multi-dimensional Black Scholes model with maturiry T and 11 exercise dates k T 10 , k = 0, . . . , 10. That means that the underlyings (S i t ) t∈[0,T ] , i = 1, . . . , d are given by the (uncorrelated)

Black-Scholes dynamics: 

S i t = s i 0 exp (r -δ i - σ 2 i 2 )t + σ i W i t , s i 0 > 0, W = (W 1 , . . . ,
s i 0 = 40 2 d , i = 1, . . . , k, s i 0 = 40 2 d , i = k + 1, . . ., d, r = 0.05, σ i = 0.2, i = 1, . . . , d, δ i = 0.05, i = 1, . . . , k, δ i = 0.0, i = k + 1, . . ., d.
These settings can be reduced for any d to a 2-dimensional exchange option for which we computed reference values using a Boyle-Evnine-Gibbs tree with 10 000 time steps.

The resulting log-log plots of the convergence for Voronoi and Dual quantization can be found in Figures 4 and5. One observes here again that dual quantization approach yields a slightly better rate (cf. Note moreover that the upper bound in Proposition 6.3 promises only an optimal rate of 0.5 in dimension 2 and 0.25 in dimension 4. Therefore it seems that also in this example there is some more smoothness to capture which leads in practice to better rates than those for the worst case error within class of Lipschitz functionals.

Due to the very smooth convergence seen in Figures 4 and5, we furthermore apply a Richardson-Romberg extrapolation on the error expansion EF(X) ≈ EF( X) + κ N -α , which is a pure heuristic but has a theoretical justification for stationary quantizer (see, e.g., [Pagès and Printems 2009]). We therefore use the rates α from Table 1 and extrapolate the unknown κ using two different grids sizes N 1 and N 2 . As a result, we obtain in the above setting for Alternatively one may, following the commonly shared idea of including the payoff in the regression basis of Longstaff-Schwartz's algorithm, use the European price of the exchange option as a control variate. This means that the BDPP reads

Ṽn = ϕ t n (X n ) -C Eur T-t n (X n ) Ṽk = max ϕ t k (X k ) -C Eur T -t k (X k ); E Ṽk+1 X k , 0 ≤ k ≤ n -1,
where C Eur t (x) is the european price for maturity t and initial Stock price x. Consequently, the true price V 0 is given by V 0 = Ṽ0 + C Eur T (X 0 ).

Numerical results for the above setting are given in Figures 8 and9.

Put-On-The-Min option

A final comparison is taken out on the example of an put-on-the-min option in a two dimensional Black Scholes model. The payoff of this option reads ϕ(S Here again the reference values were computed using a Boyle-Evnine-Gibbs tree with 10 000 timesteps. We compare the dual quantization approach including the martingale correction of Section 6.3 to the Longstaff-Schwartz (L-S) approach from the Premia software package( 2 ). For the L-S procedure, we have chosen a family of 22 independent functions (21 monomial functions + the payoff function) and plotted in Figure 10 a Monte Carlo simulation with increasing number of sample paths ranging from 10.000 to 100 000 and its 95% confidence interval.

This setting was chosen to arrive at approximately equal computational times for the L-S approach and the dual quantization method.

One clearly sees in Figure 10 that the quantization approach with martingale correction provides already for small N a very good approximation to the true value of the Bermuda option. In addition, the L-S approach suffers from a higher volatility, since it is more depend on the Monte Carlo error than the quantization tree approach, which contains the critical MC-Simulation only in the weight estimation.

Furthermore we have also plotted in Figure 10 the Monte Carlo estimation by a L-S approach from the Premia software package in order to compare results. As underlying Markov process X k we have chosen a 2-dimensional Brownian Motion W = (W 1 ,W 2 ) with correlation ρ. 
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	Theorem 3.2 (Optimal dual quantization) ([Pagès and Wilbertz 2010b]) The above
	theorem for Voronoi quantization also holds true, with appropriate real constants
	J dq p, . ≥ J vq p, . and K dq d,p,p ′ (≥ K vq d,p,p ′ ) when replacing e p,N (X) by its counterpart the
	minimal dual L p -mean quantization error dp,N (X). However, the non-asymptotic
	claim only holds true for N ≥ N d,p,p ′ (depending only on d, p, p ′ )
		When X has a compact support, the theorem holds true -with N ≥ d + 1 -
	with the error modulus d p,N (X) with same constants J dq p, . and K dq d,p,p ′ . When d = 1,
	J	dq p, . = 2 p+1 p+2	1 p J d,p,p ′ . dq

Table 1

 1 ) than the Voronoi quantization approximation.

	2d 4d
	Voronoi Quantization 0.73 0.36
	Dual Quantization 0.86 0.38
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  Convergence of quantization methods with european control variate for the geometric exchange option in dimension 2
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The fact that this holds for every N ≥ 1 rather than for N ≥ N p,p ′ ,d as stated in[Luschgy and Pagès 

2008] follows form the obvious facts that e p,N (X) ≤ e p ′ ,N (X) ≤ min a∈R d Xa p ′ so that the first N p,p ′ ,d -1 terms can be included in the real constant K vq d,p,p ′ .
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