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The low responsivity of the low-temperature-grown GaAs based planar photoconductors used in the
photomixing experiments can be improved by using a metal-metal Fabry–Pérot cavity. This resonant
cavity photoconductor exhibits a dc-responsivity above 0.1 A/W and current density higher than
50 kA /cm2 with a low-temperature-grown-GaAs epitaxial layer presenting a subpicosecond carrier
lifetime. Based on these results, up to 100 �W output power at 1 THz could be expected if this
photoconductor is used in a photomixing experiment with a resonant antenna. © 2011 American
Institute of Physics. �doi:10.1063/1.3525709�

The generation of microwave radiation by mixing two
laser beams on a photodetector has been shown as early as
the invention of the laser.1 Thirty years later, this technique
has been successfully adapted to the terahertz �THz� range2

with 0.8-�m-wavelength pump lasers, using an ultrafast pho-
todetector lying at the feedpoint of a THz broadband an-
tenna, forming a so called “photomixer.” This first attempt
has been carried out with a low temperature grown GaAs
�LT-GaAs� planar photoconductor loaded by a silicon-lens
coupled spiral antenna. Up to now, the planar photoconduc-
tor based on a short lifetime photoconductor is the most
commonly used ultrafast photodetector with both
0.8-�m-wavelength and 1.55-�m-wavelength telecom pump
lasers.3–5 However, the best results around 1 THz have been
achieved with a unipolar-traveling carrier photodiode6–8

�UTC-PD� pumped by 1.5-�m-wavelength lasers. In a THz
photomixing experiment, the LT-GaAs photoconductor can
be modeled as a THz current source, loaded by an antenna
whose impedance is supposed real �RA�, and shunted by the
capacitance �C� of the metallic electrodes. The emitted THz
power �PTHz� at a frequency f can be evaluated as follows:2

PTHz =
1

2
RA

�iTHz�2

1 + �2�fRAC�2 , �1�

where iTHz= idc / �1+ �2�f�c�2�1/2 to take into account the
charge carrier response time, and �c the carrier lifetime in the
LT-GaAs. In a UTC-PD, �c is replaced by the transit time in
the collector layer ��t�; furthermore, there is a third cutoff
frequency related to the electronic diffusion in the p-doped
absorption layer. The two main advantages of the LT-GaAs
planar photoconductor in comparison with the vertical-
transport photodiode are �1� its lower capacitance and related
RAC time constant and �2� the absence of a third cut off
frequency which is essential for frequencies above 1 THz.
On the other hand, iTHz and PTHz are generally lower for
frequencies below 1 THz. This is mainly related to a lower
idc coming from: �a� an intrinsically low responsivity defined
by R= idc / Popt with Popt the incident optical power; �b� the
poor thermal characteristics of the LT-GaAs layer9 which

limit the maximum total heat power dissipated in the device.
One way to overcome theses limits consists in using a
Fabry–Pérot �FP� cavity in order to make thinner the LT-
GaAs layer without decreasing the quantum efficiency of the
photoconductor. Resonant enhanced photodetectors, espe-
cially 1.55 �m p-i-n-photodiodes has been widely studied in
the past10,11 with a semiconductor bragg reflector acting as
back mirror. A LT-GaAs planar photoconductor with such a
bragg reflector has been theoretically studied.12 Some at-
tempts have even been made with metallic mirrors thanks to
an epitaxial-lift-off technique but with no measured
photocurrent.13 We propose in this letter a metal-metal LT-
GaAs vertical cavity-resonant photoconductor �VRP�, which
will be studied by dc-responsivity measurements.

In Fig. 1�a� is shown a schematic of the proposed device,
where the LT-GaAs photoconductor is sandwiched between
two gold layers which serve at the same time as bias elec-
trodes and optical mirrors of the FP resonator. For the gen-
eration of microwaves or THz waves, the upper bias elec-
trode could be linked thanks to an air bridge to a thin film
microstrip line ended by a microstriplike antenna such as the
wideband transverse electromagnetic horn �TEM-horn� that
we have developed previously14 or a resonant patch antenna.
This structure can actually be seen as a lossy FP resonator,
which exhibits quantum efficiency peaks corresponding to
the FP destruction interference condition, where tk�k
�� /2+� /4, �k=0,1 ,2 , . . .� with � the wavelength in LT-
GaAs. In the case of lossless metallic mirrors, these quantum
efficiency peaks reach their maximum when the reflectivity
of the upper mirror R0 is such as R0=A2 with �1−A� the
absorption in a single pass in the LT-GaAs layer.10

a�Electronic mail: emilien.peytavit@iemn.univ-lille1.fr.
FIG. 1. �Color online� Schematic view of �a� the FP cavity photoconductor
and �b� the large area photoconductors on the LT-GaAs bevel.
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In order to study the VRP, two photoresponse experi-
ments have been performed on two different samples. The
first sample consists in Au–LT-GaAs–Au large area photo-
conductors �25-�m-square area� with various layer thick-
nesses �ti� on a same epitaxial layer thanks to a bevel as
shown in Fig. 1�b�. In a second experiment, designed to as-
sess the potential of this photoconductor for THz photomix-
ing, micrometer-size photoconductors, similar to the pro-
posed device, have been fabricated on a LT-GaAs layer of
thickness t=0.28 �m corresponding to the third quantum
efficiency peak. A scanning electron microscope picture of
the device is shown in Fig. 2, where the LT-GaAs mesa can
be recognized on the gold background layer, covered by a
20-nm-thick semitransparent gold layer and a 80-nm-thick
Si3N4 layer. The semitransparent upper electrode is linked by
an air-bridge to a gold strip deposited on a
2.3-�m-thick-SiO2 layer for dc-bias by a probe-tip. Both
samples were fabricated using the following procedure: start-
ing from a 450-�m-thick semi-insulating GaAs substrate, a
0.1-�m-thick GaInP barrier was grown by gas-source mo-
lecular beam epitaxy followed by a 2-�m-thick layer for the
first one and 0.28-�m-thick layer for the second one of low
temperature ��200 °C� GaAs. After their growth, the
samples were annealed at 580 °C for 1 min. The LT-GaAs
epitaxial layers were subsequently transferred onto a 2-in.-
diameter p-doped silicon wafer thanks to an Au–Au thermo-
compression layer transfer technique detailed in Ref. 14.
Concerning the first sample, after the 2-�m-thick layer had
been transferred on the gold cladded silicon substrate, a
bevel etching was performed in an aqueous ammonium hy-
droxide and hydrogen peroxide solution. 25-�m-square area
and 10-nm-thick semitransparent gold electrodes and
25-�m-square area and 20-nm-thick Ti/400-nm-thick Au
contact pads were then patterned by standard microelectronic
techniques in order to form the large area photoconductors.
The micrometer-size photoconductors of the second sample
were fabricated by using dry etching, electron-beam lithog-
raphy and lift-off techniques.

The first photoresponse experiment was conducted using
a distributed feedback �DFB� laser diode emitting at hv
=1.58 eV and focused through a f /D=1 lens into a Gauss-
ian spot of half-width, w=2.5 �m. In Fig. 3 are shown the
bias voltage dependences of the photocurrents at a constant

optical power for layer thicknesses �ti� between t1

=0.25 �m and t13=1.32 �m. These measurements are ob-
tained when the large area photoconductors are illuminated
by an incident optical power Popt=8.9 mW. The curves can
be divided in three different parts: �1� a low voltage part,
where the photocurrent increases rapidly with the bias volt-
age, �2� a medium voltage part with a slower increase, and
�3� a last part, where occurs the so-called quadratic
behavior.15 The two first parts can be interpreted as the in-
creases in the electron and hole photocurrents with the elec-
tric field in the mobility regime. The quadratic photocurrent,
already measured in the LT-GaAs photoconductors,15,16 ap-
pears around 5 V, whatever the layer thickness. It can be
explained by a tunnel injection of carriers from the contact
electrode due to an electric field peak near the anode.17 Fur-
thermore, it has been previously shown that this additional
photocurrent has a much longer time constant than the low
voltage photocurrent15 and will be removed in the experi-
mental data used in Fig. 4 by considering that the slope of
the photocurrent curve before 5 V remains constant beyond 5
V.

In Fig. 4 are shown the theoretical �solid line� and ex-
perimental �in squares� thickness dependences of the respon-
sivity measured for a constant mean electric field Vbias / t
=120 kV /cm, close to the obscurity breakdown field in our
sample. The measurement of the different layer thicknesses
were achieved thanks to a profilometer with an estimated
accuracy of �10 nm, corresponding to the width of the
squares on the Fig. 4. Maxima of responsivity related to the
quantum efficiency peaks clearly appear on the curves of the

FIG. 2. �Color online� Scanning electron microscope picture of the VRP.

FIG. 3. �Color online� Measured photocurrent as function of bias voltage
with an optical power Popt=8.9 mW for thicknesses t1 . . . t13=0.25, 0.27,
0.28, 0.31, 0.34, 0.37, 0.39, 0.50, 0.70, 0.89, 0.99, 1.10, and 1.32 �m.

FIG. 4. �Color online� Theoretical �solid line� and experimental �in squares�
reponsivities as a function of LT-GaAs layer thickness. In the inset is shown
the transient differential photoreflectivity measured at �=820 nm on the
LT-GaAs layer.

016101-2 Peytavit, Coinon, and Lampin J. Appl. Phys. 109, 016101 �2011�



Fig. 4, reaching values higher than 0.1 A/W when the layer
thickness is smaller than 0.5 �m. In order to model this
photoresponse experiment, electrons and holes are assumed
to have different lifetimes, denoted, respectively, �e and �h

but the same saturation velocity vsat=8�106 cm /s.18 Under
these assumptions and ignoring the effects of carrier diffu-
sion, the responsivity R of a carrier lifetime limited photo-
conductor can be written R=q��ge+gh� /h	, where q is the
unit electric charge, �= Pabs / Popt the quantum efficiency with
Pabs the optical power absorbed in the LT-GaAs layer, ge�h�
=�e�h� /�tr the electron and hole optical gains and �tr= t /vsat.
The quantum efficiency is calculated by using a transfer ma-
trix method, assuming an incident plane wave at normal in-
cidence with the following optical index:19 nLT-GaAs=3.7
−i0.09 and nAu=0.174−i4.86. In order to estimate the carrier
response time, a time-resolved photoreflectance experiment
has been performed on the LT-GaAs layer after epitaxial
transfer �shown in the inset of Fig. 4�. After a very fast de-
crease during the firsts 500 fs related to the cooling and the
relaxation of the carriers,20 the differential photoreflectivity
decreases exponentially with a time constant �e�500 fs,
which is interpreted as the lifetime of the electrons20 in the
conduction band. We obtained a similar electron lifetime
��e�480 fs� on the second sample. The last parameter �h

=1 ps has been used as fit parameter and is consistent with
longer hole trapping time measurement done in previous
works.21

In the second photoresponse experiment, the incident
beam comes from a continuous wave titane-saphire laser at
hv=1.59 eV and is focused into a Gaussian spot of half-
width w=4 �m. The photocurrents measured on a
4-�m-diameter photoconductor of the second sample as a
function of bias voltage are plotted on the Fig. 5. The pho-
tocurrent curves have the same behavior as in the previous
experiment. A photocurrent of about 7.3 mA is achieved at
4.5 V and Popt=130 mW, i.e, a current density reaching
57 kA /cm2, more than ten times the current density mea-
sured in a planar photoconductor.15 It can be noted that only
40% of the incident light is coupled in the 4-�m-diameter
photoconductor due to the 8-�m-spot-width beam.

In order to evaluate the THz output power achievable
with this photoconductor used as photomixer, we consider
that about 33% of the dc-photocurrent is related to the elec-

trons, whose response time is �e�480 fs, and 66% is related
to the holes, whose response time is given by the previous
experiment �h�1 ps. These proportions come directly from
the previous assumptions, in which electrons and holes have
the same drift-velocity �vsat�. The electrical capacitance of
the 4-�m-diameter photoconductor �C=5.1 fF� is easily cal-
culated by considering that the photoconductor is a parallel
plate capacitance, with 4-�m-diameter disk-shaped elec-
trodes separated by a 0.28-�m-thick GaAs layer. The emitted
THz power achievable is also dependent on the antenna im-
pedance. A wide-band antenna such as the TEM-horn has an
almost purely real radiation impedance, which is close to
50 
 in the whole THz range. Using Eq. �1� at f =1 THz,
the emitted THz power would be PTHz�8 �W. If the an-
tenna is a narrow-band resonant antenna, the parasitic ca-
pacitance can be cancelled around the central frequency22 by
an impedance matching technique. Furthermore, the radia-
tion impedance of the antenna could reach several hundreds
ohms at the resonant frequency. For example, if f =1 THz is
the central frequency and RA=200 
, PTHz would reach
about 100 �W. These results would represent a major im-
provement in the output THz power provided by photomix-
ers based on 0.8-�m-wavelength as well as
1.55-�m-wavelength laser sources.

This work was supported by the CNRS and by the “Ré-
gion Nord Pas de Calais.”
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FIG. 5. �Color online� Bias voltage dependences of the photocurrent for a
4-�m-diameter photoconductor for incident optical power Popt=52, 78, 104,
and 130 mW.
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