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SETS OF UNIQUENESS FOR DIRICHLET-TYPE SPACES
KARIM KELLAY

ABSTRACT. We study the uniqueness sets on the unit circle for weighted Dirichlet spaces.

1. INTRODUCTION

Let D be the open unit disc in the complex plane, and let T = JD be the unit circle.
Let H? denote the Hardy space of analytic functions on . If  is a positive Borel measure
on the unit circle T, the Dirichlet-type space D(u) is the set of analytic functions f € H?,
such that

=34Lf@ﬂ%mw@dA@><oq

where dA(z) = dxdy/m stands for the normalized area measure in D and Py is the Poisson
integral of p
— Iz \2
T
The space D(p) is endowed with the norm

LAI == LF 72 + Dol f).
Since D(u) C H?, every function f € D(u) has non-tangential limits almost everywhere
on T. We denote by f(() the non-tangentiel limit of f at ¢ € T if it exists. It turns out
that there is a useful formula for expressing the norm of the Dirichlet-type space in terms
of the local Dirichlet integral

D) = [ Deldu(e) < .
T
where D¢(f) is the local Dirichlet integral of f at S € T given by

/ |f(e' (P at
ezt £|2 27'('.

For a proof of this see [13, Proposition 2.2]. Note that if du(e™) = dt/27, the normalized
arc measure on T, then the space D(u) coincides with the classical space of functions with
finite Dirichlet integral. These spaces were introduced by Richter [11] and generalized by
Aleman [1] for nonnegative finite Borel measure on D . The spaces D(u) were studied in
1, 11, 12, 13, 14, 15, 17].
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2 KELLAY

Let D"(u1) be the harmonic version of D(u) given by
") 1= {f € L3(T) : Du(f) < o0}
We define the capacity C), of a set E C T by
Cu(E) :==inf {||f|2 : f € D"(n) and |f| > 1 a.e. on a neighborhood of E},

see [4, 5]. If C,(E) = 0, then E has Lebesgue measure zero. Indeed, if C,(E) = 0,
then there exists a sequence (f;) € D"(u) such that || fi]|, < 277 and |f;| > 1 a.e. on a
neighborhood of E. Then f =Y. fi € D"(u) and |f| = oo on E. We have oo > D, (f) >
[ De(f)dp(€) and this forces E to have measure zero. We say that a property holds C)-
quasi-everywhere (C)-q.e.) if it holds everywhere outside a set of zero C), capacity. Note
that C-q.e implies a.e. We have

C.(E):= 1nf{||f||i : f€D"(p) and |f| >1Cpqeon E}.

see [6, Theorem 4.2]. Every function f € D(u) has non-tangential limits C,-quasi-
everywhere on T [4, Theorem 2.1.9]. Let E be a subset of T. The set E is said to be
a uniqueness set for D(p) if, for each f € D(u) such that it non-tangentiel limit f = 0 on
E, we have f = 0.

In order to state our main result, we deﬁne some notions. Given E C T, we write |E]
for the Lebesgue measure of E. For w € L*(T), we denote by I(w) the mean of w over I

I m/ Q)ldc].

A nonnegative function w is a Muckenhoupt As-weight if for all arc I C T

sup I[w]I[w™] < +o0.
IcT

Theorem 1.1. Let p be an absolutely continuous measure with respect to the Lebesgue
measure on T, du(¢) = w({)|dC| and w is a Muckenhoupt Ay-weight. Let E be a Borel
subset of T of Lebesgue measure zero. We assume that there exists a family of pairwise
disjoint open arcs (I,) of T such that E C UIn. Suppose

\ n| ,

then E is a uniqueness set for D(,u).

The case of the Dirichlet space, du(¢) = |d(|/2m, was obtained by Khavin and Maz’ya
[9]; see also [2, 3, 8]. In [10], we give the generalization of their result in the Dirichlet
spaces Dy, 0 < s < 1, which consist of all analytic functions f € H? such that

[ [ Q) RO lac) g .
D) = [ R < IR0 - o) aA)

The remaining of the note is devoted to proof of the theorem.
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2. PROOF
To prove our theorem, we use the following lemmas,

Lemma 2.1. Let w be a Muckenhoupt As-weight and let du(¢) = w(¢)|d(|, then
(a) If I is an arc of T and &; its center, then
dp(¢)
1 < cl|w|,
o ¢ — &l )

for some positive constant C' independent of I.
(b) for all nonnegative function g and all arcs I of T

(1 fsnact)” < = [ atcrano).

(c¢) for all open arcs I,
2(log 27T>2
111/

Proof. For a proof of (a) , see [7, Lemma 1] and [16] p.200 for (b). Let now to prove (c).
By (b), we have |T \ I|>/|T|?> < u(T\ I)/u(T). By (a) and (b) we get
oD 1 [ duQ) _ p(T\D) 1 del \?_ Ap(T) () 2y

22 e e (L eoa) 2 e (osm)

p(T)

u(l) =

[~ c

Let I be an open arc of T and f be a function. We set

() = fw)PJdz], 1
Diuf)i= [ [EEE ) and i) = o 1@,

Lemma 2.2. Let du = wdm be a measure such that w € (As). Suppose that 0 < v < 1.
Let E C T and f € D(u) be such that f|[E = 0. Then, for any open arc I C T with
11| < oy

Dl,u(f)

my(f)? Sﬁm,

where k depending only on .

Proof. Without loss generality, we assume that I = (e7% ") with 0 < y7/2. Let J =
(e~20/047) 20/(4+7)) and f be such that

T f(eit)7 eit € -[7
) — 30—t .
Jeh) = { Fe™ ), et e J\I
Then by a change of variable, we get
Dru(f) = Dyu(f) and mi(f) = my(f), (1)

where the implied constants depend only on ~, see [10].
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Let I, = (e7%, ") with 6, = (3+7 ¢ . Note that I C I, C J. Let ¢ be a positive

function on T, 0 < ¢ < 1, such that supp<b =1I,¢9=1onI and

6(:) ~6(w) < Glz-vl.  zweT
where ¢; depending only on 7.
Now, we consider the function
F(z) = ¢(z))1 AL e
my(f)

Hence F' > 0 and F' =1 C,-q.e on E N I. Therefore,

Cu(ENT) <|FI2 (2)
We claim that
2 DI,u(f)
I < wtess 3)

where r depending only on . The Lemma 2.2 follows from (2) and (3).
Now, we prove the claim (3). We have

_ Al [ [ 1F(Q ~ F©I* ] due)
||F||,%—/|F<o|2 // 15 — ol A
], [ [P = O ]l
5 // i

/ /\mJ OIF ld<| du(€)
= 5\2 or 2

CET\J el

OII? d¢] dp(€)
\C §\2 2m 27

§eT\J 4617

A C D

—+ 2+ = T :
C2mmy(f)2 AT Ammy(f)? 0 AnPmy(f)?

Note that, by Lemma 2.1 (b)

mo () =TI < (77 [ 17 = Froniael)” < = [ 1i©) = FOFdu(e)
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Hence by (1) and Lemma 2.1 (c)
A= / maF) = TP

= //If O)Pdp(€)|d¢|
% / f,%du<f>\d<\

S C2DI,,u<f)7 (5)

IN

where ¢y depending only on ~.
Let us now estimate B. If (¢,§) € J x J, then we write

f(@)c')) 1= PEL) + 0 —eten]r - S|

|
my

FQ) = FOl = o(©(]1-

T C1 |C ¢l Yy 6
< mJ<f)|f<<) f©1+ o) W1 [m (1) = 17Ol (6)

Note that, by Cauchy-Schwarz,

m (T < 7 [ 1) = Fe i (7

So, by (6), (7) and (1)

o [ e
= //%ldad ©
mJ 261\J|3///|f &)?|dn|dc|dp(€)

2+2c1 Fin) - FOP
< / / L L i)

Dlu(f)
3m1(f)2. <8)

< ¢

where c3 depending only on ~.
Next, using again (7) and (1)
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= ol P s

< /CGT\Jd‘chf‘> /£€I| o) = F©IPdu(e)
S [ [ 17 = Fe)Panldue)
of [ %\dnldu(é)

C5Dl,u<f>7 (9)

IA

IA

where ¢4, c5 depend only on 7.
Finally, by Lemma (2.1) (a) and (b) and (1)

D = /@\J /@ s, D= aclate)
< /@\Jd(“)/@| S = 1FOIP1c)
< o [ /|f OPdu(mldc|
i 170 = FioPiamianc)

F) - For
s / / medu(é)
ciDr,u(f), (10)

IA

IA

IA

where cg, c; depend only on 7.
By (5), (8), (9) and (10) we get (3) and the proof is complete. O

Proof of Theorem 1.1. Since |E| = 0, we can assume that sup,, |I,| < ym with vy € (0, 1).
Let f € D(u) be such that f|[E = 0. Weset £ = )" |[,]. By Lemma 2.2 and Jensen’s
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inequality

1
/Ulnlog|f(§)Hd£| = ;\In\mflnloglf@)\\dﬂ
< Zunuogﬁfl £(©)llde
< Yl (£ 7peTh)
_ Zlfllog |n| MZ” (wm(ﬁ)
. Z|f|log%+mg( > 0ul)

| n| K
< § Z 0 0O l) )

By Fatou’s Theorem we obtain f = 0 and the proof is complete.
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