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Abstract

The generalized Fleming-Viot processes were defined in 1999 by Donnelly and Kurtz

using a particle model and by Bertoin and Le Gall in 2003 using stochastic flows of

bridges. In both methods, the key argument used to characterize these processes is the

duality between these processes and exchangeable coalescents. A larger class of coalescent

processes, called distinguished coalescents, was set up recently to incorporate an immi-

gration phenomenon in the underlying population. The purpose of this article is to define

and characterize a class of probability-measure valued processes called the generalized

Fleming-Viot processes with immigration. We consider some stochastic flows of parti-

tions of Z+, in the same spirit as Bertoin and Le Gall’s flows, replacing roughly speaking,

composition of bridges by coagulation of partitions. Identifying at any time a population

with the integers N := {1, 2, ...}, the formalism of partitions is effective in the past as well

as in the future especially when there are several simultaneous births. We show how a

stochastic population may be directly embedded in the dual flow. An extra individual 0

will be viewed as an external generic immigrant ancestor, with a distinguished type, whose

progeny represents the immigrants. The ”modified” lookdown construction of Donnelly-

Kurtz is recovered when no simultaneous multiple births nor immigration are taken into

account. In the last part of the paper we give a sufficient criterion for the initial types

extinction.
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1 Introduction

Originally, Fleming-Viot processes were defined in 1972 in [14] to model the genetic phenomenon
of allele drift. They now form an important sub-class of measure-valued processes, which have
received significant attention in the literature. Donnelly and Kurtz, in 1996, established in
[9], a duality between the classical Fleming-Viot process and the Kingman coalescent. Shortly
after, the class of coalescent processes was considerably generalized by assuming that multiple
coagulations may happen simultaneously. An infinite particle representation set up in 1999,
allows Donnelly and Kurtz, in [10], to define a generalized Fleming-Viot process by duality
with the Λ-coalescent. In 2003, Bertoin and Le Gall started from another point of view and
introduced, in [4], a stochastic flow of bridges which encodes simultaneously an exchangeable
coalescent process and a continuous population model, the so-called generalized Fleming-Viot
process. Finally, in 2009, Birkner et al. in [6] have adapted the same arguments as Donnelly-
Kurtz for the case of the Ξ-coalescent.

More recently, a larger class of coalescents called distinguished coalescents were defined, see
[15], in order to incorporate immigration in the underlying population. The purpose of this
article is to define by duality the class of generalized Fleming-Viot processes with immigra-
tion. Imagine an infinite haploid population with immigration, identified by the set N. This
means that each individual has at most one parent in the population at the previous generation;
indeed, immigration implies that some individuals may have parents outside this population
(they are children of immigrants). To encode the arrival of new immigrants, we consider the
external integer 0 as the generic parent of immigrants. We shall then work with partitions
of Z+, the so-called distinguished partitions. Our approach will draw both on the works of
Bertoin-Le Gall and of Donnelly-Kurtz. Namely, in the same vein as Bertoin and Le Gall’s ar-
ticle [4], we define a stochastic flow of partitions of Z+, denoted by (Π(s, t),−∞ < s ≤ t < ∞).
The dual flow (Π̂(t), t ≥ 0) := (Π(−t, 0), t ≥ 0) shall encode an infinite haploid population
model with immigration forward in time. Namely, for any individual i ≥ 1 living at the initial
time 0, the set Π̂i(t) shall represent the descendance of i, and Π̂0(t) the descendance of the
generic immigrant, at time t. We stress that the evolution mechanism involves both multiple
reproduction and immigration. The genealogy of this population model is precisely a distin-
guished exchangeable coalescent. Our method is close to the ”modified” lookdown construction
of Donnelly-Kurtz, but differs from (and simplifies) the generalization given by Birkner et al.
in [6]. In the same vein as Fleming and Viot’s fundamental article [14], we consider the type
carried by each individual at the initial time. Denote by Ui the type of the individual i ≥ 1,
and distinguish the type of the generic immigrant by fixing U0 = 0. The study of the evolution
of frequencies as time passes, leads us to define and study the so-called generalized Fleming
Viot process with immigration (GFVI for short) denoted in the sequel by (Zt, t ≥ 0). This
process will be explicitly related to the forward partition-valued process (Π̂(t), t ≥ 0). When
the process (Π̂(t), t ≥ 0) is absorbed in the trivial partition ({Z+}, ∅, ...), all individuals are
immigrant children after a certain time. We shall discuss conditions entailing the occurrence
of this event.

Outline. The paper is organized as follows. In Section 2 (Preliminaries), we recall some
basic facts on distinguished partitions. We introduce a coagulation operator coag and describe
how a population may be encoded by distinguished partitions forward in time. Some properties
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related to exchangeable sequences and partitions are then presented. We recall the definition
of an exchangeable distinguished coalescent and define a stochastic flow of partitions using a
Poisson random measure on the space of partitions. In Section 3, we study the dual flow and the
embedded population. Adding initially a type to each individual, the properties of exchange-
ability of Section 2 allow us to define the generalized Fleming-Viot process with immigration.
We show that any generalized Fleming-Viot process with immigration is a Feller process. Ar-
guing then by duality we determine the generator of any GFVI on a space of functionals which
forms a core. In Section 4, we give a sufficient condition for the extinction of the initial types.
Thanks to the duality established in Section 3, the extinction corresponds to the coming down
from infinity of the distinguished coalescent.

2 Preliminaries

We start by recalling some basic definitions and results about exchangeable distinguished par-
titions which are developed in [15]. For every n ≥ 0, we denote by [n ] the set {0, ..., n} and
call P0

n the set of partitions of [n ]. The space P0
∞ is the set of partitions of [∞ ] := Z+.

By convention the blocks are listed in the increasing order of their least element. The first
block of π, which contains 0, is denoted by π0 and viewed as distinguished. It shall represent
descendants of an immigrant. An element of P0

∞ is then called a distinguished partition. We
endow the space P0

∞ with a distance, that makes it compact, defined by

d(π, π′) = (1 + max{n ≥ 0; π| [n ] = π′
| [n ]})

−1.

The notation i
π
∼ j means that i and j are in the same block of π. An exchangeable distinguished

partition is a random element π of P0
∞ such that for all permutations σ satisfying σ(0) = 0,

the partition σπ defined by

i
σπ
∼ j if and only if σ(i)

π
∼ σ(j),

has the same law as π. If π is a distinguished exchangeable partition, the asymptotic frequency

|πi| := lim
n→∞

#(πi ∩ [n ])

n

exists for every i ≥ 0, almost-surely. We denote by |π|↓ the sequence of asymptotic frequencies
(|πi|, i ≥ 0) after a decreasing rearrangement apart from |π0|. Thanks to Kingman’s correspon-
dence, the law of |π|↓ determines completely that of π (see Theorem 2 in [15]).

The operator coag is defined from P0
∞ × P0

∞ to P0
∞ such that for (π, π′) ∈ P0

∞ × P0
∞, the

partition coag(π, π′) satisfies for all i ≥ 0,

coag(π, π′)i =
⋃

j∈π′
i

πj.

The operator coag is Lipschitz-continuous and associative in the sense that for any π, π′ and
π′′ in P0

∞

coag(π, coag(π′, π′′)) = coag(coag(π, π′), π′′).
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Moreover, the partition of Z+ into singletons, denoted by 0[∞ ], may be viewed as a neutral
element for the operator coag, indeed

coag(π, 0[∞ ]) = coag(0[∞ ], π) = π.

More generally, for every n ≥ 0, we denote by 0[n ] the partition of [n ] into singletons. It
should be highlighted that given two independent exchangeable distinguished partitions π, π′,
the partition coag(π, π′) is still exchangeable (see Lemma 4.3 in [3]).

2.1 Partitions of the population

We explain how the formalism of partitions may be used to describe a population with immi-
gration as time goes forward. As in the Introduction, imagine an infinite haploid population
with immigration, identified by the set N evolving forward in time. An additional individual
0 is added and plays the role of a generic immigrant. The model may be described as follows:
let t0 < t1,

• at time t1 the families sharing the same ancestor at time t0 form a distinguished partition
π(1). The distinguished block π

(1)
0 comprises the children of immigrants,

• the indices of the blocks of π(1) are viewed as the ancestors living at time t0. In other
words, for any j ≥ 0, the block π

(1)
j is the offspring at time t1 of the individual j living

at time t0.

Consider a time t2 > t1 and denote by π(2) the partition of the population at time t2 such
that the block π

(2)
k comprises the descendants at time t2 of the individual k, living at time t1.

Obviously, the set
⋃

k∈π
(1)
j

π
(2)
k represents the descendants at time t2 of the individual j at time

t0. Therefore the partition coag(π(2), π(1)) encodes the descendants at time t2 of the individuals
living at time t0.

For any fixed π ∈ P0
∞, define the map απ by

απ(k) := the index of the block of π containing k.

Thus, in the population above, απ(1)(k) corresponds to the ancestor at time t0 of the individual
k in the population at time t1. We have, by definition of the operator coag, the key equality

αcoag(π,π′) = απ′ ◦ απ.

Therefore, the ancestor living at time t0 of the individual k at time t2 is

απ(1) ◦ απ(2)(k) = αcoag(π(2),π(1))(k).

We will see in the next subsection some properties of the map απ when π is an exchangeable
distinguished partition.
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2.2 Exchangeability and partitions

The results in this part concern exchangeable sequences and distinguished partitions. They
will be useful to define a generalized Fleming-Viot process with immigration. We denote by
M1 the space of probability measures on [0, 1].

Lemma 1 Let (Ui, i ≥ 1) be an infinite exchangeable sequence taking values in [0, 1], and
U0 = 0. Let π be an independent distinguished exchangeable partition, then the infinite sequence
(Uαπ(k), k ≥ 1) is exchangeable.

Proof. By de Finetti’s theorem, without loss of generality we may directly assume that the
sequence (Ui, i ≥ 1) is i.i.d with a distribution ρ ∈ M1. We show that for all n ≥ 1, the
random vector (Uαπ(1), ..., Uαπ(n)) is then exchangeable. Let f1, ..., fn be n measurable functions
on [0, 1] and [n] be the set {1, ..., n},

E[f1(Uαπ(1))...fn(Uαπ(n))|π] =





∏

i∈π0∩[n]

fi(0)









∏

k≥1

ˆ 1

0

∏

i∈πk∩[n]

fi(u)ρ(du)



 .

Let σ be a permutation of [n ] such that σ(0) = 0 and η be a permutation such that σ−1(πi) =
σπη(i). We stress that η(0) = 0, and we have

E[f1(Uαπ(σ(1)))...fn(Uαπ(σ(n)))|π] =





∏

i∈σ−1(π0)∩[n]

fi(0)









∏

k≥1

ˆ 1

0

∏

i∈σ−1(πk)∩[n]

fi(u)ρ(du)





=





∏

i∈σπ0∩[n]

fi(0)









∏

k≥1

ˆ 1

0

∏

i∈σπη(k)∩[n]

fi(u)ρ(du)





=





∏

i∈σπ0∩[n]

fi(0)









∏

k≥1

ˆ 1

0

∏

i∈σπk∩[n]

fi(u)ρ(du)



 .

Therefore
E[f1(Uαπ(σ(1)))...fn(Uαπ(σ(n)))|π] = E[f1(Uασπ(1))...fn(Uασπ(n))|π].

The exchangeability of the partition π ensures that

E[f1(Uασπ(1))...fn(Uασπ(n))] = E[f1(Uαπ(1))...fn(Uαπ(n))],

which allows us to conclude that (Uαπ(1), ..., Uαπ(n)) is exchangeable. �

Let ρ be a random measure of probability on [0, 1]. We say that the exchangeable sequence
(Ui, i ≥ 1) has de Finetti measure ρ, if conditionally given ρ the variables (Ui, i ≥ 1) are i.i.d
with law ρ. The following lemma provides the de Finetti measure of the exchangeable sequence
(Uαπ(k), k ≥ 1).

Lemma 2 Let (Ui, i ≥ 1) be exchangeable with de Finetti measure denoted by ρ. The de Finetti
measure of the exchangeable sequence (Uαπ(k), k ≥ 1) is

(1−
∑

i≥0

|πi|)ρ+
∑

i≥1

|πi|δUi
+ |π0|δ0.
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Proof. This is an easy adaptation of the proof of Lemma 4.6 of [3]. For the sake of completeness,
we give the proof in detail. The exchangeability is given by Lemma 1, and so to prove the
statement it suffices, by de Finetti’s theorem, to study the limit when m → ∞ of

1

m

m
∑

j=1

δUαπ(j)
.

We denote by S the set of singletons in the partition π. That is

S :=
⋃

i≥0,|πi|=0

πi.

In the sequel, we will denote by Sc the complement of S. The paint-box structure of an
exchangeable partition tells us that for all t ≥ 0, S is empty or infinite. We decompose the sum
in the following way

1

m

m
∑

j=1

δUαπ(j)
=

1

m

∑

j∈S,j∈[m ]

δUαπ(j)
+

1

m

∑

j∈Sc,j∈[m ]

δUαπ(j)

= #(S ∩ [m ])/m
1

#(S ∩ [m ])

∑

j∈S;j∈[m ]

δUαπ(j)
+

1

m

∑

j∈Sc,j∈[m ]

δUαπ(j)
.

By de Finetti’s theorem, we deduce that the first term converges to |S|ρ. Let us decompose
the second term

1

m

∑

j∈Sc,j∈[m ]

δUαπ(j)
=

1

m

∑

i∈[m ];πi⊂Sc

#(πi ∩ [m ])δUi
.

From Fatou’s lemma, we get for any measurable bounded function f on [0, 1]

lim inf
m→∞

∑

i∈[m ];πi⊂Sc

1

m
#(πi ∩ [m ])f(Ui) ≥ |π0|f(0) +

∑

i≥1;πi⊂Sc

|πi|f(Ui).

Therefore,

lim inf
m→∞

〈f ;
1

m

m
∑

j=1

δUαπ(j)
〉 ≥ 〈f ; (1−

∑

i≥0

|πi|)ρ+ |π0| δ0 +
∑

i≥1

|πi| δUi
〉.

The last sum is on all i ≥ 1 because if πi is included in S, then the quantity |πi| is 0.

It remains to study the limit superior, let us define for all η > 0,

J(η) := {j ∈ Z+; |πj| ≥ η}.

This set is finite, and we have

1

m

∑

j∈Sc,j∈[m ]

δUαπ(j)
=

1

m

∑

j∈J(η),j∈[m ]

δUαπ(j)
+

1

m

∑

j∈Sc\J(η),j∈[m ]

δUαπ(j)
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The first sum is on a finite set, so we can permute the sum and the limit. For all η > 0,

1

m

∑

j∈J(η),j∈[m ]

f(Uαπ(j)) →
m→∞

∑

j; πj⊂J(η)

|πj |f(Uj).

Let us study the second sum, denoting by C a constant such that |f | ≤ C. We have for large
m,

1

m

∑

j∈Sc\J(η),j∈[m ]

f(Uαπ(j)) ≤ C
1

m
#(

⋃

j∈Sc\J(η)

πj ∩ [m ]).

When m → ∞, the boundary term converges to |
⋃

j∈ Sc\J(η) πj |. We then have

lim sup
m→∞

1

m

∑

j∈ Sc∩[m ]

f(Uαπ(j)) ≤
∑

j; πj⊂J(η)

|πj |f(Uj) + C|
⋃

j∈Sc\J(η)

πj |.

By definition, we have 1− |S| −
∑

j∈J(η) |πj| →
η→0

0 and therefore

|
⋃

j∈Sc\J(η)

πj | →
η→0

0.

Obviously,
∑

j; πj⊂J(η)

|πj|f(Uj) →
η→0

∑

j≥0

|πj|f(Uj).

Combining all these results, we get

lim sup
m→∞

〈f ;
1

m

m
∑

j=1

δUαπ(j)
〉 ≤ 〈f ; (1−

∑

i≥0

|πi|)ρ+ |π0| δ0 +
∑

i≥1

|πi| δUi
〉.

We then obtain the statement of the lemma.�

Remark 2.1 Let (Ui, i ≥ 1) be an i.i.d sequence with a continuous distribution ρ. Observing
that

k
π
∼ l ⇐⇒ Uαπ(k) = Uαπ(l),

we can use the previous lemmas to recover the (distinguished) paint-box structure of any (dis-
tinguished) exchangeable random partition, see Kingman [17] or Theorem 2.1 in [3] for the case
with no distinguished block. Moreover, Lemma 1 yields another simple proof for the exchange-
ability of coag(π, π′) provided that π and π′ are independent and both exchangeable.

2.3 Distinguished coalescents and flows of partitions

We start by recalling some basic facts on distinguished coalescents which are developed in
Section 3 of [15]. In particular, we recall the definition of a coagulation measure and its
decomposition.
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2.3.1 Distinguished coalescents and coagulation measure

Consider an infinite haploid population model with immigration, the population being identified
with N. Recall that a generic immigrant 0 is added to the population. We denote by Π(s) the
partition of the current population into families having the same ancestor s generations earlier.
As explained before, individuals issued from the immigration form the distinguished block Π0(s)
of Π(s). When some individuals have the same ancestor at a generation s, they have the same
ancestor at any previous generation. The following statement makes these ideas formal. We
stress that time goes backward. An exchangeable distinguished coalescent is a Markov process
(Π(t), t ≥ 0) valued in P0

∞ such that given Π(s)

Π(s+ t)
Law
= coag(Π(s), π),

where π is an exchangeable distinguished partition independent of Π(s), with a law depending
only on t. A distinguished coalescent is called standard if Π(0) = 0[∞ ]. We emphasize that
classical coagulations and coagulations with the distinguished block may happen simultane-
ously.
A distinguished coalescent is characterized by a measure µ on P0

∞, called the coagulation mea-
sure, which fulfills the following conditions:

• µ is exchangeable, meaning here invariant under the action of the permutations σ of Z+

with finite support (i.e permuting only finitely many points), such that σ(0) = 0

• µ({0[∞ ]}) = 0 and for all n ≥ 0, µ(π ∈ P0
∞ : π| [n ] 6= 0[n ]) < ∞.

To be more precise, let (Π(t), t ≥ 0) be a distinguished coalescent; the coagulation measure µ
is defined from the jump rates of the restricted processes (Π| [n ](t), t ≥ 0) for n ≥ 0. For every
π ∈ P0

n, let qπ be the jump rate of (Π| [n ](t), t ≥ 0) from 0[n ] to π and P0
∞,π be the set

P0
∞,π := {π′ ∈ P0

∞; π′
| [n ] = π}.

We have by definition µ(P0
∞,π) = qπ. We will denote by L∗

n the generator of the continuous
Markov chain (Π| [n ](t), t ≥ 0). Let φ be a map from P0

n to R and π ∈ P0
n, then

L∗
nφ(π) =

∑

π′∈P0
n

qπ′ [φ(coag(π, π′))− φ(π)].

Conversely for any coagulation measure µ, by the same arguments as in [3] for the genuine
coalescents, a distinguished coalescent with coagulation measure µ, is constructed using a Pois-
son random measure on the space R+ × P0

∞ with intensity dt ⊗ µ (see Proposition 4 in [15]).
We mention that Theorem 5 in [15] yields a decomposition of a coagulation measure into a
”Kingman part” and a ”multiple collisions part”. Let µ be a coagulation measure, then there
exist c0, c1 non-negative real numbers and a measure ν on

Pm :=

{

s = (s0, s1, ...); s0 ≥ 0, s1 ≥ s2 ≥ ... ≥ 0,
∑

i≥0

si ≤ 1

}

such that

µ = c0
∑

1≤i

δK(0,i) + c1
∑

1≤i<j

δK(i,j) +

ˆ

s∈Pm

ρs(.)ν(ds)
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where K(i, j) is the simple partition (meaning with at most one non-singleton block) with
doubleton {i, j} and ρs denotes the law of an s-distinguished paint-box (see Definition 3 in
[15]). The measure ν verifies the condition

ˆ

Pm

(s0 +
∑

i≥1

s2i )ν(ds) < ∞.

2.3.2 Stochastic flow of partitions

We define a stochastic flow of partitions and give a construction from a Poisson random measure.
The following definition may be compared with that of Bertoin and Le Gall’s flows [4].

Definition 1 A flow of distinguished partitions is a collection of random variables (Π(s, t),−∞ <
s ≤ t < ∞) valued in P0

∞ such that:

(i) For every t ≤ t′, the distinguished partition Π(t, t′) is exchangeable with a law depending
only on t′ − t.

(ii) For every t < t′ < t′′, Π(t, t′′) = coag(Π(t, t′),Π(t′, t′′)) a.s

(iii) if t′1 < t′2 < ... < t′n, the distinguished partitions Π(t′1, t
′
2), ...,Π(t

′
n−1, t

′
n) are independent.

(v) Π(0, 0) = 0[∞ ] and Π(t, t′) → 0[∞ ] in probability when t′ − t → 0.

The process (Π(t), t ≥ 0) := (Π(0, t), t ≥ 0) is by definition a distinguished exchangeable
coalescent. Given a coagulation measure µ, we introduce and study next a stochastic flow
of partitions constructed from a Poisson random measure on R × P0

∞ with intensity dt ⊗ µ.
Instead of composing bridges as Bertoin and Le Gall in [4], we coagulate directly the partitions
replacing thus the operator of composition by the operator coag. For any partitions π(1), ..., π(k),
we define recursively the partition coagk(π(1), ..., π(k)) by coag0 = 0[∞ ], coag

1(π(1)) = π(1) and
for all k ≥ 2,

coagk(π(1), ..., π(k)) := coag
(

coagk−1
(

π(1), ..., π(k−1)
)

, π(k)
)

= coagk−1
(

π(1), ..., π(k−2), coag
(

π(k−1), π(k)
))

.

Introduce a Poisson random measure N on R× P0
∞ with intensity dt⊗ µ and for each n ∈ N,

let Nn be the image of N by the map π → π| [n ]. The condition µ(π| [n ] 6= 0[n ]) < ∞ ensures
that for all s < t there are finitely many atoms of Nn in ]s, t] × P0

n \ 0[n ]. We denote by
{(t1, π(1)), (t2, π

(2)), ..., (tK , π
(K))} these atoms with K := Nn(]s, t]× P0

n \ {0[n ]}) and define

Πn(s, t) := coagK
(

π(1), ..., π(K)
)

.

It remains to establish the compatibility of the sequence of random partitions (Πn(s, t), n ∈ N),
which means that for all m ≤ n, Πn

| [m ](s, t) = Πm(s, t). All non-trivial atoms of Nm are plainly
non-trivial atoms of Nn, and moreover the compatibility property of the operator coag with
restrictions implies that

coagK
(

π(1), ..., π(K)
)

| [m ]
= coagK

(

π
(1)
| [m ], ..., π

(K)
| [m ]

)

.
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Two cases may occur, either π
(i)
| [m ] = 0[m ] and does not affect the coagulation, or π

(i)
| [m ] 6= 0[m ]

and is actually an atom of Nm on ]s, t]×P0
m \ {0[m ]}. We then have the following identity:

Πm(s, t) = Πn
| [m ](s, t).

This compatibility property allows to define a unique process (Π(s, t),−∞ < s ≤ t < ∞)
such that for all s ≤ t, Π| [n ](s, t) = Πn(s, t). The collection (Π(s, t),−∞ < s ≤ t < ∞) is
by construction a flow in the sense of Definition 2. Obviously, the process (Π(t), t ≥ 0) :=
(Π(0, t), t ≥ 0) is a standard distinguished coalescent with coagulation measure µ. Interpreting
a classical coagulation as a reproduction and a coagulation with the distinguished block as an
immigration event, a coagulation measure µ may be viewed as encoding the births and the
immigration rates in some population when time goes forward.

In the same vein as Bertoin and Le Gall’s flows, a population model is embedded in the
dual flow, as we shall see.

2.4 The dual flow

Let N̂ be the image of N by the time reversal t 7→ −t and consider the filtration (F̂t, t ≥ 0) :=
(σ(N̂[0,t]×P0

∞
), t ≥ 0). For all s ≤ t, we denote by Π̂(s, t) the partition Π(−t,−s). The process

(Π̂(s, t),−∞ < s ≤ t < ∞) is called the dual flow. By a slight abuse of notation the process
(Π̂(0, t), t ≥ 0) will be denoted by (Π̂(t), t ≥ 0). Plainly the following cocycle property holds
for every s ≥ 0,

Π̂(t + s) = coag(Π̂(t, t+ s), Π̂(t)).

We stress that the partition Π̂(t, t + s) is exchangeable, independent of F̂t and has the same
law as Π̂(s). The cocycle property yields immediately that (Π̂(t), t ≥ 0) and its restrictions
(Π̂| [n ](t), t ≥ 0) are Markovian. The following property ensures that (Π̂(t), t ≥ 0) is actually
strongly Markovian.

Proposition 3 The semigroup of the process (Π̂(t), t ≥ 0) verifies the Feller property. For
any continuous map φ from P0

∞ to R, the map π 7→ E[φ(coag(Π̂(t), π))] is continuous and
E[φ(coag(Π̂(t), π))] →

t→0
φ(π).

Proof. This is readily obtained thanks to the continuity of coagulation maps.�

Remark 2.2 We stress that the process (Π̂(t), t ≥ 0) is not a coalescent process. However,
since the Poisson random measures N and N̂ have the same law, the process (Π̂(t), t ≥ 0) has
the same one-dimensional marginals as a standard coalescent with coagulation measure µ.

As explained in Section 2.1, the partition-valued process (Π̂(t), t ≥ 0) may be viewed as a
population model forward in time. For every t ≥ s ≥ 0 and every k ∈ N, we shall interpret
the block Π̂k(s, t) as the descendants at time t of the individual k living at time s and the
distinguished block Π̂0(s, t) as the descendants of the generic immigrant. Thanks to the cocycle
property, for all 0 ≤ s ≤ t, we have

Π̂k(t) =
⋃

j∈Π̂k(s)

Π̂j(s, t)

10



and the ancestor living at time s of any individual j at time t is given by αΠ̂(s,t)(j). The random

distinguished partition Π̂(t) is exchangeable and possesses asymptotic frequencies. For all i ≥ 0,
we shall interpret |Π̂i(t)| as the fraction of the population at time t which is descendent from i.
We stress that as in Donnelly-Kurtz’s construction [10] and the generalisation [6], the model is
such that the higher the individual is, the faster his descendance will die. Namely, for all i < j,
the descendance of i will always extinct after that of j.

Remark 2.3 When no simultaneous multiple births nor immigration are taken into account,
the measure µ is carried on the simple partitions (meaning with only one non-trivial block)
with a distinguished block reduced to {0} and we recover exactly the ”modified” lookdown pro-
cess of Donnelly-Kurtz for the Λ-Fleming-Viot process. Moreover, the partition-valued process
(Π̂(t), t ≥ 0) corresponds in law with those induced by the dual flow of Bertoin and Le Gall
(B̂t, t ≥ 0) using the paint-box scheme, see [4].

Let us study the genealogical process of this population model. We will recover a distinguished
coalescent. Let T > 0 be a fixed time and consider the population at time T . By definition,
the individuals k and l have the same ancestor at time T − t if and only if k and l belong to
the same block of Π̂(T − t, T ). Moreover by definition of the dual flow,

(Π̂(T − t, T ), t ∈ [0, T ]) = (Π(−T,−T + t), t ∈ [0, T ])

which is a distinguished coalescent with coagulation measure µ on the interval [0, T ].

In the same way as Donnelly and Kurtz in [10], we associate initially to each individual a
type represented by a point in a metric space E ∪ {∂}, where ∂ is an extra point not belonging
to E representing the distinguished type of the immigrants. The choice of E does not matter
in our setting and for the sake of simplicity, we choose for E the interval ]0, 1], and for distin-
guished type ∂ = 0. The generic external immigrant 0 has the type U0 := 0. At any time t,
each individual has the type of its ancestor at time 0. In other words, for any k ∈ N the type of
the individual k at time t is Uα

Π̂(t)
(k). The exchangeability properties of Section 2.2 will allow

us to define and characterize the generalized Fleming-Viot process with immigration.

Remark 2.4 We assume in this work only one source of immigration but several sources may
be considered by distinguishing several blocks and types. There is no mutation assumed on the
types. Birkner et al. defined in [6] a generalization of the lookdown representation and the Ξ-
Fleming-Viot process with mutations. Assuming that no immigration or mutation is taken into
account, we will recover a process with the same law as a Ξ-Fleming-Viot process (the measure
Ξ is defined by Ξ := c1δ0+

∑

i≥1 s
2
i ν(ds)). However, we stress that our method differs from that

of Birkner et al.

3 Generalized Fleming-Viot processes as de Finetti mea-

sures

We define and characterize in this section a measure-valued process which represents the fre-
quencies of the types in the population at any time. This process will be called the generalized
Fleming-Viot process with immigration and will be explicitly related to the forward partition
process (Π̂(t), t ≥ 0). In the same way as in [4] and [6], a duality argument allows us to
characterize in law the GFVIs.

11



3.1 Generalized Fleming-Viot processes with immigration

Let ρ ∈ M1, we assume that the initial types (Ui, i ≥ 1) are i.i.d with law ρ and independent
of N̂ . For all t ≥ 0, the random partition Π̂(t) is exchangeable and applying Lemma 1, we get
that the sequence (Uα

Π̂(t)
(l), l ≥ 1) is exchangeable. We denote by Zt its de Finetti measure.

Lemma 2 leads us to the following definition.

Definition 2 The process (Zt, t ≥ 0) defined by

Zt := |Π̂0(t)|δ0 +
∞
∑

i=1

|Π̂i(t)|δUi
+ (1−

∞
∑

i=0

|Π̂i(t)|)ρ,

starting from Z0 = ρ, is called the generalized Fleming-Viot process with immigration.

Remark 3.1 For all t ≥ 0, the random variable Zt can be viewed as the Stieljes measure of a
distinguished bridge (see [15]). Definition 2 yields a paint-box representation of the population
forward in time in the same vein as the dual flow of bridges of Bertoin and Le Gall.

Proposition 4 The process (Zt, t ≥ 0) is Markovian with a Feller semigroup.

Proof. The sequence (Uα
Π̂(s+t)

(l), l ≥ 1) is exchangeable with de Finetti measure Zs+t. By the

cocycle property of the dual flow, we have Π̂(s+ t) = coag(Π̂(s, s+ t), Π̂(s)). Therefore, for all
l ≥ 1,

Uα
Π̂(s+t)(l)

= Uα
Π̂(s)◦αΠ̂(s,s+t)(l)

.

By Lemma 2, we immediately get that for all t ≥ 0 and s ≥ 0

Zs+t = (1−
∑

j≥0

|Π̂j(s, s+ t)|)Zs +
∑

j≥1

|Π̂j(s, s+ t)|δUα
Π̂(s)

(j)
+ |Π̂0(s, s+ t)|δ0.

We recall that Π̂(s, s+ t) is independent of F̂s and hence of Zs. By Theorem 2, conditionally on
Zs, the variables (Uα

Π̂(s)(j)
, j ≥ 1) are i.i.d with distribution Zs. The process (Zt, t ≥ 0) is thus

Markovian and its semigroup denoted by Rt can be described as follows. For every ρ ∈ M1,
Rt(ρ, .) is the law of the random probability measure

(1−
∑

i≥0

|Π̂i(t)|)ρ+
∑

i≥1

|Π̂i(t)|δUi
+ |Π̂0(t)|δ0

where the variables (Ui, i ≥ 1) are i.i.d distributed according to ρ and independent of Π̂(t).
We then verify that Rt enjoys the Feller property. If f is a continuous function from M1 to R,
the convergence in probability when t → 0 of Π̂(t) to 0[∞ ] implies that |Π̂(t)|↓ tends to 0. We
then have the convergence of Rtf to f when t → 0. Plainly, for any sequence (ρn, n ≥ 1) which
weakly converges to ρ, Rt(ρ

n, .) converges to Rt(ρ, .). The Feller property is then established.
�
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3.2 Infinitesimal generator, core and martingale problem

As in the articles of Bertoin-Le Gall [4], Donnelly-Kurtz [10] and Birkner et al [6], the char-
acterization in law of a GFVI will be obtained by a duality argument. Let f be a continuous
function on [0, 1]p. Define a function from M1 ×P0

p to R by

Φf : (ρ, π) ∈ M1 × P0
p 7→

ˆ

[0,1]p+1

δ0(dx0)ρ(dx1)...ρ(dxp)f(xαπ(1), ..., xαπ(p)).

Let (Π(t), t ≥ 0) be a distinguished coalescent, then we have the following lemma, where the
notations Eρ and E

π refer respectively to expectation when Z0 = ρ and Π| [ p ](0) = π.

Lemma 5
E
ρ[Φf (Zt, π)] = E

π[Φf (ρ,Π| [ p ](t))].

Proof of Lemma 5. Let (Ui, i ≥ 1) be independent and identically distributed with law ρ and
U0 = 0 , we have

E
ρ[Φf (Zt, π)] = E

ρ[

ˆ

δ0(dx0)Zt(dx1)...Zt(dxp)f(xαπ(1), ..., xαπ(p))]

= E[f(Uα
Π̂(t)

(απ(1)), ..., Uα
Π̂(t)

(απ(p)))]

= E[

ˆ

δ0(dy0)ρ(dy1)...ρ(dyp)f(yα
coag(π,Π̂(t))(1)

, ..., yα
coag(π,Π̂(t))(p)

)]

= E
π[Φf (ρ,Π| [ p ](t))].

The second equality holds because Zt is the de Finetti measure of (Uα
Π̂(t)

(i), i ≥ 1). Observing

that αΠ̂(t) ◦ απ = αcoag(π,Π̂(t)), we get the third equality. Moreover, for t fixed the random par-

tition Π̂(t) has the same law as a standard distinguished coalescent at time t which yields the
last equality.�

The Kolmogorov equations ensure that the generator L of the process (Zt, t ≥ 0) verifies
for all continuous functions f on [0, 1]p, π ∈ P0

p and ρ ∈ M1,

LΦf(., π)(ρ) = L∗
pΦf (ρ, .)(π) (1)

where L∗
p is the generator of the continuous time Markov chain (Π| [ p ](t), t ≥ 0). The process

(Zt, t ≥ 0) is then characterized in law by a triplet (c0, c1, ν) according to the decomposition of
the coagulation measure µ given in Subsection 2.3.1. Let Gf be the map defined by

Gf(ρ) =

ˆ

[0,1]p
f(x1, ..., xp)ρ(dx1)...ρ(dxp) = Φf (ρ, 0[ p ]).

A classical way to characterize the law of a Fleming-Viot process is to study a martingale
problem, see for example [4] or Proposition 12 of [15]. The following theorem claims that a
generalized Fleming-Viot process with immigration solves a well-posed martingale problem.
Let f be a continuous function f on [0, 1]p. According to (1), the operator L is such that

LGf(ρ) =
∑

π∈P0
p

qπ

ˆ

[0,1]p
[f(xαπ(1), ..., xαπ(p))− f(x1, ..., xp)]δ0(dx0)ρ(dx1)...ρ(dxp).

13



Theorem 6 The law of the process (Zt, t ≥ 0) is characterized by the following martingale
problem. For every integer p ≥ 1 and every continuous function f on [0, 1]p, the process

Gf (Zt)−
´ t

0
LGf(Zs)ds

is a martingale in (F̂t, t ≥ 0).

Remark 3.2 When µ is supported on the simple distinguished partitions, we recover the well-
posed martingale problem of Section 5, Lemma 12 of [15]. We then identify the processes
obtained from stochastic flows of bridges in [4] and [15] and from stochastic flows of partitions.

Proof. Using (1), and applying Theorem 4.4.2 in [12], we get that there is at most one solution
to the martingale problem. The Dynkin’s formula implies that the process in the statement is
a martingale. �
The following theorem extends Proposition 1.3 of [6].

Theorem 7 The infinitesimal generator L of (Zt, t ≥ 0) verifies the following properties:

(i) For every integer p ≥ 1 and every continuous function f on [0, 1]p, we have

LGf = Lc0Gf + Lc1Gf + LνGf

where

Lc0Gf(ρ) := c0
∑

1≤i≤p

ˆ

[0,1]p
[f(x0,i)− f(x)]ρ⊗p(dx)

Lc1Gf(ρ) := c1
∑

1≤i<j≤p

ˆ

[0,1]p
[f(xi,j)− f(x)]ρ⊗p(dx)

LνGf(ρ) :=

ˆ

Pm

{E[Gf(s̄ρ+ s0δ0 +
∑

i≥1

siδUi
)]−Gf(ρ)}ν(ds)

where x denotes the vector (x1, ..., xp) and

– the vector x
0,i is defined by x

0,i
k = xk, for all k 6= i and x

0,i
i = 0,

– the vector x
i,j is defined by x

i,j
k = xk, for all k 6= j and x

i,j
j = xi,

– the sequence (Ui, i ≥ 1) is i.i.d with law ρ and s̄ is the dust of s meaning that
s̄ := 1−

∑

i≥0 si.

(ii) Let D stand for the domain of L. The vector space generated by functionals of the type
Gf forms a core of (L,D).

Proof. (i) We have
LGf(ρ) = L∗

pΦf (ρ, .)(0[ p ]).

Therefore,

LGf(ρ) =
∑

π∈P0
p

qπ[Φf (ρ, π)− Φf (ρ, 0[ p ])]

14



with qπ = µ(P0
∞,π). The decomposition of µ with the triplet (c0, c1, ν) implies that

∑

π∈P0
p

qπ[Φf (ρ, π)− Φf(ρ, 0[ p ])] =c0
∑

1≤i≤p

[f(x0,i)− f(x)]ρ⊗p(dx) + c1
∑

1≤i<j≤p

[f(xi,j)− f(x)]ρ⊗p(dx)

+
∑

π∈P0
p

ˆ

Pm

ρs(P
0
∞,π)ν(ds)[Φf (ρ, π)− Φf (ρ, 0[ p ])].

It remains to establish the following equality

LνGf(ρ) =
∑

π∈P0
p

ˆ

Pm

ρs(P
0
∞,π)ν(ds)[Φf (ρ, π)− Φf (ρ, 0[ p ])].

Let s ∈ Pm, as already mentioned, we denote by s̄ its dust. Let (Ui, i ≥ 1) be i.i.d random
variables with distribution ρ. Denoting by Π an independent s-distinguished paint-box, the
variables (UαΠ(j), j ≥ 1) are exchangeable with a de Finetti measure which has the same law as

s̄ρ+
∑

i≥1

siδUi
+ s0δ0.

Thus, we get

E[Gf(s̄ρ+
∑

i≥1

siδUi
+ s0δ0)] = E[f(UαΠ(1), ..., UαΠ(p))].

Moreover,

E[f(UαΠ(1), ..., UαΠ(p))]−E[f(U1, ..., Up)] =
∑

π∈P0
p

P[Π| [ p ] = π]
(

E[f(Uαπ(1), ..., Uαπ(p))]− E[f(U1, ..., Up)]
)

.

By definition, P[Π| [ p ] = π] = ρs(P0
∞,π) and we get by integrating on Pm:

∑

π∈P0
p

ˆ

Pm

ρs(P
0
∞,π)ν(ds)

(

E[f(Uαπ(1), ..., Uαπ(p))]− E[f(U1, ..., Up)]
)

=

ˆ

Pm

E[f(UαΠ(1), ..., UαΠ(p))− f(U1, ..., Up)]ν(ds)

=

ˆ

Pm

E[Gf(s̄ρ+
∑

i≥1

siδUi
+ s0δ0)−Gf(ρ)]ν(ds).

Therefore, the statement of i) is obtained.

(ii) The previous calculation yields that the map ρ → LGf(ρ) is a linear combination of
functionals of the type Φf (ρ, π). Besides, for all π ∈ P0

p , the map ρ 7→ Φf (ρ, π) can be written
as Gg(ρ) with g the continuous function on [0, 1]#π−1 defined by

g(x1, ..., x#π−1) = f(xαπ(1), ..., xαπ(p)) with x0 = 0.

Therefore, denoting by D the vector space generated by the functionals of type Gf , the space D
is invariant under the action of the generator L. Considering the maps of the form f(x1, ..., xp) =
g(x1)...g(xp), we get that D contains the linear combinations of functionals ρ → 〈g, ρ〉p. By the
Stone-Weierstrass theorem, these functionals are dense in the space of continuous functions on
M1. Thanks to the Feller property of (Zt, t ≥ 0) and according to Proposition 19.9 of [16], the
space D is a core. Thus, the explicit expression of L restricted to D, given in the statement,
determines the infinitesimal generator L of (Zt, t ≥ 0). �
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4 Extinction of the initial types

Let (Zt, t ≥ 0) be a GFVI characterized in law by the triplet (c0, c1, ν). The extinction of
the initial types corresponds to the absorption of (Zt, t ≥ 0) in δ0. It means for the forward
partition-valued process (Π̂(t), t ≥ 0) to be absorbed at the trivial partition ({Z+}, ∅, ...). We
are interested in this section to determine under which conditions on (c0, c1, ν) the extinction
occurs almost surely. We are only able to give a sufficient condition. However this condition
is also necessary when the measure ν satisfies an additional assumption of regularity (as in
Limic’s article [20]).

4.1 Extinction criterion

Define the following subspace of Pm

Pf
m := {s ∈ Pm;

∑n
i=0 si = 1 for some finite n}.

As in Section 5.5 of Schweinsberg’s article [25], we consider the following cases:

• Suppose ν(Pf
m) = ∞ then by a basic property of Poisson random measure, we know that

Tf := inf{t > 0; (t, π) is an atom of N̂ such that #π < ∞} = 0 almost surely. We deduce
that immediately after 0, there is only a finite number of types and then the extinction
occurs almost surely in a finite time.

• Suppose 0 < ν(Pf
m) < ∞ then Tf is exponential with parameter ν(Pf

m). At time Tf , only
a finite number of types reproduces. We deduce that the types extinction depends only
on the measure ν̃ := ν1s∈Pm\Pf

m
. The superposition property of Poisson random measures

allows us to reduce the problem to the case when ν(Pf
m) = 0.

Suppose henceforth that ν(Pf
m) = 0. We define

ζ(q) := c1q
2/2 +

ˆ

Pm

(

∞
∑

i=1

(e−qsi − 1 + qsi)

)

ν(ds).

Theorem 8 If the following conditions are fulfilled:

i) c0 + ν(s ∈ Pm, s0 > 0) > 0

ii)
´∞

a
dq
ζ(q)

< ∞ for some a > 0 (and then automatically for all a > 0)

then the generalized Fleming-Viot process with immigration (Zt, t ≥ 0) is absorbed in δ0 almost
surely.

Moreover, under the condition of regularity (R):

ˆ

Pm

(

∞
∑

i=0

si)
2ν(ds) < ∞,

the conditions i) and ii) are necessary.
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Following the terminology of Limic in [20], the assumption (R) is called the regular case.

Remark 4.1 Some weaker assumption than (R) may be found under which the conditions i)
and ii) are still necessary (see Schweinsberg’s article [25] for the case of Ξ-coalescents). For
sake of simplicity, we will not focus on that question in this article.

Theorem 8 extends Theorem 7 in [15]. Namely, the M-generalized Fleming-Viot processes
always verify (R). Moreover assume that (R) holds and that the immigration and the repro-
duction never happen simultaneously. Therefore, the measure ν can be decomposed in the
following way:

ν = ν1{s∈Pm;s=(s0,0,...)} + ν1{s∈Pm;s0=0}.

Let us define

• ν0 := ν1{s∈Pm;s=(s0,0,...)} which is viewed as a measure on [0, 1], encoding immigration rate,

such that
´ 1

0
s0ν0(ds0) < ∞.

• ν1 := ν1{s∈Pm;s0=0} such that
´

Pm

(
∑

i≥1 s
2
i

)

ν1(ds) < ∞

The map ζ does not depend on ν0. We deduce that, in this setting, the immigration has no
impact on the extinction occurrence. However, we stress that the measure ν may be carried on
{s ∈ Pm; s0 > 0, s1 > 0}.

Remark 4.1 If the measure ν is carried on the set ∆ := {(s0, s1) ∈ [0, 1]2; s0+s1 < 1} then the
regularity assumption (R):

´

∆
(s0 + s1)

2ν(ds) < ∞ is still satisfied. Indeed for all (s0, s1) ∈ ∆,
(s0 + s1)

2 ≤ 3s0 + s21. In this setting, Theorem 8 gives a necessary and sufficient condition for
extinction.

By duality, the extinction occurs if and only if there is an immigration and the embedded
distinguished coalescent (Π(t), t ≥ 0) comes down from infinity, meaning that its number of
blocks becomes instantaneously finite. We shall investigate this last question in the following
subsection.

4.2 Proof of Theorem 8: coming down from infinity for a distin-

guished coalescent

Let (Π(t), t ≥ 0) be a distinguished coalescent with triplet (c0, c1, ν).

Definition 3 We say that a distinguished coalescent comes down from infinity if

P(#Π(t) < ∞ for all t > 0) = 1.

In the same manner as Schweinsberg’s article [25] Section 5.5, we will get a sufficient condition
which will be necessary in a so-called regular case (in the same sense as in Limic’s article [20]).
The arguments used in [15] to study the coming down for an M-coalescent may be adapted in
this more general framework.

Lemma 9 Consider the process (#Π(t), t ≥ 0) of the number of blocks in a distinguished
exchangeable coalescent. Provided that ν(Pf

m) = 0, there are two possibilities for the evolution
of the number of blocks in Π: either P(#Π(t) = ∞ for all t ≥ 0) = 1 or P(#Π(t) < ∞ for all
t > 0) = 1.
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Proof. This is an easy adaptation of Lemma 31 in [25]. �

Let π ∈ P0
n, with #(π0 \ {0}) = k0, #π1 = k1, ...,#πr = kr where r ≥ 0, k0 ≥ 0 and ki ≥ 2 for

all i ∈ [r] and
∑r

i=0 ki ≤ n. We will denote by λn,k0,...,kr the jump rate qπ. The decomposition
of the coagulation measure µ provides an explicit formula for λn,k0,...,kr , however its expression
is rather involved and we will not use it here. We stress that by exchangeability the quantity
λn,k0,...,kr does not depend on the order of the integers k1, ..., kr. From a partition with n blocks,
k0-tuple, k1-tuple,...,kr-tuple merge simultaneously with rate λn,k0,...,kr . The k0-tuple represents
the blocks coagulating with the distinguished one.

Define N(n, k0, ..., kr) to be the number of different simultaneous choices of a k0-tuple, a k1-
tuple,.., and a kr-tuple from a set of n elements with k0 ≥ 0, ki ≥ 2 for i ∈ [r]. The exact
expression may be found but is not important in the rest of the current analysis. Denoting by
Π∗(t) = (Π1(t), ..., ), we determine the generator G[n] of (#Π∗

|[n](t), t ≥ 0). Let f be any map

from [n] to R,

G[n]f(l) =

⌊l/2⌋
∑

r=0

∑

k0,{k1,...kr};∑r
i=0 ki≤l

N(l, k0, ..., kr)λl,k0,...,kr [f(l − (k0 + ...+ kr) + r)− f(l)]

As already mentioned, for each fixed k0, we do not have a separate term for each possible
ordering of k1, ..., kr. That is why the inner sum is over k0 ≥ 0 and the multiset {k1, ..., kr}
such that

∑r
i=0 ki ≤ l.

We define the map Φ such that Φ(n) is the total rate of decrease in the number of blocks
in (Π∗(t), t ≥ 0) when the current configuration has n blocks. We get

Φ(n) =

⌊n/2⌋
∑

r=0

∑

k0,{k1,...kr};∑r
i=0 ki≤n

N(n, k0, ..., kr)λn,k0,...,kr [k0 + ... + kr − r].

Lemma 10 i) A more tractable expression for Φ is given by the following

Φ(q) = c0q +
c1
2
q(q − 1) +

ˆ

Pm

(qs0 +

∞
∑

i=1

(qsi − 1 + (1− si)
q)ν(ds).

ii) Define

Ψ(q) := c0q + c1q
2/2 +

ˆ

Pm

(

qs0 +

∞
∑

i=1

(e−qsi − 1 + qsi)

)

ν(ds).

There exist C and C ′ two nonnegative constants such that CΨ(q) ≤ Φ(q) ≤ C ′Ψ(q).

iii) The map q 7→ Ψ(q)/q is therefore concave.

Proof. Proof of i): We have N(q, 1) = C1
q = q and N(q, 0, 2) = C2

q . Using the binomial formula,
the first two terms are plain. We focus now on the integral term. Let s ∈ Pm and π be a

18



s-distinguished paint-box (see Definition [15]). To compute the total rate of decrease in the
number of blocks from a configuration with q ≥ 1 blocks, let us consider

Y
(q)
l (π) := #{k ∈ [q];απ(k) = l}.

Conditionally given |πl|, the variable Y
(q)
l (π) is binomial with parameters (|πl|, q) (degenerated

in the case of |πl| = 0) and we have

Φ(q) = c0q +
c1
2
q(q − 1) +

ˆ

Pm

(

E[Y
(q)
0 (π)] +

∞
∑

l=1

E[Y
(q)
l (π)− 1

{Y
(q)
l

(π)>0}
]

)

ν(ds)

= c0q +
c1
2
q(q − 1) +

ˆ

Pm

(

qs0 +

∞
∑

l=1

[qsl − 1 + (1− sl)
q]

)

ν(ds).

Note that these computations are exactly the same as those pages 224-225 in [20] using the
”coloring procedure”.
Proof of ii) Same calculations as in Lemma 8 in Limic’s article [20].
Proof of iii) We remark that Ψ is the Laplace exponent of a spectrally positive Lévy process.
Therefore the map h : q → Ψ(q)/q is the Laplace exponent of a subordinator which is concave.
�

The following theorem may be compared with Schweinsberg’s criterion in [24] and Theorem 7
in [15].

Theorem 11 The convergence of the series
∑

n≥1
1

Φ(n)
implies the coming down from infinity

of the distinguished coalescent.

Under the condition of regularity (R):

ˆ

Pm

(
∞
∑

i=0

si)
2ν(ds) < ∞,

the convergence of the series is necessary.

We shall follow the proof of Theorem 7 in [15] and study some (super)martingales.

Lemma 12 Let (Π(t), t ≥ 0) be a distinguished coalescent with triplet (c0, c1, ν). Assume that
ν(Pf

m) = 0. Let us define the fixation time

ζ := inf{t ≥ 0 : Π(t) = {Z+, ∅, ...}}.

The expectation of fixation time is bounded by

E[ζ ] ≤
∞
∑

n=1

1/Φ(n).

As a consequence, if the series in the right-hand side converges, the fixation time is finite with
probability one.
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Proof. Assuming the convergence of the sum
∑∞

n=1 1/Φ(n), we define

f(l) =

∞
∑

k=l+1

1/Φ(k).

It is easy to check directly from i) in Lemma 10 that the map Φ is increasing (see alternatively
Lemma 28 in [25]), we thus have

f(l − (k0 + ...+ kr) + r)− f(l) =
l
∑

k=l−(k0+...+kr)+r+1

1

Φ(k)
≥

k0 + ...+ kr − r

Φ(l)
.

Therefore

G[n]f(l) ≥

⌊l/2⌋
∑

r=0

∑

k0,{k1,...,kr}∑r
i=0 ki≤l

λl,k0,...,krN(l, k0, ..., kr)
k0 + ...+ kr − r

Φ(l)
= 1.

The process f(#Π∗
| [n ](t))−

´ t

0
G[n]f(#Π∗

| [n ](s))ds is a martingale. The quantity

ζn := inf{t ≥ 0 : #Π∗
| [n ](t) = 0}

is a finite stopping time. Let k ≥ 1, applying the optional sampling theorem to the bounded
stopping time ζn ∧ k, we get :

E[f(#Π∗
| [n ](ζn ∧ k))]− E[

ˆ ζn∧k

0

G[n]f(#Π∗
| [n ](s))ds] = f(n)

With the inequality G[n]f(l) ≥ 1, we deduce that

E[ζn ∧ k] ≤ E[f(#Π∗
| [n ](ζn ∧ k))]− f(n).

By monotone convergence and Lebesgue’s theorem, we have E[ζn] ≤ f(0) − f(n). Passing to
the limit in n, we have ζn ↑ ζ∞ := inf{t; #Π(t) = 1} and f(n) −→ 0, thus

E[ζ∞] ≤ f(0) =
∞
∑

k=1

1/Φ(k).

�

The necessary part of the proof follows exactly the steps as in Section 6 of [15]. Assuming
that (R) holds, that the coalescent comes down from infinity and that the series is infinite, we
may define a supermartingale (thanks to Lemmas 13, 14 and 15 below) and find a contradiction
by applying the optional sampling theorem (Lemma 16). The proofs of these lemmas are easy
adaptations of those in Section 6 of [15]. We simply give their statements and the corresponding
references in [15].

The following technical lemma allows to estimate the probability for the sum of n indepen-
dent binomial variables to be larger than n/2.
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Lemma 13 Let s ∈ Pm. Let π be an s-distinguished paint-box and the variables Y
(n)
l (π) defined

as in Lemma 10. For every n0 ≥ 4, provided that
∑∞

i=0 si is sufficiently small, there is the bound

P[∃n ≥ n0;
n
∑

l=0

Y
(n)
l (π) >

n

2
] ≤

exp (−n0f(s))

1− exp (−f(s))

with

f(s) =
1

2
log(

1
∑

i≥0 si
)−

∞
∑

l=0

log

(

sl
∑

i≥0 si
+ 1− sl

)

.

Proof. Easy adaptation of the arguments of Lemma 14 in [15].�

Lemma 14 Assume that the coalescent comes down from infinity. With probability one, we
have

τ := inf{t > 0,#Π(t) <
#Π(t−)

2
} > 0.

Moreover, if we define τn := inf{t > 0,#Π| [n ](t) <
#Π| [n ](t−)

2
}, then the sequence of stopping

times τn converges to τ almost surely.

Proof. Using the assumption (R) and the above Lemma 13, we get E[N ({(t, π); t ≤ 1; ∃n ≥

n0,
∑n

l=0 Y
(n)
l (π) > n

2
})] < ∞.. The same arguments as in Lemma 15 of [15] yield the statement.

�

Lemma 15 Assuming (R), the coming down from infinity and that
∑

n≥1
1

Φ(n)
= ∞. There

exists a constant C > 0 such that for all n ≥ 1, (e−Ctf(#Π∗
|[n](t)))t≤τn is a non-negative

supermartingale.

Proof. Easy adaptation of the arguments of Lemma 16 in [15].�

Lemma 16 Under (R), if
∑

n≥1
1

Φ(n)
= ∞ then Π does not come down from infinity.

Proof. Assume that the coalescent comes down from infinity. Exactly as in Lemma 17 in [15],
we may apply the optional sampling theorem to the previous supermartingale and find a con-
tradiction. �

Thanks to part (ii) of Lemma 10, to establish Theorem 8, it suffices to show that

ˆ ∞

a

dq

Ψ(q)
< ∞ =⇒

ˆ ∞

a

dq

ζ(q)
< ∞.

Plainly, the quantity q
ζ(q)

is bounded. Therefore for some constants c and C,

Ψ(q) = ζ(q)(1 + c
q

ζ(q)
) ≤ Cζ(q).

The necessary part of Theorem 8 is then established.
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