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Motivated by multiplication algorithms based on redundant number representations, we study representations of an integer n as a sum n = k ε k U k , where the digits ε k are taken from a finite alphabet Σ and (U k ) k is a linear recurrent sequence of Pisot type with U 0 = 1. The most prominent example of a base sequence (U k ) k is the sequence of Fibonacci numbers. We prove that the representations of minimal weight k |ε k | are recognised by a finite automaton and obtain an asymptotic formula for the average number of representations of minimal weight. Furthermore, we relate the maximal order of magnitude of the number of representations of a given integer to the joint spectral radius of a certain set of matrices.

Introduction

Forming large multiples of elements of a given group plays an important role in public key cryptosystems based on the Diffie-Hellman scheme (cf. for instance [CFA + 06], especially [START_REF] Doche | Exponentiation[END_REF]). In practice, the underlying groups are often chosen to be the multiplicative group of a finite field F q or the group law of an elliptic curve (elliptic curve cryptosystems).

For P an element of a given group (written additively), we need to form nP for large n ∈ N in a short amount of time. One way to do this is the binary method (cf. [START_REF] Zur Gathen | Modern computer algebra[END_REF]), which is simply an applications of Horner's scheme to the binary expansion of n. This method uses the operations of "doubling" and "adding P ". If we write n in its binary representation, the number of doublings is fixed by ⌊log 2 n⌋ and each one in this representation corresponds to an addition. Thus the cost of the multiplication depends on the length of the binary representation of n and the number of ones in this representation.

In the case of the point group of an elliptic curve, addition and subtraction are given by very similar expressions and are therefore equally costly. Thus it makes sense to work with signed binary representations, i.e., binary representations with digits {0, ±1}. The advantage of these representations is their redundancy: in general, n has many different signed binary representations. Then the number of non-zero digits in a signed binary representation of n is called the Hamming weight of this representation. Since each nonzero digit causes a group addition (1 causes addition of P , -1 causes subtraction of P ), one is interested in finding a representation of n having minimal Hamming weight. Such a minimal representation was exhibited by Reitwiesner [START_REF] Reitwiesner | Binary arithmetic[END_REF]. The number of binary representations of minimal weight has been analysed in [START_REF] Grabner | On the number of optimal base 2 representations of integers[END_REF].

In the present paper we propose to use Fibonacci-multiples instead of powers of 2. The advantage of this choice is to avoid successive duplication (most of the time), which uses a different formula in the case of the group law of an elliptic curve. A further advantage of these representations is the smaller average weight compared to the binary representation (cf. [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF]). More generally, we study representations with linear recurrent base sequences of Pisot type. We calculate the number of representations of minimal weight with respect to these numeration systems and obtain an asymptotic formula for the average number of representations in the range [-N, N].

A main tool of our study will be automata, which recognise the various representations. As a general reference for automata in the context of number representation we refer to [START_REF]Numeration systems[END_REF][START_REF] Frougny | Number representations and finite automata[END_REF]. The books [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF][START_REF] Sakarovitch | Elements of automata theory[END_REF] provide the basic notions of symbolic dynamics and automata theory.

2. U-expansions and β-expansions of minimal weight 2.1. Setting. Let U = (U k ) k≥0 be a strictly increasing sequence of integers with U 0 = 1, and z = z k z k-1 • • • z 0 a finite word on an alphabet Σ ⊆ Z. We say that z is a U-expansion of the number k j=0 z j U j . The greedy U-expansions of positive integers n, which are defined by n = k j=0 z j U j with ℓ j=0 z j U j < U ℓ+1 for ℓ = 0, 1, . . . , k, z k = 0, are well studied, in particular for the case when U is the Fibonacci sequence F = (F k ) k≥0 with F 0 = 1, F 1 = 1, F k = F k-1 + F k-2 for k ≥ 2, see e.g. [START_REF]Numeration systems[END_REF]. The sum-of-digits function of greedy U-expansions with U satisfying suitable linear recurrences has been studied by [START_REF] Pethő | On digit expansions with respect to linear recurrences[END_REF] and in several subsequent papers.

In the present paper we are interested in words with the smallest weight among all U-expansions of the same number. Here the weight of z is the absolute sum of digits z = k j=0 |z j |. This weight is equal to the Hamming weight when z ⊆ {-1, 0, 1} * , where Σ * denotes the set of finite words with letters in the alphabet Σ.

We define the relation ∼ U on words in Z * by z ∼ U y when z and y are U-expansions of the same number, i.e.,

z k z k-1 • • • z 0 ∼ U y ℓ y ℓ-1 • • • y 0 if and only if k j=0 z j U j = ℓ j=0 y j U j .
Then the set of U-expansions of minimal weight is

L U = {z ∈ Z * : z ≤ y for all y ∈ Z * with z ∼ U y}.
Of course, leading zeros do not change the value and weight of a U-expansion. In particular, every element of 0 * z is in

L U if z ∈ L U .
Throughout the paper, we assume that there exists a Pisot number β, i.e., an algebraic integer β > 1 with |β i | < 1 for every Galois conjugate β i = β, such that U satisfies (eventually) a linear recurrence with characteristic polynomial equal to the minimal polynomial of β. Then there exists some constant c > 0 such that (2.1)

U k = c β k + O(|β 2 | k ),
where β 2 is the second largest conjugate of β in modulus.

2.2. Regularity of L U . For three particular sequences U (the Fibonacci sequence, the Tribonacci sequence and a sequence related to the smallest Pisot number), the set L U ∩ {-1, 0, 1} * is given explicitely in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF] by means of a finite automaton, see Figure 1 for the Fibonacci sequence. Recall that an automaton A = (Q, Σ, E, I, T ) is a directed graph, where Q is the set of vertices, traditionally called states, I ⊆ Q is the set of initial states, T ⊆ Q is the set of terminal states and E ⊆ Q × Σ × Q is the set of edges (or transitions) which are labelled by elements of Σ. If (p, a, q) ∈ E, then we write p a → q. A word in Σ * is accepted by A if it is the label of a path starting in an initial state and ending in a terminal state. The set of words which are accepted by A is said to be recognised by A. A regular language is a set of words which is recognised by a finite automaton. The main result of this subsection is the following theorem. Theorem 2.1. Let U = (U k ) k≥0 be a strictly increasing sequence of integers with U 0 = 1, satisfying eventually a linear recurrence with characteristic polynomial equal to the minimal polynomial of a Pisot number. Then the set of U-expansions of minimal weight is recognised by a finite automaton.

First note that the structure of L U is similar to the structure of the β-expansions of minimal weight. Here,

z = z k z k-1 • • • z 0 ∈ Z * is a β-expansion of the number k j=0 z j β j . Similarly to ∼ U , we define the relation ∼ β on Z * by (2.2) z k z k-1 • • • z 0 ∼ β y ℓ y ℓ-1 • • • y m if k j=0 z j β j = ℓ j=m y j β j .
A difference with ∼ U is that m can be chosen freely in Z; we have z ∼ β y if (2.2) holds for some m ∈ Z. The set of β-expansions of minimal weight is

L β = {z ∈ Z * : z ≤ y for all y ∈ Z * with z ∼ β y}.
(These definitions are equivalent to the ones in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF].) Now, leading and trailing zeros do not change the minimal weight property, i.e., 0 * L β 0 * = L β . Theorem 3.11 in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF] states that one can construct a finite automaton recognising L β . The proof of the corresponding result for L U is slightly more complicated. We start with the following proposition, which resembles Proposition 3.5 in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF].

Proposition 2.2. Let U be as in Theorem 2.1. Then there exists a positive integer B such that

(2.3) ∀ k ≥ 0, ∃ b (k) ∈ Z * : B 0 k ∼ U b (k) , b (k) < B.
Proof. Let U be a strictly increasing sequence of integers with U 0 = 1, β a Pisot number of degree d, and h ≥ 0 an integer such that, for all k ≥ h + d, U k is given by the linear recurrence with respect to the minimal polynomial of β. By [FS08, Proposition 3.5], we know that for sufficiently large B there exists some

b = b ℓ • • • b m ∈ Z * such that B = ℓ j=m b j β j and b < B. Then we have B 0 k ∼ U b ℓ • • • b m 0 k+m for all k ≥ h -m. For 0 ≤ k < h -m,
the weight of the greedy U-expansion of the integer B U k grows with O(log B). Therefore, there exists some positive integer B satisfying (2.3).

Proposition 2.3. Let U be as in Theorem 2.1. If B is a positive integer satisfying (2.3), then L U ⊆ {1 -B, . . . , B -1} * . If B is a positive integer satisfying (2.4) ∀ k ≥ 0, ∃ b (k) ∈ Z * : B 0 k ∼ U b (k) , b (k) ≤ B,
then there exists for every n ∈ Z some z ∈ L U ∩ {1 -B, . . . , B -1} * with z ∼ U n.

Proof. This can be proved similarly to Proposition 3.1 in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF].

For U = F , (2.4) holds with B = 2 since 2 ∼ F 10, 20 ∼ F 4 ∼ F 101 and 2 0 k ∼ F 1001 0 k-2 for k ≥ 2. Therefore, we are mainly interested in the language L F ∩ {-1, 0, 1} * , which is recognised by the automaton in Figure 1 [FS08, Theorem 4.7]. The minimal positive integer satisfying (2.3) is B = 3. Here, we have 3 ∼ F 100, 30 ∼ F 6 ∼ F 1001 and 3 0 k ∼ F 10001 0 k-2 for k ≥ 2, whereas 20 is clearly a F -expansion of minimal weight.

Next we show the following generalisation of a well known result for β-expansions [Fro92, Corollary 3.4]. For a subclass of sequences U, this result can be found in [START_REF] Frougny | Linear numeration systems, θ-developments and finite automata[END_REF][START_REF] Frougny | Representation of numbers and finite automata[END_REF].

Proposition 2.4. Let U be as in Theorem 2.1. Then, for every finite alphabet Σ ⊂ Z,

Z U,Σ = {z ∈ Σ * : z ∼ U 0}
is recognised by a finite automaton.

Proof. Let U be as in the proof of Proposition 2.2. Let β = β 1 , β 2 , . . . , β d be the conjugates of β. Then there exist constants

c i ∈ Q(β i ) such that (2.5) U h+k = d i=1 c i β k i for all k ≥ 0.
For any word

z k • • • z 0 ∈ Σ * we can write (2.6) k-h j=0 z h+j β j = d-1 j=0 m j β j with m d-1 • • • m 0 ∈ Z d .
We have

z k • • • z 0 ∼ U m d-1 • • • m 0 z h-1 • • • z 0 (with z j = 0 for k ≤ j < h), thus (2.7) z k • • • z 0 ∼ U 0 if and only if d-1 j=0 m j U h+j + h-1 j=0 z j U j = 0.
By (2.6), we obtain

(2.8)

d-1 j=0 m j β j i ≤ max a∈Σ |a| 1 -|β i | for i = 1, 2, . . . , d -1.
By (2.7), (2.5) and (2.8), we obtain that

| d-1 j=0 m j β j | is bounded as well if z k • • • z 0 ∼ U 0.
There are only finitely many words m d-1 • • • m 0 ∈ Z d such that all conjugates of d-1 j=0 m j β j are bounded. Therefore, there are only finitely many possibilities for

m d-1 • • • m 0 ∈ Z d , z h-1 • • • z 0 ∈ Σ * such that m d-1 • • • m 0 z h-1 • • • z 0 ∼ U 0. Set T U (z h-1 • • • z 0 ) = d-1 j=0 m j β h+j + h-1 j=0 z j β j m d-1 • • • m 0 z h-1 • • • z 0 ∼ U 0 and M = max z ′ ∈Σ h T U (z ′ ).
Let A U,Σ be the automaton with initial state (0, 0 h ) and transitions (s,

z h-1 • • • z 0 ) a → (βs -a, z h-2 • • • z 0 a), a ∈ Σ, such that |βs -a| < M + max b∈Σ |b|/(β -1). A state (s, z ′ ) ∈ Z[β] × Σ h is
terminal if and only if s ∈ T U (z ′ ). Then A U,Σ is finite and recognises Z U,Σ . Now, we can prove Theorem 2.1. As in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF], we make use of letter-to-letter transducers, which are automata with transitions labelled by pairs of digits. If (z k , y k ) • • • (z 0 , y 0 ) is the sequence of labels of a path from an initial to a terminal state, we say that the transducer accepts the pair of words (z, y), with z = z k • • • z 0 being the input and y = y k • • • y 0 being the output of the transducer.

Proof of Theorem 2.1. By Propositions 2.2 and 2.3, there exists a positive integer B such that

L U ⊆ Σ * with Σ = {1 -B, . . . , B -1}.
In the proof of Theorem 3.10 in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF], it was shown that there exists a finite letter-toletter transducer T with the following property: For every word z ∈ (ΣL β ∩ L β Σ) \ L β , i.e., z ∈ Σ * \ L β and every proper factor of z is in L β , there exist integers ℓ, m and a word y ∈ Σ * such that (0 ℓ z 0 m , y) is the label of a path in T leading from (0, 0) to (0, δ), with δ < 0. The transitions are of the form (s, δ)

(a,b) -→ (βs + b -a, δ + |b| -|a|), a, b ∈ Σ.
This means that y ∼ β z and y < z . Since T is finite, we can choose m ≤ K for some constant K. By the assumptions on U, we obtain that z

0 k ∼ U y 0 k-m for all k ≥ h + K, thus z 0 k ∈ L U . Note that z 0 k ∈ L U implies that z ′ z z ′′ ∈ L U for all z ′ ∈ Σ * , z ′′ ∈ Σ k . Now, since Σ * \ L β is

recognised by a finite automaton, we also have an automaton recognising the set of words

z = z k • • • z 0 ∈ Σ * \ L U with z k • • • z h+K ∈ L β . It remains to consider the words z = z k • • • z 0 ∈ Σ * \ L U with z k • • • z h+K ∈ L β (if k ≥ h + K). Let y = y ℓ • • • y 0 ∼ U z with y ∈ L U ,
and assume w.l.o.g. ℓ ≥ k. All these pairs of words (0 ℓ-k z, y) are accepted by a letter-to-letter transducer T ′ with (0, 0 h , 0 h , 0) as initial state, transitions

(s, z h-1 • • • z 0 , y h-1 • • • y 0 , δ) (a,b) -→ (βs + b -a, z h-2 • • • z 0 a, y h-2 • • • y 0 b, δ + |b| -|a|),
a, b ∈ Σ, and terminal states (s, z ′ , y ′ , δ) such that s ∈ T U (y ′ )-T U (z ′ ), δ < 0. We show that T ′ is a finite transducer. As in the proof of Proposition 2.4, we obtain states (s, z ′ , y ′ , δ) with s in a finite subset of Z[β], more precisely |s| < 2M + 2(B -1)/(β -1) and the conjugate of s corresponding to

β i is bounded by 2(B -1)/(1 -|β i |) for 2 ≤ i ≤ d.
Clearly, there are only finitely many possibilities for z ′ , y ′ ∈ Σ h . By the previous paragraph,

y ∈ L U implies y ℓ • • • y h+K ∈ L β . As in the proof of Theorem 3.10 in [FS08], for m ≥ h + K, a large difference δ = y k • • • y m -z k • • • z m contradicts the assumption that z k • • • z m ∈ L β and y k • • • y m ∈ L β . Since h + K and Σ are finite, the difference between z k • • • z m and y k • • • y m is bounded for 0 ≤ m < h + K as well, thus T ′ is finite.
If we modify T ′ by adding those states to the set of initial states which can be reached from (0, 0 h , 0 h , 0) by a path with input consisting only of zeros, then the input automaton of the modified transducer recognises a subset of Σ * \L U containing all words

z k • • • z 0 ∈ Σ * \L U with z k • • • z h+K ∈ L β . Therefore, Σ * \ L U is
regular as the union of two regular languages, and the complement L U is regular as well.

2.3.

Properties of the automata. The trim minimal automaton recognising a set H is the deterministic automaton with minimal number of states recognising H, where deterministic means that there is a unique initial state and from every state there is at most one transition labelled by a for every a ∈ Σ. Let M U,Σ and M β,Σ be the trim minimal automata recognising L U ∩Σ * and L β ∩Σ * respectively; let A U,Σ and A β,Σ be the respective adjacency matrices. We will see that the automata M U,Σ and M β,Σ are closely related. We show first that the matrix A β,Σ is primitive, using the following lemma.

Lemma 2.5. Let T be a finite letter-to-letter transducer with transitions of the form

(s, δ) (a,b) -→ (βs + b -a, δ + |b| -|a|), β = 0, a, b ∈ Z.
Then the number of consecutive zeros in the input of a path in T not running through a state of the form (0, δ) is bounded.

Proof. Let (0 k , y) be the label of a path starting from (s, δ) with s = 0. Then the path leads to a state (s ′ , δ + y ), thus y is bounded by the finiteness of T . If y starts with 0 j , then the path leads to (β j s, δ), thus the finiteness of T implies that j is bounded. If the path avoids states (s, δ) with s = 0, then the boundedness of y and the boundedness of consecutive zeros in y imply that k, which is the length of y, is bounded.

Proposition 2.6. Let β be a Pisot number and 0 ∈ Σ ⊆ Z. Then A β,Σ is primitive.

Proof. We show that, from every state in M β,Σ , the path labelled by 0 k leads to the initial state if k is sufficiently large.

First note that z ∈ L β implies z 0 k ∈ L β for all k ≥ 0, thus there always exists a path labelled by 0 k . Suppose that this path does not lead to the initial state from some state. Then there exist words z, z ′ ∈ L β ∩ Σ * with z 0 k z ′ ∈ L β . We can assume w.l.o.g.

z 0 k z ′ ∈ (ΣL β ∩ L β Σ) \ L β .
As in the proof of Theorem 2.1, there exist integers ℓ, m and a word y ∈ Σ * such that (0 ℓ z 0 m , y) is the label of a path in T leading from (0, 0) to (0, δ), with δ < 0. If this path ran through a state (0, δ) while reading the input 0 k between z and z ′ , then the corresponding prefix of y would be a word y ′ ∼ β z and the corresponding suffix of y would be a word y ′′ ∼ β z ′ . Since y ′ + y ′′ = y < z + z ′ , we had y ′ < z or y ′′ < z ′ , contradicting that z, z ′ ∈ L β . Therefore, Lemma 2.5 yields that k is bounded. Hence, for sufficiently large k, 0 k is a synchronizing word of M β,Σ leading to the initial state. Since M β,Σ was assumed to be a trim minimal automaton, this implies that M β,Σ is strongly connected, thus A β,Σ is irreducible. Now, the primitivity of A β,Σ follows from the fact that there is a loop labelled by 0 in the initial state.

Proposition 2.7. Let U be as in Theorem 2.1 and 0 ∈ Σ ⊆ Z. Then the automaton M U,Σ has a unique strongly connected component. Up to the set of terminal states, this component is equal to M β,Σ .

Proof. We first show that every word z ∈ L β is the label of a path starting in the initial state of M U,Σ . Suppose that z 0 k ∈ L U for some large k ≥ 0, then there exists an integer ℓ and a word y ∈ Σ * such that (0 ℓ z 0 k , y) is accepted by the finite transducer T ′ in the proof of Theorem 2.1. As in Lemma 2.5, we obtain that the path must run through a state (0, z ′ , y ′ , δ) while reading 0 k , which implies that y ∼ β z. Moreover, we have δ < 0, thus y < z , contradicting that z ∈ L β . This shows that the directed graph M U,Σ contains the directed graph M β,Σ . Now, consider an arbitary word z ∈ L U such that the corresponding path ends in a strongly connected component of M U,Σ . This means that we have z z ′ ∈ L U for arbitarily long words z ′ . Since z z ′ ∈ L U implies z 0 k ∈ L U , where k is the length of z ′ , we obtain that z ∈ L β . Therefore, the strongly connected components of M U,Σ are contained in M β,Σ . Since M β,Σ has a unique strongly connected component by Proposition 2.6, the same holds for M U,Σ .

In Section 3, we also use that the difference between the length of the longest U-expansion of minimal weight (without leading zeros) and e.g. the greedy U-expansion is bounded.

Lemma 2.8. Let U be as in Theorem 2.1 and Σ a finite subset of Z.

Let z = z k • • • z 0 ∈ Σ * with z k = 0, y = y ℓ • • • y 0 ∈ L U with y ℓ = 0. There exists a constant m ≥ 0 such that z ∼ U y implies ℓ ≤ k + m.
Proof. For ℓ < k, the assertion is trivially true. If ℓ ≥ k, then (0 ℓ-k z, y) is accepted by a transducer similar to T ′ in the proof of Theorem 2.1, with states (s, z ′ , y ′ , δ) such that s is in a finite set. Now δ can be unbounded. However, y ∈ L U implies that the path labelled by (0 ℓ-k , y ℓ • • • y k+1 ) starting from (0, 0 h , 0 h , 0) runs through states (s, z ′ , y ′ , δ) with bounded δ, cf. the proof of Theorem 3.10 in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF]. As in Lemma 2.5, we obtain that ℓk is bounded.

Average number of representations

In this section we study the function f (n) counting the number of different U-expansions of minimal weight (without leading zeros) of the integer n in Σ * , with {0, 1} ⊆ Σ ⊆ Z. As in Theorem 2.1, U = (U k ) k≥0 is assumed to be a strictly increasing sequence of integers with U 0 = 1, satisfying eventually a linear recurrence with characteristic polynomial equal to the minimal polynomial of a Pisot number β. We will give precise asymptotic information about the average number of representations 1 2N -1 |n|<N f (n). As a general reference for the study of the asymptotic behaviour of digital functions we refer to [START_REF] Drmota | Analysis of digital functions and applications[END_REF]. In order to exhibit the fluctuating main term of this sum we introduce a measure µ on min Σ β-1 , max Σ β-1 . The construction of this measure is similar to the distribution measures of infinite Bernoulli convolutions as studied in [START_REF] Erdős | On a family of symmetric Bernoulli convolutions[END_REF]. There it encodes the number of representations of integers as sums of Fibonacci numbers.

As in Section 2, let M U,Σ be the trim minimal automaton recognising L U ∩ Σ * . Denote by A U,a the adjacency matrix of all transitions in M U,Σ labelled by the digit a. The total adjacency matrix of the automaton is then A U,Σ = a∈Σ A U,a . Let M β,Σ , A β,a , A β,Σ be the corresponding objects for β-expansions.

Let f k (n) denote the number of words z ∈ L U ∩ Σ k with z ∼ U n, i.e., the number of U-expansions of minimal weight of length k of an integer n. If |n| < U k , then the length of the greedy U-expansion of |n| is at most k. Then, by Lemma 2.8, there exists a constant m ≥ 0 such that every U-expansions of minimal weight without leading zeros is of length at most k + m. By adding leading zeros, we obtain that

f j (n) = f (n) for all j ≥ k + m.
We define a sequence of measures by (3.1)

µ k = 1 M k n∈Z f k (n) δ n U k
, where δ x denotes the unit point mass concentrated in x and

M k = n∈Z f k (n) = #(L U ∩ Σ k ).
We notice that all points n U k with f k (n) > 0 lie in the interval

k-1 j=0 U j U k [min Σ, max Σ].
As a first step of reduction we replace the measure µ k by the measure ν k given by

ν k = 1 M k z∈L U ∩Σ k δ g(z) with g(z k-1 • • • z 0 ) = k-1 j=0 z j β j-k .
By (2.1), we have

k-1 j=0 z j U j U k -g(z k-1 • • • z 0 ) = O(β -k ), thus (3.2) | µ k (t) -ν k (t)| = O(|t| β -k ).
From this it follows that (µ k ) k and (ν k ) k tend to the same limiting measure µ.

In order to compute the characteristic function of ν k we consider the weighted adjacency matrix of M U,Σ ,

A U,Σ (t) = z∈Σ e(zt) A U,z ,
where we use the notation e(t) = e 2πit . Then we have

ν k (t) = 1 M k z∈L U ∩Σ k e g(z)t = 1 M k v 1 A U,Σ e(tβ -1 ) A U,Σ e(tβ -2 ) • • • A U,Σ e(tβ -k ) v 2 ,
where v 1 is the indicator (row) vector of the initial state of M U,Σ and v 2 is the indicator (column) vector of the terminal states of M U,Σ .

Lemma 3.1. The adjacency matrix A U,Σ = A U,Σ (0) of the automaton M U,Σ has a unique dominating eigenvalue α, which is positive and of multiplicity 1.

Proof. By Proposition 2.7, every non-zero eigenvalue of A U,Σ is an eigenvalue of A β,Σ , with the same multiplicity. Therefore, the lemma follows from Proposition 2.6 and the Perron-Frobenius theorem.

By Lemma 3.1, there exists a positive constant C such that

(3.3) M k = v 1 A k U,Σ v 2 = Cα k + O (|α 2 | + ε) k
for every ε > 0, where α and α 2 are the largest and second largest roots of the characteristic polynomial of A U,Σ .

Lemma 3.2. Let A be a n × n-matrix with complex entries. There exists a matrix norm

• satisfying A = ρ(A) (the spectral radius) if and only if for all eigenvalues λ of A with |λ| = ρ(A) the algebraic and geometric multiplicity are equal.

Proof. Assume that for all λ with |λ| = ρ(A) the algebraic and geometric multiplicities are equal. Then there exists a non-singular matrix S, such that

SAS -1 =            λ 1 0 0 0 0 . . . 0 0 λ 2 0 0 0 . . . 0 0 0 . . . 0 . . . . . . . . . 0 0 . . . λ r 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . B 0 0 . . . 0            , with |λ 1 | = • • • = |λ r | = ρ(A) and ρ(B) < ρ(A).
Then by [HJ85, Lemma 5.6.10 and Theorem 5.6.26] there is a norm • n-r on C n-r such that the induced norm on matrices satisfies B < ρ(A). Define the norm on C n by x = pr 1 Sx r + pr 2 Sx n-r , where pr 1 denotes the projection to the first r coordinates and pr 2 the projection to the nr last coordinates; • r is just the ℓ 1 -norm on C r . Then we have

Ax x = ρ(A) pr 1 Sx r + Bpr 2 Sx n-r pr 1 Sx r + pr 2 Sx n-r ≤ ρ(A)
and therefore A = ρ(A) by the fact that A ≥ ρ(A) for all norms. Here we have used pr 2 SAS -1 = Bpr 2 . If on the other hand A is not diagonalisable for some λ with |λ| = ρ(A), then there exist two vectors e 1 and e 2 such that Ae 1 = λe 1 + e 2 and Ae 2 = λe 2 .

Then we have

A k e 1 = λ k e 1 + kλ k-1 e 2 . Let • be any norm on C n . Then

λ -k A k e 1 = e 1 + kλ -1 e 2 ≥ k|λ| -1 e 1 -e 2
shows that λ -k A k e 1 is unbounded, whereas A = ρ(A) would imply that this sequence is bounded by e 1 . Thus there is no induced matrix norm with A = ρ(A). Since by [HJ85, Theorem 5.6.26] for every norm there is an induced norm, which is smaller, there cannot exist a matrix norm with A = ρ(A).

By Lemma 3.2 there exists a norm on C # states of M U,Σ such that the induced norm on matrices satisfies A U,Σ (0) = ρ(A U,Σ (0)) = α. From now on we use this norm. By differentiability of the entries of A U,Σ (t) and the fact that the norm • is comparable to the ℓ 1 -norm, there exists a positive constant C such that A U,Σ (t) -A U,Σ (0) ≤ C|t|.

We will prove that (ν k ) k (and therefore (µ k ) k ) weakly tends to a limit measure by showing that ( ν k (t)) k tends to a limit ν(t) = µ(t).

Lemma 3.3. The sequence of measures (µ k ) k defined by (3.1) converges weakly to a probability measure µ. The characteristic functions satisfy the inequality

(3.4) µ k (t) -µ(t) = O |t| β -ηk for |t| ≤ 1, O |t| η β -ηk for |t| ≥ 1, with (3.5) η = log α -log(|α 2 | + ε) log β + log α -log(|α 2 | + ε)
for any ε > 0. The constants implied by the O-symbol depend only on ε.

Proof. We study the product

P k (t) = α -k k j=1 A(tβ -j ), with A = A U,Σ . For |t| ≤ 1 we estimate P k (t) -P k (0) = α -k k j=1 A(0) + A(tβ -j ) -A(0) -A(0) k ≤ α -k k ℓ=1 A(0) k-ℓ 1≤j 1 <j 2 <•••<j ℓ ≤k A(tβ -j 1 ) -A(0) • A(tβ -j 2 ) -A(0) • • • A(tβ -j ℓ ) -A(0) ≤ k ℓ=1 α -ℓ 1≤j 1 <j 2 <•••<j ℓ ≤k C ℓ |t| ℓ β -(j 1 +•••+j ℓ ) ≤ k ℓ=1 1 ℓ! α -ℓ C ℓ |t| ℓ k j=1 β -j ℓ ≤ exp C|t| α(β -1) -1 = O(|t|).
Furthermore, we have for j > k > ℓ and 1

≤ |t| ≤ β ℓ P k (t) -P j (t) = P k-ℓ (tβ -ℓ )P ℓ (t) -P j-ℓ (tβ -ℓ )P ℓ (t) ≤ P ℓ (t) P k-ℓ (tβ -ℓ ) -P k-ℓ (0) + P j-ℓ (tβ -ℓ ) -P j-ℓ (0) + P k-ℓ (0) -P j-ℓ (0) = O |t|β -ℓ + O |α 2 | + ε α k-ℓ = O |t| η β -ηk .
Here we have used the fact that P ℓ (t) is uniformly bounded for all ℓ ∈ N and all t ∈ R, since all entries of P ℓ (t) are bounded by the entries of α -ℓ A(0) ℓ and the entries of this matrix converge. In the last step we have set ℓ = ⌈(1η) log β |t| + ηk⌉. The inequality is valid for j > k > log β |t|.

We now assume that |t| ≤ 1 and j > k > ℓ. Then we have

ν k (t) -ν j (t) = α k M k v 1 P k (t)v 2 - α j M j v 1 P j (t)v 2 = α k M k v 1 P k-ℓ (tβ -ℓ )P ℓ (t)v 2 - α j M j v 1 P j-ℓ (tβ -ℓ )P ℓ (t)v 2 ≤ α k M k v 1 P k-ℓ (0)P ℓ (t)v 2 - α j M j v 1 P j-ℓ (0)P ℓ (t)v 2 + O |t|β -ℓ = α k M k v 1 P k-ℓ (0) P ℓ (t) -P ℓ (0) v 2 - α j M j v 1 P j-ℓ (0) P ℓ (t) -P ℓ (0) v 2 + O |t|β -ℓ = |t| O β -ℓ + |α 2 | + ε α k-ℓ
, where we have used

α k M k v 1 P k (0)v 2 = 1 in the fourth line. Setting ℓ = ⌊ηk⌋ gives ν k (t) -ν j (t) = O |t|β -ηk .
Thus ν k (t) converges uniformly on compact subsets of R to a continuous limit µ(t), and the measures ν k tend to a measure µ weakly. From this together with (3.2) the two inequalities (3.4) are immediate.

Lemma 3.4. There exists a positive real number γ < α such that

max x∈Z[β] # z k-1 • • • z 0 ∈ L β ∩ Σ k : k-1 j=0 z j β j = x = O(γ k ).
Proof. Similarly to (3.3), we have

#(L β ∩ Σ k ) = v ′ 1 A k β,Σ v ′ 2 = O(α k ),
where v ′ 1 is the indicator (row) vector of the initial state of M β,Σ and v ′ 2 = (1, . . . , 1) T is the indicator (column) vector of the terminal states of M β,Σ . We show that there exists some ℓ ≥ 1 and a matrix à with à < A ℓ β,Σ (entrywise) such that

(3.6) # z k-1 • • • z 0 ∈ L β ∩ Σ k : k-1 j=0 z j β j = x ≤ v ′ 1 Ã⌊k/ℓ⌋ A k-⌊k/ℓ⌋ℓ β,Σ v ′ 2 for all x ∈ Z[β], k ≥ 0.
Each entry in A ℓ β,Σ counts the number of paths of length ℓ in M β,Σ between two states q and q ′ . By the proof of Proposition 2.6, there exists k 1 ≥ 0 such that the path labelled by 0 k 1 leads from every state to the initial state. Let k 2 ≥ 0 be such that 1 0 k 2 leads from the initial state to itself, k 3 be the maximal distance of a state from the initial state, and ℓ = k 1 + k 2 + k 3 + 1. Then, for any two states q, q ′ , there exists a z ′ ∈ Σ k 3 such that paths labelled by 0 k 1 1 0 k 2 z ′ and by 0 k 1 +1+k 2 z ′ (of length ℓ) run from q to q ′ . It is well known that the words (z k-1 • • • z 0 , y k-1 • • • y 0 ) with k-1 j=0 z j β j = k-1 j=0 y j β j are recognised by a finite automaton with transitions of the form s → βs+b-a, see e.g. [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF]. For sufficiently large k 1 and k 2 , there is no path labelled by (0 k 1 1 0 k 2 , 0 k 1 +1+k 2 ) in this automaton. Therefore, for any fixed x ∈ Z[β], any word z k-1 • • • z j , ℓ ≤ j ≤ k, leading to the state q in M β,Σ cannot be prolonged by all labels of paths of length ℓ between q and q ′ when we want to obtain a word

z k-1 • • • z 0 ∈ L β ∩ Σ k with k-1 j=0 z j β j =
x. This means that, for sufficiently large ℓ, (3.6) holds with à taken as the matrix with every entry being one smaller than that of A ℓ β,Σ . Let α be the dominant eigenvalue of Ã, then α < α ℓ and the lemma holds with γ = α1/ℓ . Corollary 3.5. The counting function f satisfies f (n) = O(|n| log β γ ) for some γ < α. Proposition 3.6. Let γ be as in Lemma 3.4. Then the measure µ satisfies

(3.7) µ [x, y] = O (y -x) θ with (3.8) θ = log α -log γ log β .
Proof. Let x < y, and ℓ = ⌊log β (yx)⌋. Recall that

(3.9) µ [x, y] = lim k→∞ 1 M k z∈L U ∩Σ k : g(z)∈[x,y] δ g(z) . Let z = z k-1 • • • z 0 ∈ L U ∩Σ k . By Proposition 2.7, we have z k-1 • • • z k-ℓ ∈ L β for sufficiently large k. If g(z) ∈ [x, y], then ℓ-1 j=0 z j+k-ℓ β j ∈ β ℓ [x, y] - min Σ β -1 , max Σ β -1 .
Since yx ≤ β -ℓ , this implies that ℓ-1 j=0 z j+k-ℓ β j lies in an interval of bounded size. For all conjugates β i = β, we have

ℓ-1 j=0 z j+k-ℓ β j i ≤ max a∈Σ |a|/(1-|β i |), thus ℓ-1 j=0 z j+k-ℓ β j can take only a bounded number of values in Z[β]. (The bound does not depend on the choice of [x, y].) Then z k-ℓ-1 • • • z 0 ∈ L U ∩ Σ k-ℓ and Lemma 3.4 yield that µ [x, y] = O γ ℓ lim k→∞ M k-ℓ M k = O γ α ℓ .
Combining this with ℓ =log β (yx) + O(1) gives (3.7).

We use Proposition 3.6 and the following lemma to establish purity of the measure µ.

Lemma 3.7 ([JW35, Theorem 35], [Ell79, Lemma 1.22 (ii)]). Let Q = ∞ k=0 Q k be an infinite product of discrete spaces equipped with a measure κ, which satisfies Kolmogorov's 0-1-law (i.e., every tail event has either measure 0 or 1). Furthermore, let X k be a sequence of random variables defined on the spaces Q k , such that the series X = ∞ k=0 X k converges κ-almost everywhere. Then the distribution of X is either purely discrete, or purely singular continuous, or absolutely continuous with respect to Lebesgue measure.

Proposition 3.8. The measure µ is pure, i.e., it is either absolutely continuous or purely singular continuous.

Proof. We equip the shift space

K = (z k ) k≥0 : z k z k-1 • • • z 0 ∈ L β ∩ Σ * for all k ≥ 0 associated to the automaton M β,Σ with the measure κ [z 0 , z 1 , . . . , z ℓ-1 ] = lim k→∞ 1 M k # y k-1 • • • y 0 ∈ L β : y ℓ-1 • • • y 0 = z ℓ-1 • • • z 0 = lim k→∞ 1 v ′ 1 A k β,Σ v ′ 2 v ′ 1 A k-ℓ β,Σ A β,z ℓ-1 • • • A β,z 0 v 2 given on the cylinder set [z 0 , z 1 , . . . , z ℓ-1 ] = (y k ) k≥0 ∈ K : y ℓ-1 • • • y 0 = z ℓ-1 • • • z 0 .
Then κ can be written in terms of the transition matrices

κ [z 0 , z 1 , . . . , z ℓ-1 ] = 1 vv ′ 2 α -ℓ vA β,z ℓ-1 • • • A β,z 0 v ′ 2 ,
where v is the left Perron-Frobenius eigenvector of the matrix A β,Σ . Let w denote the right Perron-Frobenius eigenvalue of the matrix A β,Σ with vw = 1. Then by positivity of all entries of w and v ′ 2 the measure κ given by κ

[z 0 , z 1 , . . . , z ℓ-1 ] = α -ℓ vA β,z ℓ-1 • • • A β,z 0 w is equivalent to κ.
The measure κ is strongly mixing and therefore ergodic with respect to the shift. Thus κ and κ satisfy the hypotheses of Lemma 3.7.

The continuity of µ is an immediate consequence of Proposition 3.6.

In order to give an error bound for the rate of convergence of the measures µ k to the measure µ, we will use the following version of the Berry-Esseen inequality, which was proved in [START_REF] Grabner | Functional iterations and stopping times for Brownian motion on the Sierpiński gasket[END_REF].

Proposition 3.9. Let µ 1 and µ 2 be two probability measures with their Fourier transforms defined by

µ k (t) = ∞ -∞ e 2πitx dµ k (x), k = 1, 2.
Suppose that µ 1 (t)µ 2 (t) t -1 is integrable on a neighbourhood of zero and µ 2 satisfies µ (x, y) ≤ c |x -y| θ for some 0 < θ < 1. Then the following inequality holds for all real x and all T > 0: Proof. We apply Proposition 3.9 to the measures µ k and µ. For this purpose we use the inequalities (3.4) to obtain

µ 1 (-∞, x) -µ 2 (-∞, x) ≤ T -T Ĵ (T -1 t) (2πit) -1 µ 1 (t) -µ 2 (t) e -2πixt dt + c + 1 π 2 T -2θ 2+θ + 1 2T T -T 1 - |t| T µ 1 (t) -µ 2 (t) e -2πixt
µ k (-∞, x) -µ (-∞, x) = O β -ηk 1 -1 dt + O β -ηk 1≤|t|≤T |t| η-1 dt + O T -2θ 2+θ + O β -ηk 1 T 1 -1 |t| dt + O β -ηk 1 T 1≤|t|≤T |t| η dt = O β -ζn by choosing T = β ζ 2+θ 2θ k .
Now the statement of the asymptotic behaviour of the average 1 2N -1 |n|<N f (n) is a consequence of the preceding discussion of the properties of µ. Combining Lemma 3.3, Proposition 3.6, and Lemma 3.10 we obtain the following theorem.

Theorem 3.11. The summatory function of the number of representations of n with minimal weight satisfies

(3.11) |n|<N f (n) = N log β α Φ(log β N) + O(N λ ),
where Φ denotes a continuous periodic function of period 1 and

λ = log α log β - 2θη η(θ + 2) + 2θ
, η given by (3.5), and θ given by (3.8).

Proof. Using the definition of µ k in (3.1) and the value m given by Lemma 2.8 we have

|n|<N f (n) = M k µ k (-N/U k , N/U k ) ,
where we choose k = ⌊log β N⌋ + m. Replacing µ k by µ, using

U k = Cβ k + O(|β 2 | k ), M k = Dα k + O((|α 2 | + ε) k
) and taking all error terms into account yields

|n|<N f (n) = D α ⌊log β N ⌋+m µ -β log β N -⌊log β N ⌋-m /C, β log β N -⌊log β N ⌋-m /C + O α k β -ζk + O α k |β 2 | β θk + O (|α 2 | + ε) k ,
with ζ as in Lemma 3.10. Defining

Φ(t) = D α m+⌊t⌋-t µ -β t-⌊t⌋-m /C, β t-⌊t⌋-m /C
for t ≥ 0 yields (3.11). The periodicity of Φ follows from the definition. The continuity of Φ in non-integer points follows from the continuity of µ. The fact that Φ(0) = lim t→1-Φ(t) is a consequence of the self-similarity of the measure µ

µ(β -1 A) = α -1 µ(A) for A ⊂ [-β -m , β -m ];
this follows from (3.9) by the observation that multiplication by β -1 corresponds to adding a prefix 0 in the representation and reading a leading zero does not change the state of the automaton.

Exact number of representations

To obtain the exact number of U-expansions of minimal weight representing an integer n, we choose one of these expansions and look at the transducer which transforms any other expansion into it. One way of choosing a output language of such a transducer is to take the set of greedy U-expansions (for positive numbers) and their symmetric counterparts (to represent negative numbers). A possible deficiency of this language is that it is not contained in L U . In the following, we describe a regular language G U ⊆ L U such that, for every n ∈ Z, there is, up to leading zeros, a unique word z ∈ G U with z ∼ U n.

We call a word

z = z k • • • z 0 ∈ L U greedy U-expansion of minimal weight if 0 min(ℓ-k,0) |z k | • • • |z 0 | ≥ 0 min(k-ℓ,0) |y ℓ | • • • |y 0 | for all y = y ℓ • • • y 0 ∈ L U with z ∼ U y,
with respect to the lexicographical order. The set of all greedy U-expansions of minimal is denoted by G U .

Lemma 4.1. Let U be as in Theorem 2.1. For any n ∈ Z, there is, up to leading zeros, a unique word z ∈ G U with z ∼ U n.

Proof. Let n ∈ Z. First note that by Lemma 2.8 there are, up to leading zeros, only finitely many words z ∈ G U with z ∼ U n. Therefore there exists a greedy U-expansion of minimal weight

z = z k • • • z 0 with z ∼ U n. Let y = y ℓ • • • y 0 be another word in G U with y ∼ U n. Then we have 0 min(ℓ-k,0) |z k | • • • |z 0 | = 0 min(k-ℓ,0) |y ℓ | • • • |y 0 |.
Neglecting leading zeros, we can assume w.l.o.g. that k = ℓ. We have

y k +z k 2 • • • y 0 +z 0 2 ∈ Z * because y j +z j 2
= z j in case y j = z j , y j +z j 2 = 0 in case y j = -z j ; and

y k +z k 2 • • • y 0 +z 0 2 ∼ U n.
If we had y j = z j for some j, then

y k +z k 2 • • • y 0 +z 0 2
would have smaller weight than z, contradicting z ∈ L U . Therefore, z and y differ only by leading zeros.

Theorem 4.2. Let U be as in Theorem 2.1. Then G U is recognised by a finite automaton.

Proof. It suffices to show that L U \ G U is a regular language. Since the complement of a regular language is regular, see e.g. [FS08, Lemma 3.9], this implies that G U is regular.

Let 

z = z k • • • z 0 ∈ L U \ G U . Then there exists a y = y ℓ • • • y 0 ∈ L U with y ∼ U z and 0 min(ℓ-k,0) |z k | • • • |z 0 | < 0 min(k-ℓ,0) |y ℓ | • • • |y 0 |. Since L U is a regular language, the product {(z k • • • z 0 , y k • • • y 0 ) | z k • • • z 0 , y k • • • y 0 ∈ L U , k ≥ 0} is
(z k • • • z 0 , y k • • • y 0 ) ∈ L U × L U such that z k • • • z 0 ∼ U y k • • • y 0 and |z k | • • • |z 0 | < |y k | • • • |y 0 |.
Let H be the projection of this set to the first coordinate, then H is regular. Moreover, L U \ G U is the set of words which are obtained from words in H by removing or appending initial zeros. This language is regular as well. By the remarks at the beginning of the proof, this proves the lemma.
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Proposition 4.3. Let U be as in Theorem 2.1. Then there exists a finite letter-to-letter transducer recognising the pairs

(z k • • • z 0 , y k • • • y 0 ) ∈ L U × G U with z k • • • z 0 ∼ U y k • • • y 0 .
Proof. Similarly to the proof of Theorem 4.2, this follows from the regularity of L U and G U , and from Proposition 2.4.

Note that in Proposition 4.3 the input and output must have the same length. In particular, the input must be as least as long as the corresponding word in G U without leading zeros. By Lemma 2.8, the difference between any two words in L U without leading zeros with the same value as U-expansions is bounded. Therefore, there exists a transducer with initial function which computes, for every word in L U without leading zeros, the corresponding word in G U without leading zeros, see [START_REF] Frougny | Representation of numbers and finite automata[END_REF].

We have the following corollary of Proposition 4.3, where N U,Σ denotes the trim minimal letter-to-letter transducer of Proposition 4.3.

Corollary 4.4. Let U, Σ, f be as in Section 3, n ∈ Z and y ∈ G U with y ∼ U n. Then f (n) is given by the number of successful paths in N U,Σ with y as output.

It was shown in [START_REF] Frougny | Minimal weight expansions in Pisot bases[END_REF] that the transducer in Figure 2 transforms any F -expansion of minimal weight, after possible addition of a leading zero, into the corresponding Fexpansion of minimal weight avoiding the factors 11, 1 1, 101, 10 1, 1001 and their opposites. Here, we write 1 instead of 1, and opposite means that 1's and 1's are exchanged. This transducer shows that the set of outputs is G F , thus this transducer is equal to N F,{-1,0,1} . Now we can relate the growth of f (n) to the joint spectral radius of the set {R U,a : a ∈ Σ}, where R U,a denotes the adjacency matrix of the transitions with output a in N U,Σ . The joint spectral radius is defined by ρ {R U,a : a ∈ Σ} = lim

k→∞ max R U,z k-1 • • • R U,z 0 1/k | z k-1 • • • z 0 ∈ Σ k ,
where • is any matrix norm. The definition of the joint spectral radius is due to [START_REF] Rota | A note on the joint spectral radius[END_REF]; an overview of its properties and its calculation can be found in [START_REF] Jungers | The joint spectral radius[END_REF].

Theorem 4.5. Let U, Σ, f be as in Section 3. For any ε > 0, we have f (n) = O(|n| log β (γ+ε) ), where γ is the joint spectral radius of the set of matrices {R U,a : a ∈ Σ}. For U = F and Σ = {-1, 0, 1}, we have an explicit formula for the maximal number of elements of L F ∩ {-1, 0, 1} k with the same value. Here, R F,y denotes the matrix which is obtained from R F,y by exchanging each column with its symmetric counterpart. Since R F,y w = R F,y0 w for all y ∈ Σ * , we obtain that R F,y w is maximal for y with period 100 100. For y = (100 100) k/6 , where a fractional power (z 1 • • • z 6 ) k/6 denotes as usual the word (z 1 • • • z 6 ) ⌊k/6⌋ z 1 • • • z k-6⌊k/6⌋ , we have vR F,y w = 2 ⌊(k-1)/3⌋ , thus (4.1) holds. By Corollary 4.4, this means that f k (n) = 2 ⌊(k-1)/3⌋ for n ∼ F (100 100) k/6 , and f k (n) ≤ 2 ⌊(k-1)/3⌋ for all n with greedy F -expansion of minimal weight of length at most k. It remains to consider f k (n) for those n whose greedy F -expansion of minimal weight (without leading zeros) is longer than k. The transducer N F,{-1,0,1} shows that any Fexpansion of minimal weight in {-1, 0, 1} * is at most 1 shorter than the corresponding greedy F -expansion of minimal weight. Thus we have to consider n ∼ F y k y k-1 • • • y 0 ∈ G F , where we assume w.l.o.g. y k = 1. For such an n, we have f k (n) = v ′ R F,y k-1 •••y 0 w, where v ′ is the indicator vector of the state which is reached from the initial state by the transition labeled by (1, 0). Now, equations and inequalities such as v ′ R F,00 1001 = vR F,00 1001 and v ′ R F,000 1 ≤ vR F, 1 show that f k (n) ≤ max y∈Σ k vR F,y w = 2 ⌊(k-1)/3⌋ .
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 1 Figure 1. Automaton recognising the set of F -expansions of minimal weight in {-1, 0, 1} * .

  dt , where Ĵ(t) = πt(1 -|t|) cot πt + |t|. Lemma 3.10. The measures µ k satisfy (3.10) µ k (x, y)µ (x, y) = O β -ζk uniformly for all x, y ∈ R with ζ = 2θη η(θ+2)+2θ .

  recognised by a finite automaton. One can construct a finite automaton recognising the lexicographic relation|z k | • • • |z 0 | < |y k | • • • |y 0 |. By Proposition 2.4, the same holds for z k • • • z 0 ∼ U y k • • • y 0 .Therefore, there exists a finite automaton which recognises the set of pairs
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  Figure 2. Transducer N F,{-1,0,1} normalising F -expansions of minimal weight in {-1, 0, 1} * . Here a | b stands for (a, b) in the transition labels.

Proof.

  For any non-zero n ∈ Z, the length of the word y ∈ G U with y ∼ U n and without leading zeros is log β |n| + O(1). By Corollary 4.4, the number of successful paths in N U,Σ with outputy k-1 • • • y 0 is vR U,y k-1 • • • R U,y 0 w for vectors v, w corresponding to the initial and the terminal states of N U,Σ , thus f (n) = O((γ + ε) log β |n| ).

  Theorem 4.6. Let U = F and Σ = {-1, 0, 1}. For every k ≥ 1, we havemax n∈Z f k (n) = 2 ⌊(k-1)/3⌋ .Proof. First we show that (4.1) maxy∈Σ k vR F,y w = 2 ⌊(k-1)/3⌋ , where R F,y k-1 •••y 0 = R F,y k-1 • • • R F,y 0 ,and v, w are as in the proof of Theorem 4.5. From the structure of G F , it is clear that R F,y = 0 if y contains a factor 11, 1 1, 101, 10 1, 1001 or its opposite. We have the following entrywise relations between matrices: R F,10 7 ≤ R F,100 10000 , R F,1000 10 ≤ R F,100 10 , R F,10 k 1 ≤ R F,100 1 for all k ≥ 4, R F,100001 ≤ R F,1000 1, R F,10 k 1 ≤ R F,100 1 for k = 3 and all k ≥ 5.
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