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Abstract

We relate the L,-variation, 2 < p < oo, of a solution of a backward
stochastic differential equation with a path-dependent terminal condition
to a generalized notion of fractional smoothness. This concept of fractional
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ties in time.
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Introduction

During the last years the concept of fractional smoothness in the sense of func-
tion spaces has been used in the theory of stochastic processes to analyze ap-
proximation and variational properties. It turned out that phenomena known
for special examples can be explained in terms of fractional smoothness. For ex-
ample, approximation properties of certain stochastic integrals can be explained
by the fractional smoothness of the integral itself, see [10, [I1]. Similarly, varia-
tional properties of backward stochastic differential equations (BSDEs) can be
upper bounded in case that the fractional smoothness of the terminal condition
is known. To explain the latter aspect consider the BSDE

T T
Yt:u/ f(s,Xs,Ys,Zs)dsf/ Z.dW,
t t

with a Lipschitz generator f, where X = (X;);c[o,7] is a forward diffusion, and
define the L,-variation
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Varp(g,f,T) ‘= Sup sup ”Y; 7}/157:—1H;D+ § / HZt*Zti—aldt
i=1,...nt;_1<s<t; im1 Jtica

where 7 = (¢;)7—, is a deterministic time-net 0 =ty < --- <t, =T,

ti
/ st5|fti_1 5
ti—1

and where 2 < p < oo, which we will assume throughout this paper. Note
that by interchanging the L,- and Le-norms (where we use p > 2) and using
the Burkholder-Davis-Gundy inequality, the L,-distance between the stochastic

integral fOT ZsdW, and its discrete counterpart y ., Z4,_ (W, —W,,_,) is upper

— 1
th',—l . E

Coti—tioa

bounded by a multiple of (Z?:l fttil \Z: — Z4,_, Hf)dt) ®. Hence the quantity

vary (€, f,7) is stronger compared to what is needed to quantify the discretization
of the stochastic integral term of our BSDE. Besides the fact that this variation
gives a strong insight into the quantitative behavior of the BSDE, in particular
vara (€, f,7) was used to describe the error in adapted backward Euler schemes
for € = g(X7) with g being a Lipschitz function; see [5, 23] for implicit schemes
and [I5} [16] for explicit schemes possibly with jump processes. In [I4, Theorems
3.1 and 3.2] upper bounds for

n t;
3 / 12, — 7, |2t
i=1 7 ti-1

were obtained for £ = g(Xr) satisfying

Elg(Xr) — E(g(X1)|F)|* < (T~ 1)’



for some 0 < 0 < 1, where g is not assumed to be a Lipschitz function. On
the other hand, path-dependent settings without taking into account fractional
smoothness were considered, for example, in [19, 20, 25] In this paper, results
are generalized and extended into the following directions:

e We consider a path-dependent setting by terminal conditions of the form

6 = g(XTU"'?X?”L)

with 0 =rg < --- < rp =T, where g is not necessarily a Lipschitz func-
tion and introduce a corresponding path-dependent fractional smoothness
in the Malliavin sense. This concept of smoothness extends the classi-
cal concepts, based on real interpolation, to a time-dependent one taking
care about the propagation of smoothness in time. In the classical case
one would assign to a random variable ¢ some 0 < 6 < 1 which describes
the fractional smoothness of £ while here we assign to the parameters
(&, f) of our BSDE a vector © = (64, ...,0r), where 6, stands for the local
smoothness of the BSDE at time r;. It turns out that this vector is com-
pletely characterized by the L,-variation of Y and Z. In case our terminal
condition depends on X7 only our generalized smoothness coincides with
earlier approaches from, for example, [10] and [14].

o Instead of the Ly-variation we consider the stronger L,-variation with 2 <
p < oo. In addition, the integrated Z-variation -, ftt,l | Z — Zy,_,||3dt
is replaced by the variation || Z; — Z||, with s and ¢ being fixed, and the
L,-variation of the process Y is included as well. To our knowledge the
weaker criterion for 0 < p < 2 in the context of this paper has not been
considered yet and might require different arguments as some of our proofs
rely on the condition that p > 2.

e We provide equivalences showing that the results are sharp.

e In Corollarywe show, given the terminal condition £ = g(X,.,, ..., X}, )
has a certain fractional smoothness, how to obtain time-nets 7" of cardi-
nality Ln + 1 such that

sup v/nvar, (&, f,7") < c0.

These time-nets compensate the possible singularities of the Z-process
when approaching a time-point 7; from the left.

Organization of the paper. After introducing the setting in Section[T] we for-
mulate in Section [1.2]our concept of functional fractional smoothness of a BSDE
and characterize this smoothness in various ways. Here we partly transfer the
results from [I0] and [14] from the case £ = g(Xr) to the path-dependent one.
In Section we present two sufficient conditions for our fractional smooth-
ness. The point of these two conditions (Corollary and Theorem is



that they only involve the terminal condition ¢ and do not use the solution Y
nor the generator f of our BSDE. The proofs of the main results are contained
in Section Bl

Some notation. Given a vector z € R? we denote by |z| its Euclidean norm,
for a linear operator D € L(IR™,IR™) the symbol |D| stands for the Hilbert-
Schmidt norm, where R™ and R™ are equipped with the standard Euclidean
structure. Given D(t,x) € L(R",R™) with (¢,z) € [0,T]x R? and 0 < T < oo,
we use
[Dlloc := sup  [D(t,z)|.
z€R4,t€(0,T)

Finally, B(n1,12) = fol am=1(1 — z)"~dx where 11,72 > 0, will denote the
Beta-function.

1 Setting and basic concepts

1.1 Forward-backward stochastic differential equations

We fix a complete probability space (0, F,P), T > 0, d > 1 and a d-dimensional
standard Brownian motion W' = (W}).c[0,7) with Wy = 0. Furthermore, we
assume that (F3)c(o,7) is the augmentation of the natural filtration of .

The forward equation. Let
t t
X =z +/ b(s,Xs)ds+/ o(s, Xs)dWy
0 0

with zg € RY, where b : [0,7] x R? — R and o : [0,7] x R? — L£(R4,RY)
satisfy the following conditions:

(Ap,») We have b,0 € C’g 2(10,T] x R?), where the derivatives up to order two
are taken with respect to the space-variables and, for some v € (0,1],
are assumed to be y-Holder continuous (w.r.t. the parabolic metric) on
all compact subsets of [0,7] x R?. Moreover, there is a § > 0 such that
(Az,z) > 6|z|* for z € R? and b and o are 3-Holder continuous in time,
uniformly in space.

We work with the usual stochastic flow (X1*) 1cj0,77,zemre that solves for (t,z) €
[0,7] x R? the SDE X, = z on [0,#] and dX'* = o (s, X\¥)dW! + b(s, X1%)ds
on [t, T], where W! := W, — W, and the augmented natural filtration (F}),c, 1
of (W!)sep,r is used (ip. X = X%). With our assumptions we can assume

that (X2%), te(0,7],0€re IS a continuous process in (s, t, z).

If g : R* — R is a polynomially bounded Borel function, 0 < R < T, and

F(t,z) :=Eg(Xy*) for 0<t<R, (1)



then F € C*2([0, R) x RY) and

%F(t,x) + % (A(t,z), D*F(t,2)) + (b(t, z), Vo F(t,2)) = 0

by Proposition [B-I] below where

e (55),
8xi8xj ij=1

The standard tail estimates for the transition density I' are re-called in Propo-
sition They ensure that a@thF, VIE%F and DI'F with |m| < 3 exist and
are continuous on [0, R) x RY. For 0 <t<r < R<T one has that, a.s.,

Vo XET) = B (g(XNG IR
D*F(r,X1) = B (g5 NG| F)

i, (t,x)

for the Malliavin weights N that satisfy, for any given 0 < g < oo, that

1
q a 1, (t,x
Iff.)} <" 45 and E (NR’ (& >|¢;) =0 as.

i

el ) =

fori=1,2and all 0 <t <7 < R < T with a constant x, > 0 independent
from (t,r, R, x) (see [17], [14, Proof of Lemma 1.1] and Remark [B.2] below). A
typical application of these estimates are the crucial inequalities

Xt’w —E Xt,w +
IVaF(r X)), <y JIXED ZBOEDIFl
N

oy lg(X5") —;P%J(g(:(féz)lfﬁ)llp’ (3)

(2)

ID?F(r, X2 %), <

for 1 < p,p’ <oowith 1= (1/p)+ (1/p).

The backward equation. We are interested in the backward equation

T T
Y, =¢ +/ f(s, Xs,Ys, Zs)ds —/ ZsdWs  for t €[0,T] a.s.
t t

and assume the following conditions:

(Ay) The function f : [0,7] x R? x R x R? — R is continuous in (¢,z,y, 2)
and continuously differentiable in x, y and z with uniformly bounded
derivatives. In particular, there are Ky > 0 and Ly > 0 such that

|f(5,$1,y1721)*f(s,-TQ,yQ,ZQ)‘ S Lfol7I2|+|y17y2|+|21722”5
[f(s, 2y, 2)] < Kg+ Le(|=] + |y +|2]).

ot



(Ag) There are R = {rg,...,rp} with 0 =rg <7 < --- < rp =T and a
measurable function of at most polynomial growth g : (R4)* — R such
that

5 = g(XTl 3 ey XT’L)'
In this setting, the solution (Y, Z) to the above BSDE is uniquely defined in any

L,-space for 1 < p < oo; see [6l Theorem 4.2]. Additionally, we assume in the
paper that the solution (Y, Z) is realized such that, on [r;_1,7),

Y =w (X 1;t, X)) and Z; = v (X;_1;t, Xi)o(t, Xy),

where we set X;_1 := (X,,,...,X,,_,). The above functions u; and v; are well

defined due to the next proposition, which is an extension of [24, Theorem 3.2]
and follows from Lemma[A.2] see also [19).

Proposition 1.1. Assume that (Ay), (Ay) and (Ay) are satisfied. Then, for
I = 1,...,L there exist measurable w; : (R x [rj_1,7) x RY — R and
v (RO % [rp1,m) x RY — R4 and Borel sets D; C RV =2, .. L,
such that Dy is of Lebesgue measure zero, and such that

(1) w(Zi—1;-) : [ri—1,m1) x RY — R is continuous and continuously differen-
tiable w.r.t. the space variable with V,u;(T;—1;t,x) = v;(Ti—1;t, x), where
T = (T1,...,2-1),

(ii) there are oy, qi 1, ..., qi1 € [1,00) such that

sup  |w(Ti—1:t, )|+ sup vV — to(Ti-1st, @)
telri—1,m1) telri—1,m1)
§ Oél(l + |$1|ql‘1 + -+ |-75l—1|ql’l_l + ‘x|qz,z)7

(iii) for alll =1,...L, x1,....7; 1,7 € R? and r;_; < s <1y the triplet

(Xt&:i up (El—l; ta thw)a ) (fl—l; t7 thx)o-(tv Xt97x)>
t€(s,r)

solves the BSDE with generator f and terminal condition
w(Tr—1370, X77")
where
_ w1 (Tp—1, 2y, ) xp, (T—1) ¢+ 2<I1<L,
w(Ty—1;m,x) = - -
(@i-1imi, @) { 9(T1—1,2)xp, (T1—1) : 1=1L

and uy(r1,x) := ug(z;71, 2).

In the above proposition we used the convention that h(Zo;-) := h(:). It should
be noted that by Proposition [1.1| we modify at each level [ = 2, ..., L the func-
tional for the Y-process on a nullset. However, because of

P(X,, € Dy, ... (Xp, s Xy, ) €Dp) =1, (4)

sy Arp—1

this does not affect the L,-solution of our BSDE so that Proposition is
sufficient for our purpose.



Piece-wise linearization of the backward equation. Welet F;(Z;_1;-, ") :
[r1-1,7] x R? — R be given by

Fi(xy,...;zi—1;t,x) = Fi(Ti—1; t, z) := By (21, ...,xrlfl;rl,Xﬁf).
The function Fj solves the backward PDE

OF 1
a—tl(@_l; ta) + 5 (A(t,2), D*Fy(T1-1;t,2)) + (b, Vo Fy(T1-15t,2)) = 0

on the interval [r;_q,7;) for fixed x1,...,2;_; € R%

Two facts that are frequently used in the paper. Firstly, for a filtered prob-
ability space (M, %, Q, (Gt)iepr,r)), 1 < g < oo, 7 <t < Rand§ € Ly, one has
that

1€ = E(&]Ge)llq < Sup 1€ = E€1G:)llq < 2(1€ — E(¢]G:)llq (5)

as a consequence that E(-|Fs) is a contraction on L,. Secondly, given the
assumptions on our forward diffusion, a polynomially bounded Borel function
g:RI> R, r<t<R<Tand1<q< oo, we have that

lg(X5) - Elg(XH)IF),

1

< ( Lo 10 = atlrtss e R o R,n)dydﬁdn>q
< 2lg(X37) ~ Blg(XpA) A, . (6)

1.2 Functional fractional smoothness

The usage of fractional smoothness in the investigation of variational properties
of BSDES is the central idea of this paper. Fractional smoothness can be defined
in various ways. One way is the so-called K-method, a method where functions
are decomposed into differentiable parts and parts that are not differentiable.
A quantitative analysis of these decompositions leads to fractional smoothness.

To be more precise, assume two Banach spaces Xy and X7, where (say) X; is
continuously embedded into Xj, 0 < ¢t < co and x € Xy, and recall that the
K-functional is given by

K(x,t; Xo, X1) := inf{||xo||x, + tllz1llx, : 2 =20 + 21}
For 0 < # <1 and 1 < g < oo this leads to the real interpolation spaces

”xH(Xo,Xl)e,q = ||t_9K(.%', t; Xo, X1) HLQ((OaDO)v%)

with

Xl - (X07X1)91,q1 - (X07X1)917Q1 C (X05X1)90,q0 - XO



where 0 < 6y < 01 < 1and 1 < qg,q1,¢; < oo with ¢j < ¢ (see [2,[3]). Applying
this concept to the Malliavin Sobolev space D; ;, we obtain the Malliavin Besov
(or fractional Sobolev) spaces

Bf),q = (vaDl,p)G’,q (7)

where 0 < 6 < 1 is the main parameter of the smoothness and 1 < ¢ < oo the
fine-tuning parameter. In a context close to this paper these spaces and related
ones have been exploited for example in [10, 1T} 14, 2I]. The classical setting
of the Wiener space is changed in [I0, 14] into a setting where the standard
Gaussian measure is replaced by the distribution of the forward diffusion. Here
we go one step ahead and replace 0 < § < 1 by a vector © = (64, ....,0), where
0; describes the smoothness at time 7;:

Definition 1.2. Let © = (01,...,01) € (0,1]X, 2 <p < oc and £ € L,. If YV is
the solution of the BSDE with generator f and terminal condition &, then we
let (&, f) € BS o (X) provided that there is some ¢ > 0 such that

o
T = - 2
Yo, ~ BV )l < (i =)

foralll =1,...,L and r,_1 < s < r;. The infimum over all possible ¢ > 0 is
denoted by

CBZ?OC = CBSw(Svf)'

In the case that f =0 we will simply write { € BY (X).

Specializing to p = 2 and to the linear one-step Gaussian case (X = W, T =
L=1and f=0) it holds (see [II, Corollary 2.3]) that

g(W1) € BYL (W) if and only if g € BY (R, 7a),

where the Wiener space over the standard Gaussian measure 74 on R? is consid-
ered. In particular, for d = 1 and for the orthonormal basis consisting of Hermite
polynomials (k)72 € L2(IR, 1) we obtain that g = ;2 ) awhs € B (R, 71)

if and only if there is some ¢ > 0 such that for all 0 < ¢ < 1 one has that

kthla? < ————
P

see [IT, Theorem 2.2]. These connections explain the notation (p,oc) in Def-
inition [1.2] For a more general connection between the speed of convergence
of the conditional expectations used in Definition [1.2] and the real interpolation
method the reader is referred to [I1]. Our definition of fractional smoothness
by an upper bound of

HYH - E(Yn|f5)”p



has the advantage that and give the upper bounds
, ||Y’"l — IE(Y"Z |’7:S)
P VIt — S

0,1

I < kpcpe (r1—s)"?

IVaFi(Xioais, X, <

and

0;—2
I, < kpcge (11— ) E

, HY?”z — ]E(er |‘7:9)
P

| D*Fy (X -1 S7X5)||p =k r—$

for rj_y < s <mr and 1 = (1/p) + (1/p'), so that we can control the gradient
and the Hessian of F;. For our paper the fine-tuning parameter ¢ = co in (the

generalization of) turns out to be the right one.

Finally, we want to mention the coincidence, that most of the relevant examples
are naturally linked to this fine-tuning parameter ¢ = oo in (]2[)

1.3 Time-nets, splines and entropy numbers

In our BSDE system the Z-process gets possibly singular at any of the particular
time points r; when r; is approached from the left. The degree of this singularity
is determined by the parameter 6; describing the fractional smoothness in ;. To
keep the variation var,(g(X,, ..., X,,), f,7) small, we have to choose time-nets
which refine on the left of r; with an order given by the fractional smoothness
0; while each of the intervals [r;_1, 7] is divided into n sub-intervals.

Definition 1.3. For © € (0,1]F we let 7 = (tZ’@)Zio be given by t5°© := 0
and

1
k—(-1 o
tZ’@ =1+ (rp—1—1) <1 (1()n> l) for (I-1)n<k<lIn.

n

Estimates on the Lj-variation ||Y; — Y;||, are close to estimates how good the
process Y can be approximated in L, by linear adapted splines, i.e. we simply
compute adapted approximations of Y at the time-points ¢, ..., ¢, and interpo-
late them linearly. So the notion adapted spline refers to the fact that the knots
are adapted, however the spline itself is not an adapted process. The adapted
splines are typically used in complexity theory for stochastic processes to find
efficient approximation schemes for stochastic processes where the whole path
needs to be approximated but the adaptedness of the approximation is not fully
needed, see [7]. Here we use the following notation:

Definition 1.4. Given a time-net 7 = (t3)7_, withr =ty <--- <t, =R<T
we say that the process S = (S¢)¢¢[r,r] is an adapted spline based on 7 provided
that Sy, is F,-measurable for all £ =0,...,n and

te —t t—t,

St : th Stk for tk—l S t S tk.

otk —tp1 Nt —te



Finally, we recall the notion of entropy numbers to measure and compare com-
pactness properties of Y = (Ys)se[t,”] as t T r; where the process gets singular.

Definition 1.5. Given a normed space F and A C E we define e,,(A|E) := inf¢,
where the infimum is taken over all € > 0 such that there are x1, ..., x,, € F with

n
AC | J{wi+eBg} with Bp:={reE:|z| <1}.
=1

2 Functional fractional smoothness and BSDEs

2.1 A general equivalence

The basic result of this paper is

Theorem 2.1. Assume that (Ap,), (Af) and (A,) are satisfied. For2 < p < co
and fixed | € {1, ..., L} and 6, € (0, 1] consider the following conditions:

(C1;) There is some ¢1 > 0 such that, for ri—; < s <t <ry,

1
t 2
|zezmpsCl(/<nrﬁl%h)

6;—1

(C2;) There is some ca > 0 with || Z¢||p, < co(rp —t) "2 forr_1 <t <ry.

(C31) There is some c3 > 0 such that, forri—; <s <t <r,

1
t 2
HE—%MS%(/M—MWHO-

(C4;) There is some cq > 0 such that, for ri_; < s <ry,
9,
1V, = B(Yy, | F)llp < calri— )2 .

(C5;) There is some c5 > 0 such that, for ri—; <t <ry,

Ti—1

! 20\ (7 2 : -1
/ [(D*F)(X-1;8, Xs)|“ds <cs(rp—t)"z .
p

(C6;) There is some cg > 0 such that for all n = 1,2,... there is an adapted
spline S™ = (S{')ie[r,_,,r,] based on

(v (1- (1-5) 7))
k=0

Vi sup [[Yy = 57|, < c.

telri—1,m1)

such that

The spline can be arranged such that Sy, | =Y, _, and S =Y,,.

10



(CT7,) There is some ¢y > 0 such that for ri_; <t <r; one has that

Y

L

sSup \/ﬁen((}/;)se[t,rl]|Lp) <er(m—1)7.

n>1

Then one has that

(c1)"€%Y (02) = (3) =
(041) = (051) = (CGZ) — (071) - (Cll).

Remark 2.2. The implication (C1;) = (C2;) does not hold in general. To
see this we consider d=T =L =101=1, f=0,0; =1 and p =2, and let

(oo} oo
g= Z aph, with Z a? < oo
n=0

n=0

where (hp)52y C Lo(RR,~1) is the orthonormal basis of Hermite polynomials.
Then, as in [I1, Lemma 3.9], we get that

2 oo
=) ans(n+2)(n+ 1)t
2 n=0

2
re

and

t oo
||zt—zs\|§:/ S a2y (n+2)(n+ Drtdr.

S n=0

Choosing a,, := (n(n —1))7/2 for n > 2 and ag = a; = 0 gives (C1;) but
SUPg<s<1 [ Zt]l2 = oc.

From Theorem the multi-step case directly follows. For its formulation we
introduce for © = (61, ...,01) € (0,1]% and 0 < ¢ < T the function

0,1
2

L
(1) =D Xiriamy (e = 1)
=1
Theorem 2.3. Assume that (Ap), (Af) and (Ay) are satisfied. For2 < p < oo
and © € (0,1)F consider the following conditions:

(C1) There is some ¢ > 0 such that, for ri—1 < s <t <,

1
t 2 2
Z— Zs|lp < 1 )" 4\
| P
s " —T

(C2) There is some ca > 0 with || Z]|, < ca(t) for 0 <t < T.

11



(C3) There is some cg > 0 such that, for ri—1 < s <t <,

1
t 2
1Y = Vi, < cs ( / so(T)QdT) |

(C4) (& f) € Bpoo(X).

(C6) There is some cg > 0 such that for all n = 1,2, ... there is an adapted
spline S™ = (S{")ie(o,1] based on 7™° such that

Vi sup [|Y; = Spl, < ce.
te[0,T]

Then one has that

(1) °L2D" (09) s (03) = (C1) = (C6) —> (C1).

The remaining properties (C5;) and C7;) could be included as well. By using
the properties (C3) and (C1) we deduce by a simple computation

Corollary 2.4. For0< 0, <6, <1,l=1,...,L and (§, f) € Bgoo(X) one has
that

sup v/n var, (€, f, 79" < c0.
n

Examples will be considered in Example 2.9 and Theorem [2.10] The proof of
Theorem [2.1] is postponed to Section [3.1

2.2 Sufficient conditions for fractional smoothness

In this section we describe sufficient conditions on ¢ for the condition (¢, f) €
Bpem (X) which are independent from the generator f. Note that in the case L =
1 it follows by definition that (£,0) € BS . (X) implies that (¢, f) € By . (X).
To our knowledge it is open whether it still holds for L > 1.

2.2.1 The first sufficient condition

The first sufficient condition is based on the concept to measure the fractional
smoothness of a random variable on the Wiener space by mixing the underlying
Gaussian structure with an independent copy and to look how sensitive the
given random variable is with respect to this operation (see, for example, [18]).
In our setting this would correspond to comparing, for example, g(X;) with
g(X7) where X7 is defined via a Brownian motion W,! := /1 — n*W; + nB;
with B being a Brownian motion independent from W and 0 < 7n < 1. Because
we have a time-dependent structure we extend this concept by allowing more
general operations with W and its independent copy B.

12



Let us consider two independent d-dimensional Brownian motions W and B on
the same complete probability space (92, F,P) starting in zero, and let us denote
by (F)iep,r) (vesp. (FP)iepo,r and (ft‘/v’B)te[07T]) the PP-augmentation of
the natural filtrations of W (resp. B and (W, B)). For a measurable function
1 :[0,T] — [~1,1] we define the standard d-dimensional Z"-Z-Brownian motion

Wy = /0 t V1 =1(s)2dW, + /0 tn(s)st

and denote by (F/)icjo,r] the augmentation of its natural filtration. We also
define X" to be the strong (F;")¢c[o,r)-measurable solution of

t t
X =z +/ b(s, X1ds —|—/ o(s, X1)dW.
0 0

For a given F7-measurable terminal condition £7 € L, with 2 < p < oo we let
(Y, Z") be the Ly-solution in the filtration (F}')¢cfo,m of

T T
Yt”zf’“r/ f(s,XQ,Ys”,ZZ)ds—/ Z1dw.
t t

In the case n = 0 we simply write W = W0, ¢ = &9 (XY, Z) = (X°,Y°, Z9),
and F; = FP. Our aim is to bound the distance between (X7, Y7, Z") and
(X,Y, Z) by the following stability result:

Theorem 2.5. Assume that (Ay ») and (Ay) are satisfied. Then for2 < p < co

and £,£" € L, we have that
T
+ / |Z] — Zi|dt
0

< c[llf" —&llp + [+ €Nl /OT n(t)th]

1/2

sup | X} — Xi
0<t<T

sup |V} — Yy
0<t<T

+
p p

where ¢ > 0 depends at most on (p,T,b,0, Ky, L¢) and is non-decreasing with
respect to K¢ and Ly.

The proof can be found in Section[3.2] The motivation for the result is Corollary
below. To formulate it, given 0 <t < r < T we let

nt,r(s) = X(t,r] (5)7

i.e. we replace the Brownian paths on (¢,7] by an independent copy.

13



Corollary 2.6. Assume2 < p < 00, (Avs), (Af) and & = g(Xry, ..., Xy, ) € Ly
for some Borel measurable function g : RY — R. Let

€= g(Xr, L Xr)

for0<t<r<T andlet® = (0y,...,0r) € (0,1]-. If there is a constant ¢ > 0
such that one has that

]
[ e (8)
Joralll =1,....L and ri_y <t <y, then (&, f) € By . (X).

Proof. For rj_1 <t < r; we get by @ that

n,"‘
Ve, =B Pl < 1Y =Y Iy

A

T
—C@EH&£MM+H+MM]1;mAWW

< e [elrn— 0% + [+ EhIVAT].
O

Using a truncation argument, we obtain a modified version of Theorem [2:3]
without assuming that g is polynomially bounded nor that f is continuously
differentiable in (z,y, 2).

Corollary 2.7. Assume (Ap ) and that the generator f : [0, T)x R¢xRxR? —
R is continuous in (t,x,y,2) and that there is some Ly > 0 such that

|f(s,x1,y1,21) — f(8,22,Y2,22)| < Lg[|lz1 — @2| + Y1 — y2| + |21 — 22]]-

Let 2 < p < o0, £ = g(Xyy, ..., Xyr,) € Ly, for some Borel measurable function
g:RE =R, O € (0,1]F and let (Y, Z) be the Ly-solution of our BSDE. Assume
that condition (@ is satisfied. Then there are sets Ny C [ri—1,7;) of Lebesgue
measure zero such that the following is satisfied:

(C1’) There is some c¢1 > 0 such that for s,t € [ri_1,7) \ N, with rj_1 < s <

t < r; one has )
t 2 2
z—Zlp<e ([ 2 a)"
| »
s i —T

(C2’) There is some ca > 0 with || Zi||, < cap(t) fort € U{;l([rl_l,m) \M).

(C3’) There is some c3 > 0 such that, for ri_; < s <t <, one has

t 2
nmnms@(/¢mwﬁ.

14



Proof. (a) Let (fY)n>1 be a sequence of generators satisfying assumption (Ay)
such that

(1) th HfOT |fN(57Xs,}/;723) - f(s7Xsa}/s,ZS)|dsH = 0’
p

(11) KfN S 2Kf and LfN S Lf.

(b) Letting y¥ = —NVy AN fory € R and N > 1, &V satisfies (4,) and
€N — €], — 0 as N — oco. In addition, for all [ =1,...,L and r,_q <t <1 we
have

€Y — (€M) lp = €Y = (") lp < Nl€ ="l < ey (r — 0%,

(c) To (&N, fN) we associate (Y, ZV) as BSDE solution in L,. In view of the
inequality above and according to Corollary (N, V) € Bz(?,oo (X). Because
Kyn, Ly~n and |€V]], are bounded independently of N, we have

sup cgo_ (&N, V) < oo,

N>1 %
which follows by the proof of Corollary Theorem applies to (YN, ZN)
for each N and there are ¢ > 0 such that

1
t 2 2
t
1Zn4 — Znsllp < N (/ LU dr)
S

rr—rTr

we realize that we can take supy ¢V =: ¢ < co. By Lemma |A.1| applied to

5(0) = 55 fO(W,S,y,Z) = f(sts(w)ayaz)a (Y(O)az(o)) = (Y7 Z)a and 5(1) = §N5
fiw,s,9,2) == fN(s, Xs(w),y,2), (YD, ZzW) = (YN, ZN), there is a sub-
sequence (Ng)72; such that Zy, + converges to Z; a.s. for t € [r;_1,r;) \ N, for
some N of Lebesgue measure zero. Fatou’s lemma gives

1
t t2 2
Zt—Zs||p§c(/ (20 dr>
s r—r

for rp_1 < s <t < m with s,¢ € [r;_1,7) \ V;. As in the proof of (C1;) =
(C2;) = (C3,) below we can deduce (C2') and C3') where in the case r_; €
N, in (C1;) = (C2;) we have to replace ||Z,, .||, by liminf, ||Z, |, with
Pn € [7"1_1,7“1) \M and p, | 71-1 O

for r1_; < s <t < r;. Looking at the constants in the proof of (C4;) = (C1;)
i

Definition 2.8. A measurable function g : R — R is of bounded variation, in
short g € BV, provided that

N
lgllzv = sup sup > lgax) = glzr-1)| < oo
- 1

co<ry< - <x N <00 e

The following Example is more general than needed in this paper, however
this generality does not require any extra effort and constitutes the natural
setting.
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Example 2.9. Assume 0 < 0 < % <a<1,g; €BV with 3372, [g;]|By < oo,
and linear and continuous functionals p1, po, ... € (C[0,T))* with ||p;]| < 1 such
that the laws of (X, p1), (X, ua), (X, u3), ... have densities bounded uniformly
by a constant B > 0. Define

5 = (I)(gl(<Xa ﬂ1>)792(<Xa /1'2>)7 )7

where @ is a measurable function such that
oo
B2, ) — By, o ) < 1Sl — 5
j=1

for some k > 0. Then there is a constant ¢ > 0 such that for all measurable
n:[0,T] — [-1,1] we have that

T
IK—ﬁprc<A mm%h>

Consequently, given © € (0,1/p)L there is a constant ¢ > 0 such that

6
le =€y < (ri— )%

A
2

forri_1 <t <.

Proof. Using [I Theorem 2.4] for 1 < g < oo we get that

l€=¢", < = Zlgj(<X7Mj>)—gj(<X"7uj>)|a

p

o0
< R g (5 m5)) = g, (X, IS,
=1
1 1 e q 1
1 _a 1 -9 1
< R3FTEBTIEY gsl By 14X ) — (X7, )3T
=1
1 1 e q 1
1 _a 1 PR
< R3TEBTTE Y |gsl| By sup (X, ) — (X7, )| 3T
=1 !
I ' w
< w3 | gilBy | || sup X — X7
= 0<t<T a

- - .
1 .49 1
< w3*FEpTT |3 gl | | caEm (/ n(r)er> :
j=1 0

where inequality below is used. Taking 1 < ¢ < oo large enough the
assertion follows. O
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2.2.2 The second sufficient condition

The second sufficient condition relies on a simple iteration procedure:

Theorem 2.10. Assume that (Ap») and (Af) are satisfied and that
§i=g(Xps s Xip ),

where

lg(z1, ...y zr) — g2, ..., zh)]
L
<
=

lgi(ze) = gi(@)| + (@ ooy a5 21, s ) 20 — ]
1

with polynomially bounded Borel functions g, g; and v, such that

9y
191(Xr,) = E(gi(Xp)|F)llp < c(ri — 1) (9)
forl=1,...,L,0<6, <1, andr;_1 <t <r;. Then,
(€, 1) € By o (X).
The proof of Theorem [2.10]is given in Section [3.3

Example 2.11. Let ® : R — R be Lipschitz and g, ..., g1, be as in Theorem
and define

9@, ) = (g1(21), -, gr (L))
To verify @ for concrete functions g;, it is sufficient to check the inequality for
the Brownian motion and for an appropriately rescaled function:

Proposition 2.12. Let cEa) >0 be the constant from Proposition so that

r—¢§
L(t,z;8,8) < ¢ ’Yg! ()
¢ (@)

and let hy(z) == g (mo + cx) and assume that

6
17 (Wr) = B (W) F)llp < ei(re—8)% for 0<t<m, (10)
then (@ holds true for some ¢ > 0.

The proof of this proposition can be found in the appendix. One can rescale the
argument of the function h; in as well to assume that 7, = 1. Examples for
with d =1 and r; = 1 are the following:

a) If hi(z) = Xik.co)(®) for some K € R, then 6§ = 1/p according to [12]
[K,00)
Example 4.7, Proposition 4.5].

(b) If hy(z) = z* for x > 0 and h(z) = 0 otherwise, and 0 < a < 1 — (1/p),
then 8 = a + (1/p) according to [22, Example 5.2, Lemma 4.7] and [12]
Proposition 4.5].

A precise investigation about the relation of to Bg,q(]Rd,Vd) can be found
in [13].
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3 Proofs of the main results

3.1 Proof of Theorem [2.1]
(C1;)) = (C2)) for 0 < 6; < 1 is obvious as

t 2
1Zell, < N Znsllp + e (/ (n—r)el*dr)
Ti—1
1 3
= | Zn_\llp+c [(ry =) — (= 1)
1-6,
6;—1
< N llp e (L—0) "5 (r —t) T

(C2;) = (C3;) We observe that
1Y: — Ysllp

t t
/f(r,XT,YT,ZT)dr—/ Z,dW,

p

1
t t 2
[ 050 ¥ Z0ir + ( / ||Zr||,%dr)

<

t t 3
< Ky(t=9)+ Ly [ X1+ ¥+ 12l + 0 (/ ||zr|f,dr)
< (t—s)|Kf+ Ly Sup ||X llp+ Ly sup s

relo0,T rel0,T

1

teo(LVT + ap) (/:(m - r)el_ldr>2

where we used that 2 < p < oo and where a, > 0 is the constant from the
Burkholder-Davis-Gundy inequality.

(C3;) = (C4,) Here we get that

1Y, =B [F)ll, < 1Y — Ysllp + [1Ys — BV [ Fs)llp
< 2||er - YSHP
1
Tl 2
< 2c3 (/ (r; — r)al_ldr>

1
= 203”91 (r; — .9)7Z

D%})(YH; s,XS)st>

(C4;) = (C5;) We consider

vl

P
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d t B 1
(Z/ |(Vz(3szz))(Xz1;8,X5)|2ds>

k=1vTi-1 v

1| (<&t — :
< X Va0 Eyo) (Firisi X s

T \k=1 /e »

d 1 t L %
< ) - ( / |(v$(6mkﬂ)a)(xl_1;s,Xs>|2ds>

=11 Ti-1 »

d b t L

> = / (Va0 F) o) (X113 8, X ) AW,

k=1 N Ti—1 p

where b, > 0 is the constant from the Burkholder-Davis-Gundy inequality and
the ellipticity condition on ¢ implies that there exists an 1 > 0 such that

nylge < |y*o(t,z)|ga forall a,y e R

To upper-bound the terms of the last sum we use It6’s formula and our PDE
(which reduces the number of terms) to obtain

On, FY (X115, Xy) — O BV (X 137121, Xy ,)

t
1 _
_ 7/ [(0aub, Ve Fi) + 5 (00, A, DR (K3, X)ds (1)

t
+ / (Vo (0, 1)) (K115 8, Xo) AW,
Ti—1

which implies that

‘ P
S ||V1E(yl—17 tht)H;D + ||vwFl(Yl—1;7ﬁl—17 Xm,l)Hp

/ (Vo (9 F1)o) (K 5, X, )dWV,

Ti—1

¢
1 —
+ / [(00,,b, Vo Fy) + 5(8IkA7D2Fl>](Xl,1;s,XS)ds
Ti—1 p
R, R, _, /” R,
< — — N0 0] so d
< Hpm""“ﬁm""”p” Wbll . m—ss
x A (oo} " S
e [ R,
2 o, TL— S
with R, := ||Yr — E(Y;,|Fs)llp and m—1 < s < r; where we used (Ap,) and

inequalities (2) and (| . Consequently,
1
DQFI)(Xl_l;s,XS)Fds)

P
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db 0,1 6;—1
< ey ' ™

" o1
+ sup [9ebleo / (ry — 5)"7" ds
<d

1<k< Ti—1
Oz, A T 0
+ sup 119z, Alloe ”OO/ (r; — s)7 ds|.
1<k<d 2 i

(C5;) = (C2;) Here we start with

Lemma 3.1. Assume that (Ap.),(Af) and (Ag) are satisfied. There exists a
constant ¢ > 0, depending at most on o,b,T,d and 2 < p < oo, such that, for
all 1 <s<t<r,

||Vmﬂ(yl,1; t,Xt) - vxF}(lel; S, XS)”P
< et —9)|Ve (X1 mi—1, Xo ) llp

1
s 3
+e(t — s) (/ |D2Fl(yl,1; v,Xv)|2dv>

Ti—1

t
(/ |D2FZ(X51;’U,XU)|2d’U)

Proof. For simplicity we will omit X;_; in the computation. Using with
r;—1 replaced by s we get that

p

|-

+c

p

Vo Fi(t, X¢) — val('S,XS)Hp

d
< D 0n, Filt, Xe) = O Fi(s, X0l
k=1
d t
< lZ||axkbw ‘/ |vxFl(UaXv)|dU
k=1 s P
1|9, Al :
+l2’€2°° /S\D2Fl(v,XU)|dv
k=1 p
d t %
tap Y ( / |<vx<auﬂ>a><v,xv>|2dv)
k=1 s
<

t
/ |V Fi(v, X,)|dv

d
S 00l \
k=1

d 1

Oz, Alloo(t — 5)2
3 10 Alelt =9 +dap”0,”m]
k=1

p

+

¢ 3
‘(/ |D2Fl(v,Xv)|2dv>

p
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where a, > 0 is the constant from the Burkholder-Davis-Gundy inequality, so
that

||vwFl(taXt) - VzF‘l(SvXé)HP

/ Vo Fy(v, X,)|dv

+CQ (12)

(/ |DFle)|dv>%

p
with

d f d
c1:=> [|0nblloc and ¢ := Z||8xkA||oo+dapHaHoo.

)
k=1 k

Using this relation for s = r;_; and applying Gronwall’s lemma implies

IV Fr(t, Xo)llp

. 3
< T IV Bi(rims, X, + 2 ( / D?ﬂ(r,xwdr)

Ti—1
p

Now we return to and get that

||vxFl(taXt) - vxﬂ(stS)Hp

1
t t 3
< cl/ Ve Fi(r, X,)||pdr + c2 (/ |D2FZ(T,XT)2d7’>
S S p
1
t r 2
< cleclT/ Ve Ei(ri—1, X )lp + c2 </ |D2Fl(v,XU)|2dv> dr
s ri—1 .
1
t 3
+¢2 (/ |D2Fl(r,XT)|2dr>
® P
< e (= 9)|VaFi(ri, X )l
t s %
JrclchClT/ (/ |D2Fl(v,XU)|2dv> dr
s ri—1 .
t T 3
—|—C102601T/ (/ |D2F}(U,X@)|2dv> dr
S S p
t 3
(/ |D2Fl(r,XT)|2dr>
® P
< CleCIT(tfS)HVIF‘I(TZ—MXTFJHP
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. 3
+(t — 5)6162661T </ |D2Fl(vav)|2dv>

Ti—1
1
t 2
( / |DZFl(v,Xv>|2dv>

+ercae T (t — 5) 4 o]

P

For r € [rj_1,7;) we consider
o (Ti—1;7m, @) = v(Ti-1;7, @) — Vo F(Ty-1;57, @) (13)
and get that, a.s.,
w(ZTi—1;3m1-1, 01-1) — Fi(Ti—1im—1, 21-1) =
T

75_ s XTU-1T-1) e
-1, 75 Ay

Ti—1

™
= . TI—1,T]— TI_1,T]— ri_
7/ v (Ty—q;r, X0V (r, Xm0 T=0) dW -1

Ti—1

with

f@_y;r ) = f(r,z,w(Ti—1; 7, ), 0 (Ti—1; 7, )0 (r, x)).
Letting
AT’(El—l;sv$) = / ?(@—1;7"7 f)vlr(savaa g)dg
R4
and applying a stochastic Fubini argument, it follows that
6Ul(fl71§ s, X:l—17xl—l)o-(s7X;"l—laxl—l)

Tl
:/ AN(Tp—1; 8, X-07-)dr o(s, X-0%1)  a.s.
S

for s € [r_1,7)\Ni(Ti_1), where N;(T;_1) is a Borel set of measure zero. Hence
for s € [rj_1,7) \ M (Ty—1) we get by and Proposition that

[601(Tp—1; 8, X707 )a (s, XS0

T
< / AT @11; 5, X151 ) (5, X701 )
S
@, X,
< o Ko/ dr
< ollry | —
<

iy [ [KELL P rin X1
[e'e) /
P, Vr—s

Ll @ X o, X

r—s

dr
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T 1
< IIUllooKp'/ m<Kf+Lf {lXﬁ”’“ler

oo : R
o (14 S Y pmapr e+ e, |

By continuity of both sides in s one can estimate the first term by the last term
in the above display for all s € [r;_1,r;). Using the stochastic flow we obtain
the inequality

||Zs - vmﬂ(ylfl; S, XS)J(S3 XS) ||P

T 1
< ki | —— K+ L || X, +
< ol [ = Ky s 11,

o]l @, qii— a,
" (”ww U+ [ 0 o X X[ | )

< ¢g <0

where ¢y > 0 does not depend on s. The assertion (C2;) follows from this and
Lemma [3.] applied to s = 7,1 because

1Z:llp < 112 = Vo Fl(Xim1i7, X0)o (r, Xo) p + oo Ve F (X o157, X0
< o+ ofleo(T + cnDIVaFr( X115 -1, Xoy )l

1
2

t
—|—||a||ooc (/ DQFz(Xll;@,XU)PdW)
Ti—1

p

(C4;) = (C1;) To make our assumption (C4;) more transparent, the constant
¢4 > 0 of this condition is denoted by Cpe_ in the following. Using and
letting 7—1 < r < 7y, by condition (A4 ) we get that

TI—1,Tl—1 7T _1,Tj—1
12, Zgn ll»

< lZl T e X T = 2 T (s, X ) T ol
| Z7 T (s, XD 0T ) T o (8, XV — a(s, XTUT)
< Ve F(@at, X0 = Vo BT o158, X007 [plloflse
v (@15 t, Xy = v (@p—1s s, X0 o]l
+Lollo ™ ool 25171 X
1
(X7 = Xy P Fr) [+ = s)?)
< Copp,1 [D1(Ti-1) + Da(T1-1) + D3(T1-1)]
with
Di(Ti—1) = [[VeF(To1t, X[ 7057 = Vo Fi(T; 8, X[ 0%1) |,
Dg(fl_l) = ||5Ul(fl_1;t,X:l_l’ml_l) 7(Svl(fl_l;S,X;l_l’zl_l)”p’
Ds(@-1) = (t—s)2]| 20",
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Now we show that each ||D;(X;-1)||, , i = 1,2,3, is bounded by a constant
1

times (fst(rl — r)91_2dr) * which implies (C1;).

The term D;(X;_1): Here we use Lemma to get

||D1(Yl—1)“p = ||vxﬂ(yl—l;t7Xt) 7V1F‘l(yl—l;saXs)”p
< C(t - S)vaFl(Xl—l;Tl—la XTZ—I)HP

+e@a)(t—s) (/9

¢ 3
‘(/ |D2Fl(Xl1§'UaXv)|2dU)
s P

N

|D2Fl(Xll;v,Xv)|2dv>
1

p

+eEa)

< et = IV P X151, X ) lp
1
s 2
et —s) (/ |D2FI(X11;U,XU)§dv>
Ti—1
t . 2
+eE) (/ |D2FZ(X11;U,XU)||§dv)
S
0;—1
< cgplt— S)prCBgm(Tl —7-1) E

N

+C (t - S) (/ Hi/C%EN (/rl _ v)91—2dv>

Ti—1

¢ 3
2 2 01—2
+c@E) (/ HP/CB,?OO(” —0) du)
S

where we have used . Finally we apply

(t—1s) (/5 (r; — v)elev>

2
0,2

(t—8)\/s—ri—1(r—s)"2

IN

Vt—s\/s—r_1 (/:(rl —v)el_zdv) i

The term Do (Z;—1) and a linearization: First we follow the approach of [14]
done for the one-step scheme, that shows that the difference process ((v; —
Vo) (X12157, X0))refry_1,m) solves the linear BSDE with the generator f!»
defined below. We fix 1, ...,2;_1 € R? and define f'" : [r;_;, 7)) x R x R**9 x
IRdXd N IRlxd by

IN

d
iz 2, U V) = AN Ty _q;r,2) +UBY (T 157, 2) + Z VjC’lj’O(fl_l;r, z),

j=1
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where Vj is the j-th row of V, with

A[O(El—l; T, 'T) = vwf (Ta €, up (El—l; T, l‘), (% (El—l; T, J?)U('I", l‘))

+ = (Ta Z,u (flfl; r, SU), U (Tlfl; T, .’E)O'(T’, x))vxﬂ(flfl; r, (E)

Jy

d
+ ; ngj (T,aﬁul(@_l;r, z), v (Ti_1;m x)o(r, 33)) %

d
x Vg @(Tl,l;r, x)og;(r,z) |,
b1 6$k

BY(Z)_1;72) == 8*(7“,33&1(5171;7"7 x), v(T—1;7r,2)0(r, x)) [ga
Y
Y
+ Vb(r,z) + Z = (r,z,w(Ti—1;7, ), 0 (Ti—1; 7, x)o(r,2))Vyo;(r, )
= aZj
and

C’lj’o(fl_l; r,x)

== (r, 2, w(Ti—1;7, 2), v (Ty—1; 7, x)0 (1, x)) [Ra + Vz0;(r, x),

0z
with o; = (0k;)¢_; € RY, du; defined as in , and
ouy(Tj—1;r, ) = w(Ty—1;r,x) — Fi(Tp—1;7, ).
This implies
@iy u,0)| < AY @17 2)| + eq [lul + [o]). (14)

To associate a BSDE to the driver f' we first check that

T
/ JAQ @1 ysr, X101 |, dr < oo, (15)

Ti—1

For this purpose we let
i@i-157) = 1+ Vo Fi@-1; 7, X707 [l + [ D2Fy Ty, X070,
which implies that
1A @115, X707 | < cgyu(@—ns ). (16)

In view of and we have that
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Koa!
V(@) <1+ 1+ r—r)—2—x

r,—r
HFl(fl,l;m, X:;fl’xlfl) — Fl(fl,l;r, X:lihxl*l)up . (17)

To obtain the integrability of the upper bound on v;(Z;_1;7) (and thus that
of |AY(Zy_1;7, Xi' =" "")||,,), we show that the assumption on global fractional
smoothness implies a local fractional smoothness. Indeed, our global assumption
reads as

P R 0
[Fu(Xiim, X)) = (X ias s, X)||, < epo(ri— )2 (18)
for r;_1 < s <. For any 0 < § < 1 this implies that
m 00 o _
/ (r; — s)_%_‘S ||Fl(Xl,1;7“l,X”) - F(X_1; s,Xs)Hi ds < 0.
Ti—1

Using the transition density of X and Fubini’s theorem implies the existence of
a Borel set E; C (R9)!~! such that Ef has Lebesgue measure zero and

T 0
/ (rp—s)~ 20 | Fi(@i—q;re, X051 ) — Fy(Tpg; 87X§l’1’ml’l)Hz ds < o0
ri—1

for all (x1,...,2;-1) € E;. For those (x1,...,2;_1) € E; we may deduce (using
(@) for s € ((ri—1 +71)/2,7) and a; := s — (r; — s) that

| By (@i—; 7, XJm) — E(fzfl;&X;”l’x"l)Hi
]
< 2P(s— al)_l(rl — al)“%

s 00, »
/ (re—r)" 2 0| By (@i—ys my, X070 —Fl(flq;T,X:l’l’x“l)deT
ap

pro PO
S 2p+6+T(T‘ _ 5>6+T

1
" _rh — T T — T T P
(rp—r)" 2 ||Fl(xl_1;7‘l,an*1’ SY) — F (T, X0 l”)der.
Ti—1

Taking 0 < § < 1 such that 5+p2ﬁ—1 > 0 we obtain a local fractional smoothness
for all (x1,...,2;—1) € E;. Then for T;_; € E; the inequality is satisfied.
Thus, because of [14, Theorem 2.1] the process (6vy(Zi—1; 8, X&' ™)) seim_1.m)
solves the U-component of the BSDE

T
TI_1,L]— _ lin /= . TI—1,T]— TI_1,T]— TI—1,T1—
Usz 1,T1—1 — / f (xlflar»Xrl 1,1 17UTL 1,21 17‘/;l 1,21 l)dT
s

_ (/rl(v'rllaxll)*dW"‘ll>

for all Z;_1 € E; (according to (14), and [6, Theorem 4.2] this BSDE has a
unique L,-solution).

Upper bound for ||Da(X;_1)|,: Applying Lemma to h = f" (the function
k from Lemma iii) is obtained by Proposition and is used) it follows
that
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||U7—l71;§l71 ||
s p

T
- [ 1@ Xz
° p
7l
= CC/ P(Tp1;r)dr
S
<

i
C(A3) C(TE) [[W — 8] + Ky / L+ —r)

S

|F@i— s, X025 = BT, X005
X

r—r

L dr

= ¢i(Ti-1;9),

that means B
U= ] < @u(Tr-1s ) (19)

with

J— T )
||<pl(Xl_1; s)||p < c@3) (@) [[rl — s8]+ Ky (1 + \/T)CBI?OO / (ry — T)ledr]

or
— " o
Hapl(Xl_l;s)Hp < c@) [[rl — s+ Cpo_ / (ry—r)2 1dr} (20)
S
Exploiting again Lemma [A-3] also gives that
_ T ||A0 xl T X’f‘z 1,T1— 1)”
V?"lfl,zr—l < C ) pd?"
e, < o | N
" (@15 7)

< @3 (T ————~dr
I . A L6 B
for s € [r_1,7) \ Vi (T;_1), where N;(T;_1) has Lebesgue measure zero. Hence

Ti—1,T—1 _ 7771—1,T1—1
U= U, I»

t
H/ fhn(fl_l;r,X:l—lyml—l’U:l—hml—l"/r"'l—laftl—l)dr
S

t
_ TI—1,T1—1 Ti—1
/V, T g
s

p

IN

t
/|A?(@_1;7‘,X:l*’“*lﬂdr
S

t

[lU’,":'l—lail—l | + |VTT1717@71 |]d7“
S

t 3
(/ |VT”*1’§’*1 |2d7“)
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t t
< | [ M@ x| eg [ Iore T r
S P S
t ) 3
Heggvi—s+a ([ v mo )
S
t t
< ’/ |AD(Ty_ 157, XT1-0%-1) | dy +c/ ©i1(Ty—1;r)dr
S S

/ 7/11 Ti—1;W dr) .

Because P((X,,,...,Xy,_,) € E;) = 1 we can use the stochastic flow property

and can bound ||D2(X;_1)|, from above by the L,-norms of the following three
expressions: Taking the L,-norm of the last term gives

, 2 3
G IY )dw‘ dr)

’U)—T

—|—[C\/t — s+ ap]cc (

1
T — 2 =
< /11+|IV LFI(X 5w, Xy, )||p+HDQFZ(XZ,l;w,Xw)dew " 2
< s : Lo -
1
t 2 2
< ( dr)
s w—rTr
1
B (T—w)#—}—(r—w)gfz ? ’
+leCBS),OC / / l \/[lr; dw dT
1
t 2 2
< ( dr)
s w—r
%
t T (’I"l ) 22
epe (1+VT MY ) d
+hpcpe (1+VT) /s /r T w! dr
t 3
< Qﬁ\/t_is-knp/c]g?mu_kﬁ)% </ (?"z—r)olldr>

o

-1
with v := fol %dt. For the next to the last term we obtain

t Ty o
< c/ {(m —r)+cpe / (ry — w);f—ldw} dr
D S s

2 0
@) [T—&—CBQW‘%T?} (t—s).

A

t
/ oi(X—1;7)dr

IN
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Finally, we get by and that

t
/ |A?(Yl_1;r, X,)|dr

S

P

t —
= C/ [V (X—157)]pdr
¢ 3
< ¢m) [(t — )+ VT (1+ \/T)np,chw (/ (r — r)@z—er> 1 .

The term D3(X;_1): Let r;_1 < s <t < r; and recall

Zrlflyjlfl _ Ul(xl 1 t X?”z 1,%1— 1) (t X?”1717£171)
t ’ i 4 .
From inequality (19) we obtain

(t=s)2 |z

T1—1,Xr
< (=97 ollsollr(Kimrs s, X T
< (0= ) lolloo [IV2F (Kionss, X0l + U7 %
< (t—9)tlolloclrpens_(r—5)"T + (XK, 9)lly)
< (t—9)% ol
0, — 1 P 1
kpcpe_(ri—s) + c@) [rlfs]JchZc;)yoo/ (ri—r) dr
< o(t—s)E[l+(n—s) 7]
. t 2
< (t—3)2+(/ (rl—r)el 1dr>
S

(C3)) = (C6;) Let

n,0; k eill
ot =+ (i —r—1) | 1— 1—5 for £k=0,...,n

and S o = Yn .6, One obtains for ¢ € (¢} gll,t" Y C [ri_1,7] and an appro-
priate 7] € (0, 1) that

1S = Yallp
(1= 0)Y ey + 0¥ ey — Yill,
tk—l tk

< (L)Y~ Vil +0ll¥p — Yill
t 2 T 2
< ewer( [, -0l ) e ([T et e
L t
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1 n n 2
o (= 220" = (= 52 )

(7‘[ — 7’1,1)7’ 1

STV U
(C6;) = (C4;) We consider

IN

Y

Y n,0; — Sn n,0;

rtt, g i+t
2 2 llp
= Y 1 S+ S
- e Ty [On o
2 P
1 n 1 n
> Y,.l+t:fl1 - 5 }/Tz + Stzfll - §||Y;”L - Sn”p
2 P
so that
306
n
Yo =2V, o ¥ S| <
2 D
But this means that
666
Yo —E (”zﬁwlﬂ) U
2 p
Because .
mA+t 1 L
ne- g = 5(7"1 —r_1)n %
we get that
_ﬁ n 91
ry—1T—1 2 o i+t
1Y, = E (Y, |F)l, < 6cs <2 ) (rp—t)2 for t= 2n 1

Using proves our assertion for r_; + "=+ <t < r;. For the remaining
—ri_1

ri—1 <t <7y + "= we can simply use ||Y,, —Y,,_, ||, < co.

(CT) = (C4) Let t € [r—1,7;). We use (C7;) for n = 1 so that ¥; and Y,
can be covered by one ball with any radius bigger than c7(r; — t)% Taking the
infimum of these radii we get that ||Y,, —Y;||, < 2¢7(r; — t)% which implies that

)
1Yy, = E(Ye, | F)lp < der(ri— 1)
(C3) = (C7)) Fix t € [rj_1,7) and n > 1. Let N > 1 and choose k €

{1, ..., N} such that

tefty ™) C rorm).
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For those time-nets we computed in (C3) = (C6) that

Y

(7‘1 — Tlfl)% 1

B
for u,v € [tivf)ll,tfcv’gl] C [ri—1,7]. Now we choose N > 1 such that the cardi-

nality of {tkN’el :k=0,..., N} n [t,lcv’e’,n] is equal to n, i.e.

ry — 0 o
n=1+N|—+—%k ] |
rr—"Ti—1

For n > 2 this implies that

1Yy = Yollp < cs

N N,60
<n—-1=— (r—-t"H <«
- (ry —rz—1)9l( A

|3

and

m‘f_‘"

(rp —r—1) 1 < 3 2(ry — )%
Vo VN TNV

The case n = 1 implies that tivfll <t< t,iv’el =r. Asin (C3)) = (C4;) we
have

en(<YS)s€[t,m] |Lp) <cs

N‘S
—
)

L

1
1Yr, = Ysllp S sy - (ri—8)2 <esy[~(ni—1)7
0 0,

for all s € [t,r;] so that

e1((Ys)septr)|Lp) < c3y) (11— 1)

3.2 Proof of Theorem [2.5]
(a) We get, a.s., that

X! —-X, = /Os[b(r, X = b(r, X,)]dr
n / o(r, XD) — o, X))V (r W,
+ /05 o(r, Xn(r)dB,

_ /O o(r, X,)(1 = /T =3 )2)dW,.
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Using the Burkholder-Davies-Gundy inequalities we estimate

e(s):=E sup |X] — X,|P
0<r<s

by

e(s) < 4p*1[Tp*1L§/ e(r)dr—«—ang/z*ng/ e(r)dr
0 0

vagtoli ([ norar) v agrole ([0 - yiammra) |

where L and L, are the Lipschitz constants (with respect to x) of b and o, and
ap the constant from the Burkholder-Davis-Gundy inequality. Note that 1 —

V1—n(r)? = % < |n(r)] using |n(r)| < 1. Thus, applying Gronwall’s

lemma implies

1
2

) < c@ </Os77(r)2dr> (21)

where c¢@q) > 0 depends at most on (p,T,b,0).

sup |X] — X,
0<r<s

(b) We consider Y7 — Y and Z" — Z and relate (Y, Z) and (Y",Z") to two
BSDEs driven by the same Brownian motion (W, B). This is the purpose of the
construction below.

Let ¢ = X[—1/2,1/2] so that

en) 11—
sup + = (22)
ne(-1,1] <m Ul
using the convention § = 0. Thus, we can define the parameterized driver
t 1— t
1wy, 2) = f | t, X! (w),y, 2" e(n(t)) B e(n(t))
L—n(t)? n(t)

where z = (2, 2P) is 2d-dimensional. In view of (22)), the driver f7 is Lipschitz
with respect to y and z. Thus, for any ]—";iv “B_measurable terminal condition
€ € Ly, there is an unique solution in L, in the filtration FV:5 to the BSDE

_ _ T o T _ T‘N
Yt=5+/ f"(s,Ys,Zsms—/ ZsWdWs—/ 7748,
t t

¢
because of [6, Theorem 4.2].

(c) For the driver f9 (i.e. n = 0) and terminal condition & we have that

(Y, [Z,00)
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solves our BSDE.
(d) For the driver f" and the terminal condition £” we have that

Y, [zm"V, zmP)

with
ZPW =211 -n(s)? and Z]P = ZIn(s)

solves our BSDE because
T
Yo =€ [ s X0 200005 + 2201~ ela(s))ds
t

T T
- / 20T (3)2dW, — / Zm(s)dB,
t

t

T T T
=&+ / s, Y (22, 20 P))ds — / ZPW AW, — / ZPdB.
t t t
(e) To sum up, we have proved that (Y, [Z,0]) and (Y, [Z"\/1 —n(.)2, Z"n(.)])
solve the BSDEs with data (¢, f°) and (£7, f7) in the filtration (F"""),c(0.7-
Then, we are in a position to apply Lernma (with d replaced by 2d) and get

1/2
2
s s | (] e )
0<t<T » 0
p
T
S C ||§"7 - 6”;0 + |fn(t7Y;7 [vao]) - fo(tvifta [Ztﬁo])|dt
p
T
< cam(le-el+ 1| [ 1x2 - xila
0

p()

/OT|Zt| OE p)

where c(z) (here and thereafter) is not identical with the constant ¢ in Lemma
[A1] but only refers to the fact that the inequality of Lemma [A.1]is used. Now,

since \/“i(ﬂ — 1| < ¢,|n| for some constant ¢, > 0, we have
-1

| ey T A b
[ | 0 s ([ a) ([T

With the previous estimate on X" — X from this leads to

+Lf 1| dt

1

+ (/ ‘Z”\/l— ~ Z, ZM(t) ‘ dt)
0

sup [V} — Yy
0<t<T

p
p
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< e | I€7 =€y

T 2 T 2
+Ly Tc + ¢, (/ Zt|2dt) (/ n(f)%lt) ]
0 0
P

Applying Lemma to €0 =0, fo = 0, YS(O) =0, Zﬁo) =0, &V = ¢
fi(w;s,y, 2) == f(s, Xs(w),y, z) and our solution (Y, Z) we obtain

=

as(w) = |f(s, Xs(w),0,0)] < K¢+ Ly sup |Xy(w)|
0<t<T

and

N|=

T
IZt|2dt> < c@m Ky + Ly +[€llp)-

P
To complete the proof, it remains to use the inequality

(Z]'\/1 — — Zy, Z(1)]?

ZP1? + |24 — 2¢/1 = n(8)2(Z], Zy)
1
§|ZZ’—Z,5|2.

v

3.3 Proof of Theorem [2.10]

(a) In this step we assume that all (z1,...,z1) (and similarly (zf,...,27)) that
appear have the property that z; € Ds, (z1,22) € Dg, vy (21, e, x—1) € Dy,
where the sets D, ..., D, are taken from Proposition 1.1} By backward induc-
tion we prove the followmg estimate regarding the termmal condition function
Dy(x1,...,x1) = uy (21, ..., x;—1; 77, 2;) of the BSDE at time r;:

l
| (@) — @0 (@) < ey gilw) — gilah)] + (@i )i — ] (23)
i=1

This is true for [ = L by our assumption. Assume now that holds for some
2 <1 < L and let us prove the inequality for [ — 1. We have

|@l_1((£1, ...,:cl_l) — <I>l_1(x'1, ...,x§_1)|

< ’Ul (T1, s D13 T1-1, T1—1) — W (1‘/1, -~-’$f—1;7“l—17$l—1) ’
+ g (@], o @i, wie1) — g (2 2y e, )|
< |Ul (131, -~-,$l—1;7"l—17$1—1) — Y (55/1, -~-,$;_1;7‘l—17$l—1) |

Qq
+7
VIT—Ti-1

(T [@ |0 4o gy [T 4 o [P [ | |21 — 2y
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where we used Proposition To estimate the remaining first term we use
Lemma and get that

’Ul (T1y ey 113711, T1) — W (33'17 ---7332_1; Tl—lvl'l—l)’
camyllu (1, .y zi—1; s, X0 —ay (2, 2 1;7";,X”*1’””*1) Il2

CHCDl (1‘1, ...,Z‘l_l,X:l’l’zl’l) — (I)l (x/l, .. .’El 1,Xrl 1¥L= 1) ||2
-1
< came (Y (@) — g:(@))| + i@, ooy i, o ) |2y — 2]
i=1
(b) In the second step we verify the fractional smoothness, where we use
and therefore the inequalities from step (a). For r;_; < s < r;, we have
”}/7"1 - E(}/Tz |fS)H;D = ”(I)Z(XTU"'?XTL) - E(¢Z(X7"17"'7XTL)|‘F9)||I)'

In particular, this expression depends on g, b, o, r1, ..., 7, s and ®; but not on
the specific realization of the diffusion X. Hence we can assume the extended
setting from Section 1l Using inequalities @ and the estimate (| implies
that

121( Xy, ey X)) — E(Q (X, ooy X0) | F) |l

< ”(I)I(th "'7XT1) - (pl(XTl? "'vX?”lqunS TL)HP
< al |o(X) - axi)
+1/}l (Xrl PRERS) XT'L;X’H PRERS) Xr171 3 X:]LS’TZ )|XTL - X:?;”"l |
p
< allg(Xe) = ge(X5) [l
+Cl||wl(X?”17 ceey X”‘l ; X?”lv ceey XTl—l ) XTf]lsvrl)”QP”XTl - X:‘]lsyrl ||2P
< 2allg(Xy,) = E(gi(Xe)[FS)p

+c; sup ||¢1(XT1,...,Xrl;Xrl,...,Xrlfl,XZ“’”)ngc\/rl—s.

ri—1<u<r;

4 Perspectives

As natural steps, which could follow this paper, we see the investigation of more
sufficient conditions for the fractional smoothness of a BSDE and the investi-
gation of the limiting case as the number of points r1,...,7;, tends to infinity.
In this connection the question, to what extend the generator might be path-
dependent, is of interest as well. Moreover, the investigation of the above results
in the context of other types of BSDEs (for example including reflection) and
the development of numerical algorithms based on the discretizations proposed
in this paper would be important.
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A Some lemmas about BSDEs

We fix a complete probability space (M,%X,Q), 0 < r < R < T (the upper
bound T is used to bound some constants independently from R), d > 1 and a
d-dimensional standard Brownian motion B = (B )¢, g) With B, = 0. Further-
more, we assume that (G)¢e[r, ) is the augmentation of the natural filtration of
B. The diffusion (X;)s¢[r ) is considered with respect to the same o and b as
used before, restricted to the corresponding time interval. Regarding the flow
(X5") s tepr B),zeme and the filtrations (Gf)scp, r) we use the same convention as

S
in Section

Lemma A.1 (L,-stability of solutions of BSDEs). Let 2 < p < oo, f; : M x
[r, R] x R*¥ x R¥*4 — RF be measurable with respect to Prog(M x [r, R]) x
B(R*) x B(RF*?) with Prog(M x [r,R]) being the o-algebra of progressively
measurable subsets, and assume that, a.s.,

YD = ¢® +/ Fi(s, YO Z20ds — / Z0dB, fori=0,1andr <t<R
t t

with

Nl=

R ) R
[ 1Y, 20 ds + sup |Y;“>|+</ |Z§Z>|2ds> €Ly
r r<t<R r

Let
as() = |fi(w; 5, YO (@), ZV(w)) = folw;s, YO (w), 2 ()]
and suppose that there is a Ly, > 0 such that
|f1(w; s, u1,v1) = fi(w; s, ug,v2)| < Ly, [Jur — ua| + |v1 — val].

Then there exists a c, > 0, depending on p only, such that for a > Ly + L21
one has

R g
E | sup e®t"|AY,P + (/ ega(s_r)|AZS|2ds>

te[r,R) r
R p
e‘”’(R_T')|A§\p + (/ e“(S_T')ans>
I

Proof. The result is a direct consequence of [6, Proposition 3.2]. For AY; :=
Y- Y0, AZ, =7} — 70 and A€ := M) — £ we get that

p
< cpIE

R R
AY, = Af—s—/ (s, AYS,AZS)ds—/ AZ,dB,
t t

with f(s, Ay, Az) == f1(s, Ay + YO Az + Z) — fo(5, YV, Z2{?) and

~

|f(ws s, Ay, Az)]
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|f1 (W; 5, Ay + YS(O)((U), Az + Z§O) (w)) - fO(“J; S, Ys(o) (w)7 Z§0) (w))|

< Alws, YO W), 2(w) = folw; s, YO (), 2 )|
Hhi(wss, Ay + YO W), Az + ZO () ~ filw; s, YO (@), 2 (w))]
< as(w) + Ly [[Ay| + |Az]].
Applying [6, Proposition 3.2] implies the assertion. O

The following lemma shows that [24) Theorem 3.2] transfers to our path depen-
dent setting as expected. The proof is presumably only included in this preprint
version for the convenience of the reader as it is a copy of that one in [24] (see
also [19], Section 5]).

Lemma A.2 (Representation of a BSDE parameterized by a parameter y €R).
Assume that (Ap,) and (Ay) are satisfied, that K,d > 1 and that H : R¥ x
R? — R is Borel-measurable with

[H(y;2)| < a(l+ [y + |2[7) =: ¥ (y, )
for some a, 3,7y € [1,00). Then there exists a Borel set F C RX such that F¢

18 of Lebesque measure zero and such that for

G(y;x) := xr(y)H(y; x)

and it
) Y as 0 r<t<R

where (ng?t’:”)se[tﬂ] is the Y -component of the BSDE with respect to the forward
diffusion (X1")sep ), the terminal condition G(y; X5") with terminal time R €
(0,T], and the generator f, the following assertions are satisfied:

(i) For fized y € RE we have that U(y;-,-) € C%([r, R) x R%).

(ii) The functions U : RX x [r, R] x RY — R and V,U : RX x [r,R) x R —
R4 are measurable.

(i) There exists a constant ¢ > 0 depending at most on (b,0,T,a,, 3, Ky, Ly)
such that

(a) |U(yst,2)| < cd(ysx) for (y,t,2) € RF x [r, B] x RY,
(b) [VaU(y;t,2)] < 222 for (y,t,2) € RX x [r, R) x R.
(iv) For any y € RX, the solution of the BSDE with the terminal condition

G(y; X5°), generator f, and forward diffusion (XI™")sc(r,r) can be repre-
sented as

(a) YY" =U(y;t, X;°") on [r, R,
(b) Z/"* =V, U(y;t, X" )o(t, X;"") on [r, R).
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Proof. We find H,, € C§°(R¥X x R%), n > 1, such that
imH, = H Mgig-a.e. and |H,(y;x)| < 2¢(y,x).

Hence there is a Borel set FF C R¥ such that F€¢ is of Lebesgue measure zero
and such that
Im G, (y;) = G(y;-) Ag-a.e.
n

for all y € R¥ with

Gn(y;2) = xr(y)Hn(y;2) and G(y;x) = xr(y)H(y; o).

Let U™ be defined as U with G replaced by G,. Applying [20, Theorems 3.1
and 4.2] gives that

(U (y; 5, X07), VaU" (y55, X07)o (5, X07))sefe,r)

solves our BSDE on the interval [¢, R], that U"(y;-,-) € C%1([r, R] x RY) and
that

V.U (y;t ) =

R
E Gn(y’X}t%z)Ngl7(t,$)+/ f(S,X‘g’m,Ysy’n;t’z,Z‘g’n;t’z)Nst’l’(t’w)dS
t

Properties of the function U™

(a) To estimate U™ (y; t,x) we let UJ(y;t, z) be the corresponding solution with
the zero generator and denote by (Yg(’)";t’aZg”gL hTy sejt,r) the corresponding
solution to our BSDE. By Lemma we get that

U™ (y;t,2) — Ug' (y; t, )|

< cam ‘ / F(s, Xb% Y3t gvasta) g
2
R it it
< cpKiR+cgplys / [X07] + V30| 4| 20050 |ds
t
2
<

cEn KR +c@mly x

S

< chR+ch X

R
H/ [1X5%) + 2B (y; X5")2IG)1 2 (1 + [lolloo BN 7)2(GH) )] ds

(Glys XEGD] + [0l B(G (3 X5 ) N3 716 s

2

2

Now we use that
2

E((N; )6t < and U (y;t,2)| < 2Eg(y; X5°)

R—s
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and
[9(y; X2 < Botp(y; ) and [ X7 [|a < ao[l + [a]]

to get
U™ (y; t, )]
< QEw(y;X};’”)—I—chR—i—chx
R
X8 2B XRG4+ ol R )2
t
2
< 2E¢(y; X5") + cam KR+ c@p Ly x
[ R R
/t X6 ads + 2 / [I|¢(y;Xféx)||2(1+||U||oo'<62(R—S)1/2)d8]
< ey X0z [2+ 20 Lr (R + 2lolloona R
R
+ch/ HXﬁ’mszs—i—chR
t
<

Botb(y; ) [2 + 2c@mLe[R+ 2||0||0052R1/2]]

R
+ch/ sl + |z[]ds + cap K R
t
so that, for some cey = 1,

U™ (y;t,2)| < ey (y; @) (24)

(b) According to [20, Theorem 3.1, Corollary 3.2] the gradient V,U"(y;t,x)
exists and is bounded by a constant that might depend on n and y. For r <
tgpgRandyE]RK we define

U™(y;t
AP = /p—t sup VU™ (ys 8, @)
z€R4 lb(y’x)
Bf := sup AL
s€t,p]

Although A” and B” might depend on n and y, we do not indicate this for the
purpose of notational simplicity. Using [20, Theorem 4.2] yields

VU™ (ys 8, z)
p
= ‘]E [U”(y;p, Xft;:r)N;,L(t,x) +/ f(s,Xi’I,ng’”“’x, Zg’"?t’x)Nz’l’(t’m)ds}
t

||1/1(y;Xt’I)H2 P ||f(5 Xt,z Yy,n;t,:r Zy,n;t,z)||2
< ¢ K P ) / y“rs 1 ts ) s ds
= 2=t 2, s 1
;Xt,m
< [ (y p )2 g X

ClaKk
(22 N
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~—

/” Ky + L[| Xo" 2 + e 9y Xo )l + [ VaU" (y; 5, X))o (s, X)l2]
t s—1
< [ (y; X5l
= ‘@ o

+ Ko X

/P Ky + Lyl X572 + e XE0)lle + oo VoU 5, X))
s—1
N 72 il
< —
x T X
o Ky Ly [IX37+ el Xy )l + oo 452257 ]
KR
Q/t s—t
[ (y; X5%) |2

< nrA e /0=
> CRAR2 \/Im
+r22/p — 7[Ky + Ly + Lycgg) Sup}[l X% M2 + [l (y; X50)l2]
sSEt
P b 11
+hzllofloBY sup [[¢(y; X°)[2B

s€(t,p] 2°2
B2t (y;
Y= — o1

(i) + el B0 08 (5.3 )

< Aty (=g + B2

where Ay > 0 depends at most on (b,0,T, a, 3,7, Ky, Ly). Consequently,

AP <Ay (1+Vp—1tBY)

z) + ko2y/p = r[Ky + Ly + Lyc@g][l + az[l +[2[]

IN

and
Bf <Ay (14++p—1tBf).

In case of [p —t| < (24,)7? this gives Bf < 24, and

Y(y; )
Jp—t

Moreover, in case of 1(24y)72 < [p—t| < (2A4) 7% we also get that

Y(y;t, x)
Vp—t

VU™ (y:t, )| < 24,

V.U (y;t, )| <24, < BALY(y; x).

The latter inequality means that

VU™ (yst,z)| < 8AL(y; @)
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whenever r < ¢ < R and |R —t| > $(2A4,) 2. On the other side,

Y(y; )

V. .Uyt x)] <24
| (y;t, )| v

for r <t < R and |R—t| < (24,) 2. Combining both estimates yields to

Y(y; )

Vo U™yt 2)] < T
VLU 1,2 < gy

(25)

for all ¢t € [r, R].

(c) We show that U™(y;t,z) is measurable as function on R¥ x [r, R] x R?. Let
y,y € F. Then it follows by Lemma that

U (gst2) —U(yita)| < e |[Gulys X5 ™) = Gy X))
< c@ylLiv(H")y —y|

and

|Un(y,t,.’13) - Un(y/7 t/,l‘/)l

U™ (y;t,2) = U™(y'st,0)| + U™ (st 2) = U™ (y's 1 2')]|
e Lip(Hn)ly — /| + U (Y t,2) = U (Y1, 7).

Hence (U™)~Y(B) N (F x [r, R] x RY) € B(RX x [r, R] x RY) for all open sets
B CRR. On F° we have

<
<

U™ NB) N (F° x [r,R] x RY) = F* x U (B) € BR" x [r, R] x RY)
where U (t,z) is the functional for the Y process with zero terminal condition.
Consequently, U™ is measurable.

Properties of the function U

(d) Let D be the product of [r,b] C [r, R) where b € (r, R) and a compact subset
of R%. For (t,z) € D Lemma and Proposition yield

U(y;t,z) — U™ (y;t, )]

<y llGly; X5") — Guly; X513
= C/ Tt 2; R, )|G(y; ) — Gn(y; €)PdE
< e [ | c-m(:)m & ~ Guly: &)
2 ‘G0 i(R NP
< @) » (QW(R_b))%e G(y;€) — Gnl(y; €)|7dS
1 —Uel2/2)+la)?

‘ED &= ey . e)|2

< m [, G B Gy:€) = Gulys ) P
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This implies that for all fixed parameters y € R¥ there is a uniform convergence
on D of U™ towards U, so that U(y; -, -) is continuous on [r, R) x R¢. Moreover,
as limit of measurable functions U, the function U : R¥ x [r, R) x RY — R is
measurable as well. Because U(y; R, z) = G(y; z) the function U : R x [r, R] x
R? — R is measurable.
(e) Now we get
Y7~ Uyt X0
< VPR UMyt X002 + 11U (3, X0%) = Ulys t, X702
< e Gy X5°) — Ga(ys X))l + U™ (y3 1, X7°°) — Ulys ¢, X7°) |2

where we have used Lemma Using dominated convergence both terms
converge to zero as n — 0o, because

U(yst, )| < e (y; )
as a consequence of (24) and step (d). Consequently,
YY" =U(y;t, X[") a.s. forall te€|[rR].

The function V,U(y;t, z)
(f) By Lemma we know that

R
“m/ V.U (y; 5, X2)o(s, X07) = 2452 ds
o Jt

R
= liTan/t || zmite — zvb||2 ds = 0.
Let

V(y;t,z) =E

R
Gl X f(s,X;’x,Y;ﬂtvw,Z;MN;’W)ds] .
t

By dominated convergence we have that

lm V, U™ (y;t, x)

= lim]E{G (y; X 55 NGO
R
+ / F (s, X07 U™ (3.5, X07), VU (3 s,Xﬁ@)a(s,Xﬁ@))Nz’l’(”)ds}
t

R
- ]E[G(y;XE“)N;’L(t’x)Jr / f(s,Xﬁ’w,}{gy?t"’”,Z‘g;t“)]\fﬁ’l’(”)ds]

¢
= V(yt,z)
for all (t,x) € [r, R) x RY, which also implies

Y(y; )
\% (y,tm)\<c.\/7
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by . Consequently,
R—5
tim [ VLU s X0 X5 = Vst X)X [ dt =0
for all 6 € (0, R —r) and
ZET =V(yt, X))o (t, X)) a.s.
for almost every t € [r, R). So we can re-define
Z{T =Vt Xy )o (8, X00).
(g) Next we show that

R
V(y;t,x) - G(y; X;{’I)Nltél’(t’x) + / f(S,X;"T, Ysy;t,x, Zsy;t’z)Nst’l’(t’z)dS
t

is continuous in (¢,z) on [r, R) x RY. For the first term this follows from the
classical theory from the properties of the transition density of X because

E [G(y;Xﬁx)Ngl’(t’x)} = /]Rd G(y; w)V,I(t, z; R,w)dw

and the continuity in (¢, z) follows from Proposition So it remains to show
that

R
(t,z) » B / f(s, Xbo yyite zute)NELED) gg
t

is continuous in (¢,z) on each D which is the product of [r,b] C [r,R) and a
compact subset of R?. Take a sequence (t,,x,) — (t,z) from D. We write

R

E [ 7o X072, 20 NG

t

_ / _ Xem(s)

R VR —sVs —t

E“\/ﬁf(s’X:’I,ng;t’x,Z‘g;t’m)][\/ﬁN‘f’l’(t’I)Hds
= / 01 (8) 4,2 (5)ds

(r,R)

(5) = X(t,R)(8)
vt ' \/R—S\/s—t’
Via(s) = Xur)(8)B[[VR —sf(s, X0, Y¥h Zv0o)] /s — tNER GO,

The family (¢)¢e[rp) is uniformly integrable for b € [r, R). The boundedness of
(Yt,2)(t.0)ep follows from

[Yea(s)] < VR —=s|lf(s, X0, VI, ZE07) [ov/s — 8 NEH D
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< VE- s[Kf LK 4 U (s 5 XE7)]
+||o||oo|v<y;s,xzvx>||z>} -

and the previous estimates on U and V obtained by and . Moreover,
lim;, (s) = pe(s) forall s e (r, R)\{t}.

As for E[G(y; X}téz)N}tél’(t’w)], we show that lim,, ¢y, 4, (s) = ¥ 4(s) for all s €

(r, R)\ {t}.

h) Finally, we show that V,U = V. For zg,z; € R% we have that
( ¥

1
U™(y;t,x0) — U”(y;faiﬁl) = / <VzU”(y;t, ro + A(wp — 960))7581 - $0>d)\
0

for r <t < R. By dominated convergence we have that

1
Uly;t,wo) — Uly;t,21) = / (V(y;t,zo + Mx1 — z0)), 21 — zo)dA
0

so that we are done. O

Lemma A.3 (L,-bound for the Z-process for a singular generator). Assume
condition (Ap,), 0 <r < R<T,2<p<oo and assume that X = (Xs)scir,R)
is the diffusion with parameters (b, o) started in some x, € RY. E| Consider the
BSDE

R R
U :/ h(s,Xs,Us,Vs)dsf/ V,dBy (26)
t t

with a generator h : [r, R) x R? x R% x R¥*? — R which is measurable with
respect to B([r, R)) x B(RY) x B(R?) x B(RY*?) and assume the following:

(i) h(s,-,u,v) is continuous in x for fixed s, u,v.
(i) |h(s,x,ur,v1) — h(s,x,ug,v2)| < L(|lug — ug| + |v1 — va|) for some L > 0.

(iii) |h(s,z,u,v)| < a(s,z) + Au| + plv| where a : [r,R) x RY — R is non-
negative and B([r, R)) x B(R?)-measurable, a(s,-) is continuous for fived
s and satisfies a(s,z) < k(s)[1 + |z|?] for some g > 0, where the function
k(.) > 0 is bounded on compact subintervals of [r, R) and

R
/ lae(s, Xs)|lpds < oc.
K

1We would need to write X2**" but use simply X to shorten the notation.
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Then there exists an unique solution (U, V') such that

p :
sup |Ut|+</ |v;2dt> €L,
r<t<R r

and a constant ¢ = ¢(p,o,b, T, L, \, i) > 0 such that
R
(D) NUllp < el ;" lals, X)lds]lp for t € [r, R),

(2) and there exists a Borel set N C [r, R) of Lebesgue measure zero such that

R
(s, Xo)llp
< d
Wil <o [ B0,

for allt € [r, R)\W.

Proof. The local boundedness of x ensures ftR

%ds < oo for t € [r, R).
The existence of the unique Ly-solution (U, V') follows from [0, Theorems 4.1 and
4.2] and the statement (1) follows from [0, Proposition 3.2] where we consider the
BSDE with the generator h®) (s, z,u,v) := h(s,z,u,v) if s € [t, R) and h(*) := 0

otherwise, and the accordingly modified ev. So we turn to the statement (2).

(a) Fix a bump-function v : R? — [0,00) € C§° with v(z) = 0 for |z| > 1 and
Jgav(@)dz =1. For N > 1,e >0, z € R? and £ € R define

1 T
ve(x) = v (g) ,
he n(s,z,u,0) = (0% hN)(s,2,u,v)

where AV := (hiv/\/a, vy hfiv/\/g) with ¢V = (¢ AN) V (=N) for £ € R (so that
|[hN| < N) and the notation v® indicates that the convolution is taken with
respect to z. Assumption (ii) implies that

e, n (5,2, u,0)] < (02 % &™) (s,2) + Ajul + plo].

The function h. y is uniformly Lipschitz in (z,u,v) as

|ha,N(8,$1,u1’U1) - ha,N(57$2,U2,U2)|

< L(lug —ug| 4+ v —v2]) +  sup  |Vahe n(s' 2", 0/, 0")] |21 — 22,
sz’ ul v’

where we note that V/ h. ny is a matrix, and

o 0 () s g e

e ol (B1(RY)) N || V]| so.-

|Varhe n(s', 20, 0")] = e 471

IN
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(b) Fix N > 1 and € > 0, let
ho(s,x,u,v) == he N(8,2,u,0) X[ R)(S)

and ag(s,z) = (vZ * a™)(s,2)x[rr)(s). Let (U° V) be the solution of our
BSDE with h replaced by hg according to [8, Theorem 2.6], where U? :=
A%(s, X,) for a continuous and bounded function A° : [r, B] x RY — R%. Tt is
also shown that A x Q({(t,w) € [r, R] x M : |V?| > ¢}) = 0 for some ¢ > 0. By
considering a Picard iteration

R R
va’“:/ ho(s,Xs,Ao(s,XS),KO’k_l)ds—/ VOrdB,
t

t

with U%Y = 0 one can show by induction that V%% can be realized as a mea-
surable functional of s and X and obtains finally that there is a measurable
function BY : [r, R] x R? — R¥? with ||B°|| < ¢, such that one can realize
(using uniqueness from [8, Theorem 2.6]) V° as V0 = BY(s, X,). Now

ho(s, X, U2, V) = Eho(s, X,, U2, V2) +/ NdB; a.s.,
where the matrix A] is obtained via the PDE approach, so that we get, a.s.,

R R
UE+/ V2B, = /ho(s,Xs,Ug,v;O)ds

R R (R
/ Eho(s, X, U2, VO)ds +/ / Ndsd By
T T t
by a stochastic Fubini argument and
R
V0 = / Aids a.s. for a.e. t € [, R].
t

If the set of those t is denoted by M, then for t € M,

R
AR st[nvmw
R 0 0
h XS, b S

wa/'HM& U2 VO,

t \/S_t

R lao(s, X)llp + MUl + VOl
< Ry ds

vs—t

P t
oy [T,
P t \/S—t

with
b(s) = llao(s, Xs)llp + MU lp-
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Applying the same inequality to s € M gives by iteration for ¢ € M that

™
R (@) +ulVelly g,

/R Y(s) + pukiy fs Jiw—s

t s—t

= /{p//t f%ds—l—,umfﬂB (272)/15 P(s)ds +
11\ [
B (05) [ V2l
11 )
(/ﬁ)p/ +\/T[,LK,12)/B (2’2))\/}5 \/%ds
11\ [*
P8 (35 ) [ 172l

It follows from the boundedness properties of V2 that fTR VO pds < oo. For
this reason we can apply Gronwall’s lemma to derive

ds

Rp!

IN

oy )? [ W)
||‘/to||p < (ky + \FTMK;?),B(I/Z 1/2))6(” p) B(1/2,1/2)(R t)/t \/ﬁds

for t € M. Next we estimate ¢(s) by

R
B(5) < llao(s, Xo)llp + Aegy / o (w0, X i,

where we use Lemma 1) (with the same (L, \, 1)), and get

R X)|p+ [ X o) llnd
”V;OHP < dl/ ||040(8, )Hp fs Hao(w )”p wds
t Vs—t
R
llovo (s, Xs)lp
< di(14+2T —"d
< ally )/t it ©

with d; := (ﬁp/ +VTus2 B (3, %)) e(‘“‘P’)zB(%’%)T(l + Acq@s)(r)). Hence, re-
writing the dependence with respect to N and € in our estimates, we have

proved
R T N
X
||V;N’E||p§d2/ H(Ua * o )(Sa s)deS (27)
t \/S*t

forte M = [T, R]\NN“S with d2 = dl(l + QT)
(c) Let N := Unn Nn1/n and let (UXN, VN))telr,r) be the solution of l) with
the generator h"Y. Because

R
hfg/ hne(s, Xo, UN VY — bV (s, X, UN V)| J2ds = 0
€ ‘s
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by dominated convergence (here we use the continuity of A in z) and
|hne(r, 2, ur,v1) — Ay e (r, 2, uz, v2)| < Ll|uy — ug| + [v1 — va],

Lemma implies that

n—oo

R
lim [ VN —VN|3ds =0

for all N = 1,2, ... Hence there are sub-sequences (nf\' )52, such that

Jim VNV _yN 0 Qx A ae.
— 00

and a Borel set My C [0,7] of Lebesgue measure zero such that

VR L yN e for s d N

Applying Fatou’s lemma on the left-hand side of and dominated conver-
gence on the right-hand side (note that |[v* * ™| < N and that « is supposed
to be continuous in z), we derive

R N R
X,)|| (s, Xo) |
VN <d ||Oé (57 Pd <d / ) Pd
”t”p—Q/t Vst =) s @

for all t € [r, R)\(UxN/—; Nn' UN). In the same way, Lemma
R
[ (6 X0 U V) = B, X U Vo) fads 0
and |hN (s, z,u1,v1) — A (s, 2, u, v2)| < L{|us — uz| + |v1 — v2|] give

R
tim [V~ Vilids =0
N—oo /,.

and the existence of a subsequence (Ny)$2; such that

lim [VM — V=0 QxA\ ae.

k—o0
Hence there is some Ny C [r, R] of Lebesgue measure zero such that

VNE 5 Ve as. for s @ N,

Again applying Fatou’s lemma gives that

R
(s, Xs)llp
Vill, < d — 2 Fd
[Vellp < Z/t — $

forall N =1,2, ... and t € [r, R]\(UxN/—o Nnv UN). O
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B Appendix

Proposition B.1 ([0, pp. 260, 72, 74, 44]). For b,o satisfying (A ), there
erists a continuous transition density

F:{(t’$7555)10§t<3§Tand.’17 fERd}H(O OO)

such that P(X* € B) = [, T(t,x;5,£)d¢ for 0 <t < s <T and B € B(RY),
where

Xbe :x—i—/ b(r,Xﬁ"”)dr—&—/ o(r, XL dW,.,
t t
such that the following is satisfied:

(i) For all multi-indices m and k with |m|+2k < 3 one has that the derivatives
DED™T(t,2;5,€) exists and are continuous on [0,5) x R? and that the
differentiation can be done in any order.

ii) For0<t<s<T and (z,¢) € R* x R? one has
(i)

9 2p _
S0+ 3 L4, D2y + (b, v,T) =

where A = o0* and D? = (L)d

Ox;0x i1 .

(iii) For all multi-indices m with |m| < 3 there exists a constant ¢ = ¢y, > 0
such that for 0 <t < s <T and (z,§) € R? x R? one has that

DT (i Ol < e s - F ot (25

[n|2

where vi(n) := We 2,

Remark B.2. The weights N "(12) are essential so that we briefly recall their
construction. For notational sunphc1ty we let £ = 0 and omit the superscrlpts

(t,x). Fori =1onehas Nj' := 2 (fr( (s, X5) VX, VX~ )dW) where

R—r
VX = V. b(t, Xe)VXidt + V,o(t, X)) VX dW; with VXo = Ira, the identity
matrix (see, for example, [20, [I7]). To consider i = 2 we follow [I7] and let
0<r<R<T,p:=(r+R)/2 g: R* - R be a Borel measurable poly-
nomially bounded function and F' like in . For k£ = 1,...,d we have that
(OF [Oxy,)(r, X,) = E(F(p, X,)N)' (k)| F,) a.s. Applying the V-operator, which
can be justified by standard methods, we derive that, a.s.

V. (OF/0xy)(r, X, ) VX,
- E(er(pa XP)VXPN;’I(]C) +F(p, XP)VN;’l(k”fr)
= E(E(g(Xp)NL'F)VX,N (k) + E(g(XR)|F,) VNI (k)| F,).

Therefore we can take Np>(k) := [N§’1VXPN;’1(k) + VNIHR)(VX,) ™! to
obtain V,(9F/0xi)(r, X,) = E(g(Xg)Np> (k)| F,) a.s
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Proof of Proposition Assume that we have the diffusions X! =
(XDiepo,r) and X2 = (X2)iepo,1,) starting in 21 € R? and x5 € R? respec-
tively, satisfying our assumptions with the corresponding transition densities
I'y and T', and assume that they satisfy

Lyt 2;8,8) < Mo (ut, ve; us, ve)

for some M, p,v >0 and all z,¢& € R and 0 <t < s < Ty and with T, = uT}.
Let g : R — IR be a polynomially bounded Borel function. Then, for zo = vy,

Elg(x4,) - E(g(X})IF)P < 2P%E|g<xﬂl> BG(X20) | Fur)l?

with

In fact, we have that

Elg(X7,) — B(g(X1,)|F)[

i o b6 =500

[0, 213t )0 (¢, 25 Th, T (8, 25 T, m)dedEdn

W Jo S o st

(0, vay; ut, ve)To(ut, va; pTy, vE)Ta(ut, va; pTy, vy)dedédn

= fo L Lm0 o

['2(0, w25 pt, 2)Ta(ut, 73 To, E)Va (it 23 To, n)dadEdn

IN

IA

M3 _
< P Bl§(XE,) - BGXE ) Fu)l”

where we used relation @ This implies our assertion by taking (I'y,z1,71) =
(T, o) and Ty = T1, v = 1/cqgm) and X7 = vag + W, O
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