
HAL Id: hal-00572375
https://hal.science/hal-00572375v1

Submitted on 19 Apr 2011 (v1), last revised 21 Jun 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path Optimization for Humanoid Walk Planning: an
Efficient Approach

Antonio El Khoury, Michel Taïx, Florent Lamiraux

To cite this version:
Antonio El Khoury, Michel Taïx, Florent Lamiraux. Path Optimization for Humanoid Walk Planning:
an Efficient Approach. 2011, pp.icinco.org. �hal-00572375v1�

https://hal.science/hal-00572375v1
https://hal.archives-ouvertes.fr

PATH OPTIMIZATION FOR HUMANOID WALK PLANNING: AN
EFFICIENT APPROACH

Antonio El Khoury1,2, Michel Taı̈x1,2, Florent Lamiraux1,2

1CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
2Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France

aelkhour@laas.fr, taix@laas.fr, florent@laas.fr

Keywords: humanoid robot, motion planning, walk planning, nonholonomic, holonomic, optimization, A*, HRP-2, sam-

pling.

Abstract: The paper deals with walk planning for humanoid robots in a cluttered environment. It presents a heuristic

and efficient optimization method that takes as input a path computed for the robot bounding box by a random

diffusion algorithm, and produces a path where a discrete set of configurations has been reoriented using an

A* search algorithm. The resulting whole-body trajectory is a realistic and time-optimal one. We validate our

method in various virtual scenarios and on the real humanoid robot HRP-2.

1 RELATED WORK AND

CONTRIBUTION

The problem of humanoid walk planning can be de-

fined as follows: given an environment and a hu-

manoid robot with start and goal placements, we need

to find a whole-body trajectory that is collision-free.

This trajectory should ideally represent realistic hu-

man motion, i.e. a human being would have walked

the same way and taken a similar path if put in the

same conditions. This additional constraint is desir-

able since humanoid robots are bound to move around

in human-made environments such as homes, offices,

and factories, and because it can help them blend in

between humans.

Finding such trajectory has been extensively stud-

ied and is still a current field of research.

1.1 Humanoid Walk Planning

The problem of motion planning is now well formal-

ized in robotics, and several books present the vari-

ous approaches (Latombe, 1991; Choset et al., 2005;

LaValle, 2006). Deterministic algorithms have the

nice property of being complete, i.e. they can tell

whether a solution exists or not. These algorithms are

however limited for simple systems because the com-

Figure 1: Humanoid Robot HRP-2 using holonomic motion
(side-stepping) to pass between two chairs.

putational cost increases exponentially with the num-

ber of degrees of freedom (DoF). They cannot thus

be applied for human-like figures which are high-DoF

systems.

With sampling-based methods, which rely on ran-

dom sampling in the configuration space (CS) and use

for instance Probabilistic Roadmaps (PRM) (Kavraki

et al., 1996) or Rapidly-Expanding Random Trees

(RRT) (Kuffner and LaValle, 2000), it is possible to

solve problems for systems with a large number of

DoF.

Such algorithms possess the weaker propery of

probabilistic completeness, meaning that if a solution

exists, it will be surely found in finite time. In prac-

tice, probabilistic algorithms such as RRT-Connect

can compute feasible trajectories for high-DoF de-

vices in a reasonable time.

The motion planning problem is indeeed a com-

plex one in the case of humanoid robots, which are

highly sized redundant systems that have to verify

stabiity constraints. Different planning strategies can

be found in litterature.

One category relies on whole-body task planning:

kinematic redundancy is used to accomplish tasks

with different orders of priorities (Khatib et al., 2004;

Kanoun et al., 2009; Dalibard et al., 2009). Static bal-

ance and obstacle avoidance can thus be defined as

tasks that the algorithm has to respect.

One algorithm was specifically designed for hu-

manoid footstep planning in (Kuffner and LaValle,

2000). Starting from an initial footstep placement, it

uses an A* graph search algorithm (Hart et al., 1968)

to explore a discrete set of footstep transitions. The

search stops when the neighborhood of the goal foot-

step placement is reached. This approach is not prac-

tical in some special environments with narrow pas-

sages, and notable improvement would be the work

of (Xia et al., 2009) which reduced the computational

cost of footstep planning by using an RRT-style plan-

ning algorithm.

Another strategy consists of dividing one high-

dimensional problem into smaller problems and solv-

ing them successively (Zhang et al., 2009). The idea

of dividing the problem into a two-stage approach is

described in (Yoshida et al., 2008): A 36-DoF hu-

manoid robot is reduced to a 3-DoF bounding box

linked to a 6-DoF bar that the robot is holding. If

we consider the robot alone, a configuration q con-

sists of 2 translation variables x and y in the horizon-

tal plane and 1 rotation variable θ around the verti-

cal axis. Using the robot simplified model, the PRM

algorithm first solves the path planning problem and

generates a feasible path for the bounding box. A ge-

ometric decomposition of the path places footsteps on

it, and a walk pattern generator based on (Kajita et al.,

2003) finally produces the whole-body trajectory for

the robot. During this second stage, dynamic con-

straints are taken into account for some specific as-

pects of humanoid planning: static and dynamic bal-

ance, for instance require robot Center of Mass (CoM)

and the Zero-Momentum Point (ZMP) respectively to

lie within its support polygon. In (Moulard et al.,),

this two-stage approach is also used; numerical op-

timization of the bounding box path path produces

a time-optimal trajectory that is constrained by foot

speed and distance to obstacles.

Another important issue is the notion of holo-

nomic motion: while wheeled robots always remain

tangent to their path, thus following a nonholonomic

constraint, legged robots can also move sideways, and

their motion can be described as holonomic. The path

planning scheme in (Yoshida et al., 2008) is designed

to this end; a PRM algorithm first builds a roadmap

with Dubins curves (Dubins, 1957); but such curves

impose a nonholonomic constraint and narrow pas-

sages cannot be crossed. The roadmap is therefore

enriched in a second step with linear local paths that

allow the robot to move sideways. As a result this

planning scheme generates motion such that the robot

remains tangent to its path most of the time and uses

sidestepping only in narrow passages.

Moreover, (Mombaur et al., 2010; Truong et al.,

2010) conducted a series of walking experiments that

allowed them to build a model for human gait; if a per-

son walks long distances, its body will roughly remain

tangent to its path most of the time, while holonomic

motion will be used over smaller distances. This is

a property that is desirable for our paths if we want

to have realistic motion, and holonomic motion can

be as well used to pass through narrow spaces. This

work shows that it is important to decouple the trajec-

tory orientation and the robot orientation in order to

produce realistic walking.

1.2 Contribution

The work of (Moulard et al.,) solves the walk plan-

ning problem in a natural way, i.e it uses numerical

optimization to minimize the time it takes the robot to

walk along the path while following speed and ob-

stacle distance constraints. After having tried this

approach, we came to the empirical conclusion that

achieving successful numerical optimization in any

kind of environment is a difficult and computationally

expensive task; indeed, it requires computing a large

set of parameters to fully define the optimized path.

While using the same two-stage approach of

(Yoshida et al., 2008), we propose a simpler heuris-

tic method that generates realistic time-optimal hu-

manoid trajectories. We first replace the PRM al-

gorithm and the Dubins local paths with an RRT-

Connect algorithm and linear local paths. The path is

then optimized by locally reorienting the robot bound-

ing box on a discrete set of configurations of the path.

We give priority to nonholonomic motion and use

holonomic motion such as side-stepping only to pass

in narrow passages and avoid nearby obstacles.

Next section presents our method and explains

how it is integrated in the motion planning scheme.

(a)

(c)

(b)

Figure 2: Top view: (a) RRT-Connect path for the bounding
box passing between two chairs. (b) Optimized bounding
box path by random optimization. (c) Optimized bounding
box after adding optimization by regular sampling.

We show in section 3 some examples on different sce-

narios. The HRP-2 platform (Kaneko et al., 2004) is

used to execute a real scenario.

2 OPTIMIZATION BY REGULAR

SAMPLING

Assuming we have full knowledge of the environ-

ment, the RRT algorithm produces in offline mode a

collision-free piecewise linear path PRRT for the robot

bounding box, i.e. the path consists of the concatena-

tion of linear local paths LPRRT .

Due to the random nature of RRTs, PRRT may

not be optimal in terms of length, and a preliminary

random shortcut optimization can be run in order to

shorten it (See Figure 2). While the optimized path

P is collision-free, the bounding box orientation is

such that it could lead to an unrealistic trajectory that

is, moreover, not time-optimal. For instance, the hu-

manoid robot could spend a long time walking side-

ways or backwards over a long distance in an open

space.

We use a decoupled approach and introduce an ad-

ditional optimization stage to address this issue in the

next section.

2.1 Bounding Box Path Optimization

Note that each configuration q can be written as:

q = (X, θ) (1)

where X = (x, y) is a vector describing the bounding

box position in the horixzontal plane, and θ gives its

orientation. Our optimizer reorients the bounding box

along P by changing θ while keeping the same value

for X.

For this purpose, we run an A* search algorithm;

we regularly sample P and, using a discrete set of pos-

sible orientations for each sample configuration and

an adequate heuristic estimation function, we mod-

ify the bounding box orientation along P. An op-

timized path Popt is created and leads to a realistic

time-optimal trajectory for the humanoid robot. Each

of our approach main components is described in the

following sections.

2.1.1 Preliminaries

After running Random Optimization on the piecewise

linear path PRRT , the path P is also piecewise linear

and can be written as a continuous map P from the

interval [0,LP] to the three-dimensional configuration

space (CS), where LP is the length of P. Any configu-

ration q of P at distance l from the start configuration

can be then written as

q = P(l) if l ∈ [0,LP]. (2)

We also have qs = P(0) and qg = P(LP)
Let dsample ∈ R

∗
+ be a sampling distance. Sam-

pling P with a distance dsample means dividing each

local path LPj of length LLPj
of P into smaller lo-

cal paths of length dsample; each new local path end

is a sample configuration. The nth sample configura-

tion of P in its intial state can be obtained by indexing

new local path ends starting from qs, and is denoted

by qinit
n .

Now let us define the possible orientation states.

We aim to make a humanoid robot reach its goal as

soon as possible. Since our robot is faster while walk-

ing straight than while side-stepping, we will attempt

Popt

G

P

qgqs

lat2

lat1

front

init

n n+1

Figure 3: Each initial sample configuration can be rotated
and be in one of four states. Starting from qs, the A*
search algorithm searches the graph G that contains only
valid nodes and arcs to produce an optimized path Popt .

to change the orientation of each inital sample config-

uration qinit
n such that the bounding box is tangent to

the local path and introduce a new configuration de-

noted by q
f ront
n . To take into account the fact that there

may be obstacles that forbid a frontal orientation, we

also create q
lat1
n and q

lat2
n that are rotated by π

2
and−π

2
related to the local path tangent (See Figure 3). One

particular case is local path end configurations: Fig-

ure 4 shows how we use the mean direction of the two

adjacent local paths to define frontal and lateral con-

figurations. This is done to ensure a smooth transition

between two local paths.

A sample configuration whose orientation is un-

known will be denoted by qstate
n . It can have any ori-

entation state of the set {init, f ront, lat1, lat2} except

for qs and qg which remain in their initial state. Ide-

ally, our algorithm should be able, as long there are

no obstacles, to put each sample configuration in the

frontal state, create a new path Popt , and generate a

time-optimal trajectory for the robot.

We run an A* search to achieve our goal, and we

fully describe the algorithm functions in the following

section.

2.1.2 A* Function Definition

An A* search algorithm can find an optimal path in

a graph as long as a graph and an evaluation function

are correctly defined. Starting from qs, A* expands in

each iteration the possible transitions from one sam-

ple to the next one in the graph and evaluates with the

evalutation function the cost of going through each

different state (See Figure 3).

A graph G is defined to be a set of nodes and arcs.

Each node consists of a configuration qstate
n and is in-

dexed by its sample number; all nodes that have the

same index represent different orientation states for

the bounding box at one point in the path, and are at

equal depth in G if we consider qs as its root. An

arc represents a linear local path that connects exclu-

sively one sample configuration to the next one and

is denoted by qstaten
n q

staten+1

n+1 . A valid node is defined

O

qs qs

qn
lat1 qn

lat1

qn+1
front

qn+1
lat1

Figure 4: Local path end configurations are reoriented by
taking into account the adjacent local path directions.

vf

vlat

vmax
lat

vmax
f

vmin
f

C

−
v

Figure 5: The bounding box speed vector v is bounded in-
side an area defined by the speed constraint C.

to be a configuration that does not generate collisions

with obstacles, and a valid arc is a collision-free linear

local path.

We could chose to build the whole graph G be-

fore running A* by testing all possible nodes and arcs

and making sure they are collision-free. But collision

tests are rather slow, and A* uses a heuristic estima-

tion function to avoid going through all nodes. In or-

der to save computation time, we start with an empty

graph G and build the necessary nodes and arcs only

when necessary. We need to define a successor oper-

ator for this puropose.

The Successor operator Γ(qstaten
n) Its value

for any sample node qstaten
n is a set of pairs

{(q
staten+1

n+1 , cn,n+1)}, where q
staten+1

n+1 denotes a

successor node, and cn,n+1 is the cost of going from

qstaten
n to q

staten+1

n+1 .

A node qstaten
n can thus have up to four succes-

sors. Note that collision tests are run for each node

and only valid nodes and arcs are added to the graph

G. Arcs q
lat1
n q

lat2
n+1 and q

lat1
n q

lat2
n+1 are never added be-

cause switching from a lateral orientation to another

is never a better alternative to keeping the same lateral

orientation state.

We define the cost cn,n+1 to be the distance

D(qstaten
n , q

staten+1

n+1) between two nodes of G; it com-

putes the walk time from qstaten
n to q

staten+1

n+1 . D should

give short time for frontal walk and penalize side-

stepping and walking backwards. We therefore define

the speed constraint C to be

C =















(v f

v
f
max

)2 +(vlat

vlat
max

)2−1 if v f >= 0

(v f

v
f
min

)2 +(vlat

vlat
max

)2−1 if v f < 0

(3)

where v f and vlat are respectively the frontal and lat-

eral speed, and v
f
min v

f
max and vlat

max their minimum and

maximum values.

Figure 5 shows that the inequality C ≤ 0 con-

strains the bounding box speed in a zone defined by

two half-ellipsoids. D(qstaten
n , q

staten+1

n+1) can be then

computed by sampling the arc and integrating this

speed constraint along it.

Having fully definined the successor operator, we

can now define the A* evaluation function that will

allow it to choose wich node to expand at each itera-

tion.

The Evaluation Function f (qstate
n) It is the actual

cost of an optimal path going through qstate
n from qs to

qg and can be written as:

f (qstate
n) = g(qstate

n)+h(qstate
n) (4)

where g(qstate
n) is the actual cost of the optimal path

from qs to qstate
n and h(qstate

n) is the actual cost of the

optimal path from qstate
n to qg.

During execution of A*, we usually only have

an estimate ĝ(qstate
n) of g(qstate

n) and we need to de-

fine an estimate heuristic function ĥ(qstate
n) such that

ĥ(qstate
n)≤ h(qstate

n) to ensure that the algorithm is ad-

missible, i.e. the path from qs to qg is optimal. Since

the robot is fastest while walking straight forward in

the absence of obstacles, we define ĥ(qstate
n) as:

ĥ(qstate
n) = D(qstate

n , q
f ront
n+1)

+

Nsample−n−2

∑
k=1

D(q
f ront
n+k , q

f ront
n+k+1)

+D(q
f ront
n+1 , qg)

(5)

where Nsample is the total number of initial sam-

ple configurations in P including qs and qg, and the

three distance terms respectively represent the cost

of moving towards the frontal orientation, of walking

frontally along P, and of the final motion towards the

goal node.

Now that our A* functions are fully defined, we

can, as described in Algorithm 1, run a search algo-

rithm to compute an optimal path Popt by changing

the orientation of each sample node. An example is

shown in Figure 6.

Algorithm 1 Regular-Sampling-Optimization (P)

Popt ← /0

qs← start configuration of P

qg← goal configuration of P

dsample← sampling interval size

Popt ← A*(qs, qg, P, dsample)

return Popt

dsample

O2

1O

qs

qn+1
front

qn
lat1

qn
init

qn+1
init

Figure 6: Local paths are regularly sampled (grey) and each
sample configuration is reoriented (green) while consider-
ing obstacles (red).

2.2 Motion Generation for a Humanoid

Robot

A collision-free path P for the robot 3-DoF bounding

box can be found using RRT-Connect and Random

Optimization. One should note that this optimization

tends to push the bounding box close to obstacles if

we use a regular euclidean distance. This may pre-

vent our optimizer from sucessfully putting config-

urations in a frontal state, and we therefore use the

same distance function defined in subsubsection 2.1.2

to penalize lateral and backwards walking.

Our regular sampling optimization is then applied

on the path and produces a path Popt that gives priority

to nonholonomic motion.

We now have the bounding box trajectory and we

would like to make the humanoid robot walk along

this trajectory . A footstep sequence is thus generated

along Popt by geometric decomposition of the path,

and the pattern generator cited in subsection 1.1 then

produces the robot whole-body trajectory by comput-

ing a full configuration every 5ms. Since the robot re-

mains inside the bounding box while walking and the

pattern generator avoids self-collisions, we are guar-

anteed to get a collision-free trajectory. The trajectory

is stored in a file that can be played on the humanoid

robot in open loop.

3 EXAMPLES

This section presents experimental results of our path

optimizer after it has been inserted in the previously

Table 1: Computational time (ms) of each planning stage for the presented scenarios.

RRT-Connect RO RSO Robot Trajectory Total

Chairs 3,968 1,887 2,144 66,140 74,140

Galton 91.69 2,497 237.8 65,730 68,560

Apartment 1,212 2,425 2,412 222,800 228,800

Figure 7: Perspective view of the simulated HRP-2 trajec-
tory on the final optimized path passing between two chairs.

described walk planning scheme.

We ran simulations of the humanoid robot HRP-2

in three scenarios. The first one is a small environ-

ment where HRP-2 has to cross a distance of about

4 m while passing between two chairs. The second

environment is uncluttered with few obstacles lay-

ing around, while the last one is a bigger apartment

environment with 3 rooms where the robot has to

move from one room to another while passing through

doors. Due to its shoulder wideness and swaying mo-

tion, HRP-2 cannot walk frontally through a normal

door. We therefore use doors that are 1.3 m wide,

such that the shoulder length vs door wideness ratio

is equal to that of a human passing through a nor-

mal door. We also replay on the real robot HRP-2

the trajectory that is computed offline for the chairs

scenario.

We set our distance parameters v
f
max, vlat

max, v
f
min to

0.5, 0.1, and 0.25 respectively. We also need to de-

fine the sampling interval size parameter dsample for

our optimizer. Preliminary tests showed that a value

equal to size
6

, where size is our humanoid’s size, gave

satisfying results.

The implementation of our algorithm uses

KineoWorksTM (Laumond, 2006) implementation of

random diffusion algorithms and collision checking.

Simulations were performed on a 2.13 GHz Intel Core

2 Duo PC with 2 GB RAM.

Table 1 shows computationt times for each stage

of our planning scheme: RRT-Connect, Random Op-

timization (RO), our optimizer which we call Regular

Sampling Optimization (RSO), and the whole-body

robot trajectory generation.

In order to show our optimizer contribution, we

Table 2: Humanoid robot walk time (s) for the presented
scenarios using RO alone and a RO-RSO combination.

RO RO+RSO

Chairs 40 35

Galton 66 57

Apartment 200 120

also measure robot walk times by creating a trajec-

tory straight away after RO, and comparing it with a

trajectory where we added the RSO. Walk times can

be seen in Table 2.

3.1 “Chairs” Scenario

Figure 2 shows the bounding box RRT path and the

RO path for the chairs scenario. We can see that RO

creates a shorter path, but the bounding box starts ro-

tating from the beginning of the path even though the

two chairs are still far. This causes the robot trajec-

tory to be unrealistic on one hand and, since walking

sideways takes a longer time than walking straight, to

be not time-optimal on the other hand.

But after applying our RSO, we see that the

bounding box stays frontal and rotates only when it

reaches the chairs. Figure 7 and Table 2 show that

the walk time shorter by 5 s and the final trajectory

for HRP-2 is more realistic. Note that the RSO takes

2,144 ms to be executed on the chairs path, which is

less than 3% of the total walk planning computation

time.

The same trajectory was executed in open loop

Figure 8: Perspective view of HRP-2 optimized trajectory
in the Galton board scenario.

Figure 9: Perspective view of HRP-2 optimized trajectory
in the apartment scenario.

on the real humanoid robot HRP-2, and it suceeded

in prioritizing nonholnonomic motion while walking

sideways to pass between the chairs (See Figure 1).

3.2 “Galton” Scenario

Since this is an uncluttered environment, HRP-2

should be able to walk straight on the whole trajec-

tory. We see in Figure 8 that this is the case; indeed

RO uses the speed constraint defined in subsubsec-

tion 2.1.2 to shorten the RRT path while keeping suf-

ficiently away from obstacles.

3.3 “Apartment” Scenario

Our planning scheme is finally applied in the apart-

ment scenario. In Figure 9, we see that HRP-2 man-

ages to walk frontally through the doors. As with the

previous scenarios, the final trajectory is more real-

istic than a trajectory where RSO is not used. The

added computation time for using RSO is 2,412 ms,

which is insignificant compared to the 228 s it takes

for the whole planning scheme.

Furthermore, since the environment is signifi-

cantly larger and more constrained than the previous

ones, the walk time difference is more striking: Ta-

ble 2 shows that it takes the robot 80 s less to cross

the apartment when an RO-RSO combination is ap-

plied to the RRT path. We realized a video show-

ing the superimposed trajectories and the time dif-

ference. It can be viewed along with videos show-

ing each planning stage for all scenarios at http:

//humanoid-walk-planning.blogspot.com/

4 CONCLUSION

In this paper, we have presented a novel simple opti-

mization method for humanoid robot walk planning.

It uses an A* search that takes as input a path com-

puted for the robot bounding box by a random diffu-

sion algorithm, and produces a path where a discrete

set of configurations has been reoriented to generate

a realistic time-optimal humanoid trajectory. The re-

sults show that new trajectories are much more satis-

fying while the added computation time is insignifi-

cant compared to the whole planning scheme.

Certainly, the decoupling between trajectory ori-

entation and robot orientation of this work can be

used in other fields such as graphics animation on

digital actors to adapt the body orientation with re-

spect to the goal during locomotion. With a mo-

tion capture library containing pre-recorded nonholo-

nomic and holonomic walk behaviors, it is possible to

lay this behavior on the actor trajectory and produce

realistic movements.

REFERENCES

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A.,
Burgard, W., Kavraki, L. E., and Thrun, S. (2005).
Principles of Robot Motion: Theory, Algorithms, and
Implementations. MIT Press, Cambridge, MA.

Dalibard, S., Nakhaei, A., Lamiraux, F., and Laumond, J.-
P. (2009). Whole-body task planning for a humanoid
robot: a way to integrate collision avoidance. In Hu-
manoid Robots, 2009. Humanoids 2009. 9th IEEE-
RAS International Conference on, pages 355 –360.

Dubins, L. E. (1957). On curves of minimal length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents. American
Journal of Mathematics, 79(3):pp. 497–516.

Hart, P., Nilsson, N., and Raphael, B. (1968). A Formal Ba-
sis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cy-
bernetics, 4(2):100–107.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada,
K., Yokoi, K., and Hirukawa, H. (2003). Biped
walking pattern generation by using preview control
of zero-moment point. In Robotics and Automa-
tion, 2003. Proceedings. ICRA ’03. IEEE Interna-
tional Conference on, volume 2, pages 1620 – 1626
vol.2.

Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H.,
Kawasaki, T., Hirata, M., Akachi, K., and Isozumi, T.
(2004). Humanoid robot hrp-2. In Robotics and Au-
tomation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on.

Kanoun, O., Yoshida, E., and Laumond, J.-P. (2009). An
optimization formulation for footsteps planning. In
Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-
RAS International Conference on, pages 202 –207.

Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M.
(1996). Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. Robotics and
Automation, IEEE Transactions on, 12(4):566 –580.

http://humanoid-walk-planning.blogspot.com/
http://humanoid-walk-planning.blogspot.com/

Khatib, O., Sentis, L., Park, J., and Warren, J. (2004).
Whole-body dynamic behavior and control of human-
like robots. I. J. Humanoid Robotics, 1(1):29–43.

Kuffner, J.J., J. and LaValle, S. (2000). Rrt-connect: An
efficient approach to single-query path planning. In
Robotics and Automation, 2000. Proceedings. ICRA
’00. IEEE International Conference on.

Latombe, J.-C. (1991). Robot Motion Planning. Kluwer
Academic Publishers, Norwell, MA, USA.

Laumond, J.-P. (2006). Kineo cam: a success story of mo-
tion planning algorithms. Robotics Automation Mag-
azine, IEEE, 13(2):90 –93.

LaValle, S. M. (2006). Planning Algorithms. Cam-
bridge University Press, Cambridge, U.K. Available
at http://planning.cs.uiuc.edu/.

Mombaur, K., Truong, A., and Laumond, J.-P. (2010). From
human to humanoid locomotion–an inverse optimal
control approach. Auton. Robots, 28:369–383.

Moulard, T., Lamiraux, F., and Wieber, P.-B. Collision-
free walk planning for humanoid robots using numer-
ical optimization. Retrieved from http://hal.archives-
ouvertes.fr/hal-00486997/en/.

Truong, T.-V.-A., Flavigne, D., Pettre, J., Mombaur, K.,
and Laumond, J.-P. (2010). Reactive synthesizing
of human locomotion combining nonholonomic and
holonomic behaviors. In Biomedical Robotics and
Biomechatronics (BioRob), 2010 3rd IEEE RAS and
EMBS International Conference on, pages 632 –637.

Xia, Z., Chen, G., Xiong, J., Zhao, Q., and Chen, K.
(2009). A random sampling-based approach to goal-
directed footstep planning for humanoid robots. In
Advanced Intelligent Mechatronics, 2009. AIM 2009.
IEEE/ASME International Conference on, pages 168
–173.

Yoshida, E., Esteves, C., Belousov, I., Laumond, J.-P.,
Sakaguchi, T., and Yokoi, K. (2008). Planning 3-
d collision-free dynamic robotic motion through it-
erative reshaping. Robotics, IEEE Transactions on,
24(5):1186 –1198.

Zhang, L., Pan, J., and Manocha, D. (2009). Motion plan-
ning of human-like robots using constrained coordi-
nation. In Humanoid Robots, 2009. Humanoids 2009.
9th IEEE-RAS International Conference on, pages
188 –195.

	Related Work and Contribution
	Humanoid Walk Planning
	Contribution

	Optimization by Regular Sampling
	Bounding Box Path Optimization
	Preliminaries
	A* Function Definition

	Motion Generation for a Humanoid Robot

	Examples
	``Chairs'' Scenario
	``Galton'' Scenario
	``Apartment'' Scenario

	CONCLUSION

