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Closed-form Expression of the Response-Time of an

Open-Channel

S. Munier 1, and G. Belaud 2, and X. Litrico 3

Abstract

Computing accurately the response time of an open-channel is of extreme importance

for management operations on canal networks, such as feed-forward control problems. The

methods proposed in the literature to approximate the response time do not always account

for the influence of a cross-structure at the downstream end of a canal pool, which may have

a significant impact on the response time. This paper proposes a new approach to compute

the response time, accounting explicitly for the backwater and the feedback effects due to

the downstream cross structure. The method provides a distributed analytical expression of

the response time as a function of the characteristics of the canal (geometry, roughness) and

of the downstream cross structure. A test canal with a weir or a gate at the downstream

end is used to compare the new method with some others. Results show that the proposed

expression accurately reproduces the response time for various backwater and downstream

boundary conditions.

CE Database subject headings: Open channel flow, Analytical model, Response time, Flow

control, Canal design.

Introduction

The response time of an irrigation canal or a regulated river is usually defined as the

time required for the system to transit from an initial steady state to a final steady state
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Fig. 1. Delay time and rising time for a step input.

(Ankum 1995). The time can be a few hours in medium-size canals or a few days in large

canals or rivers and it depends on the discharge and water depth all along the canal pool. It

is key information for managers, especially when they have to release water into the system

so as to achieve pre-specified distribution schedules, which is called open-loop control.

The notion of response time is not clearly defined in the literature. In the following,

the response time for a step input is defined as the sum of two terms: the delay time and

the rising time (see Fig. 1). The delay time is the time at which the discharge increase

is observed at the downstream end of the canal. The rising time is defined as the time

required for the discharge to reach α % of the maximum discharge increase. In this paper,

the response time at α % is denoted T (α).

A standard approach is to approximate the response time to a step input by the time TΔV

necessary to supply a volume ΔV of the dynamic storage, defined by the volume variation

between the initial and the final steady state (Schuurmans 1990; Burt and Plusquellec 1990).

As pointed out by Ankum (1995), this definition leads to underestimating the response time

as it ignores the fact that the outflow increases with the storage and the wave travel time

is neglected. Schuurmans (1990) improved this estimation by coupling the discharge and
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the water depth at the downstream end of the reach. This allowed him to compute an

approximate expression of the response time at α %, denoted T
(α)
Sch in the following. The

approximation performs well for short canals, which can be assumed to behave as storage

basins. Schuurmans (1990) uses the diffusive wave equation diffusion effects in long canals.

Ankum (1995) proposed a simple method to estimate the response time at 100 %, denoted

TAnk in the following, considering that T (50) is close to the mean of T (0) and T (100). T (0)

corresponds to the delay time, which is the time TDW required for the dynamic waves to

travel through the canal. TDW is obtained by:

TDW =
x

C + V
(1)

where x is the distance along the canal, V is the mean flow velocity, C =
√

gA/T the wave

celerity with g the gravitational acceleration, A the wetted area and T the top width. The

author assumed that T (50) is equal to TΔV , which leads to the following expression of the

response time:

TAnk = 2TΔV − TDW (2)

Although these estimates give quick indicators for the canal response, it is useful to define

the response time more accurately, namely by considering the effects of a cross structure at

the downstream end of the reach.

Schuurmans et al. (1995) adopted a frequency approach to establish the transfer function

of a reach in uniform flow. To account for the downstream cross structures, they assumed

that the backwater part behaved as a reservoir, in which the water level is horizontal. Their

model was able to correctly reproduce a step inflow on two canals with backwater curves.

Based on their method, Bautista and Clemmens (1999) proposed an improved estimation of

the canal dynamics by taking the travel time in the backwater part into account. For the

two example canals used later in this paper, the results obtained by Bautista and Clemmens

(1999) are very similar to those obtained using the dynamic storage approximation (TΔV),
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despite a theoretically more accurate estimation of the response time. In the following, only

TΔV will be represented.

Strelkoff et al. (1998) studied the influence of the downstream boundary condition with

different hydraulic structures at the downstream end of the canal. The steady state regime

was considered non-uniform. They used a numerical model to estimate the response to a

step inflow. They showed that not only the downstream water depth (and the backwater

curve) had an influence on the flow dynamics, but also the nature of the hydraulic structure

at the downstream end (feedback effect).

The backwater effect can be considered as a static effect due to a cross structure at the

downstream end, whereas the feedback effect may be considered as a dynamic effect due

to the local relation between downstream discharge and water depth variations. Some of

the previous methods to estimate the response time take the backwater effect into account

by considering a backwater part where the flow dynamics is modified. But none of them

accounts for the feedback effect, which may lead to important under- or overestimation of

the response time as shown further.

Following the idea of Schuurmans et al. (1995) and Litrico and Fromion (2004b), Munier

et al. (2008) proposed a linear model, called LBLR for Linear Backwater Lag and Route,

that considered separately backwater and feedback effects, both evaluated using the equation

characterizing the downstream cross structure. The model was obtained by approximating

the frequency response of a canal (Litrico and Fromion 2004a) and allowed the authors

to calculate the response at any abscissa along the canal, which gave satisfactory results

compared to full Saint-Venant’s numerical solutions. This paper aims at proposing a closed-

form expression of the response time, derived from the LBLR model. The proposed formula

explicitly accounts for the backwater and feedback effects due to the downstream boundary

condition. Illustrations are given for different boundary conditions, for simulated and real

data. Some design applications are proposed.
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Analytical calculation of the response time

We first derive the LBLR moel, before illustrating the results on a test canal.

Calculation of the response time using the LBLR model

We consider a trapezoidal prismatic channel. Time and distance are denoted t and x

respectively, the discharge Q and the water depth Y are functions of (x, t). The equations of

the flow dynamics are linearized around a non uniform reference regime defined by Q0 and

Y0(x) (see Fig. 2). Small variations in discharge and water depth are denoted q(x, t) and

y(x, t) respectively. At the cross structure, the discharge is related to the water depth using

the discharge equation:

Q(X, t) = f(Y (X, t)) (3)

In the following, Eqs. (4-5) are used to describe a weir and a gate respectively.

Q =
√

2gCwLw(Y − Zw)3/2 (4)

Q =
√

2gCgLgWg

√
Y (5)

where Lw is the weir length, Zw the sill elevation, Lg the gate length, Wg the gate opening,

Cw and Cg some discharge coefficients. The discharge equation is used to determine the

downstream water depth YX = Y0(X) corresponding to the reference discharge Q0. In

addition, the linearization of Eq. (3) leads to:

q(X, t) = ky(X, t) (6)

where k = df
dY

is the feedback coefficient. One may obtain k = 3
2

Q0

YX−Zw
for a weir and k = 1

2
Q0

YX

for a gate. The downstream boundary condition is then given by the couple (YX , k).

In the method developed by Munier et al. (2008), the transfer function between the

upstream discharge and the discharge at any location in the channel is approximated by a

first-order-with-delay transfer function using the moment matching method. The backwater
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Fig. 2. General scheme of the considered channel.

effects are taken into account by decomposing the canal into two sub-pools and the feedback

effects are represented by k. This leads to an analytical expression of the response to a step

input at any location:

q(x, t) =
(
1 − e−

t−τ(x)
K(x)

)
(7)

where τ(x) and K(x) are obtained as closed-form expressions of the physical parameters of

the pool (geometry, friction, reference discharge) and of the downstream boundary condition

(downstream water depth and feedback coefficient). Appendix I describes how the transfer

function is evaluated and approximated. Details of the calculation of τ(x) and K(x) are

given in appendix II.

The delay time is given by τ(x), whereas the rising time only depends on K(x). According

to Eq. (7), the response time T
(α)
LBLR is given by:

T
(α)
LBLR(x) = τ(x) − K(x) log

(
1 − α

100

)
(8)

The LBLR model has been implemented under the free software Scilab (www.scilab.org)

and the files needed to compute the response time T
(α)
LBLR are available on request.

Application to a test canal

In order to compare the different methods of response time calculation, we use the test

canal proposed by Strelkoff et al. (1998). The characteristics of the test canal are presented

in Table 1.

The test canal considered here is rectangular (bank slope m = 0) but the analytical ex-
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Table 1. Characteristics of the test canal.

Reference Length Width Bank Bottom Manning Normal
discharge slope slope coefficient depth

Q0 X B m Sb n Yn

1.9 m3/s 2300 m 2 m 0 0.00044 0.014 sm−1/3 1.00 m

pression of the response time presented further includes the case of a trapezoidal canal. The

reference step response is calculated using SIC, a software that discretizes the Saint-Venant

equations using a Preissmann scheme (Strelkoff et al. 1998; Baume et al. 2005). In the fol-

lowing, the time step and the space step are chosen in order to ensure an accurate simulation

of the flow dynamics (Courant number close to unity). The corresponding response times

are denoted T
(α)
SIC .

Results are computed for three different downstream boundary conditions. The first one

is defined by the Manning equation and represents a uniform flow. The two others are the

weir and the gate used in Strelkoff et al. (1998). The weir is 21 m long, the sill elevation

is 1.11 m and the discharge coefficient is 0.4. The gate is 2 m wide, its opening is 0.32 m

and its discharge coefficient is 0.6. Both structures are considered in free flow. The weir

and the gate have been calibrated so that the water depth at the downstream end of the

canal is equal to 1.25Yn. In both cases the backwater curve is the same, leading to the same

backwater effects. Yet, Strelkoff et al. (1998) showed that the step response is drastically

different between both structures, which may be due to different feedback effects.

Graphs 3 and 4 illustrate the response to a step input calculated by SIC compared to

the one calculated by the LBLR model. The step response for the uniform case (without

any cross structure at the downstream end) is also represented. The comparison with the

uniform case shows that the downstream cross structure can have a large impact on the

flow dynamics. Both canals have the same backwater and the large difference between their

responses is due to feedback effects. The LBLR model accurately simulates the step response

in both cases.

Results and discussion
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Fig. 3. Step response with a weir at the downstream end.
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Fig. 4. Step response with a gate at the downstream end.

Computation of the response time with the different methods

The response time for the test canal has been calculated using the different methods

presented in the review section. Figs. 5 and 6 show, for the weir and for the gate respectively,

the evolution of the response time with respect to α, calculated using SIC or the LBLR model.

The LBLR method leads to a very good approximation of T (α) for all values of α. It is

able to accurately account for backwater and feedback effects. Here, the relative error of

T
(90)
LBLR compared to T

(90)
SIC is only 11 % for the weir and 16 % for the gate.

The response times calculated with the other methods (TDW , TΔV , TAnk, T
(α)
Sch) are also

represented on Fig. 5 and 6. As Ankum (1995) suggested, we assume that TDW and TΔV

correspond to α = 0 and α = 50 respectively.

The method developed by Schuurmans (1990), which does not account for the feedback

effects, provides quite good results for the weir, but not for the gate. Indeed, a variation in

8 S. Munier

Author-produced version of the article published in Journal of Irrigation and Drainage Engineering, 2010, Volume 136, Issue 10, pp. 677-684. 
The original publication is available at http://ascelibrary.aip.org/iro/ 
doi: 10.1061/(ASCE)IR.1943-4774.0000241 



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

T(α
)  (h

)

SIC
LBLR
Schuurmans
Ankum
DW
ΔV

Fig. 5. Response time at α % with respect to α, with a weir at the downstream end.
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Fig. 6. Response time at α % with respect to α, with a gate at the downstream end.

the upstream discharge implies a smaller variation in the downstream water depth for the

weir than for the gate. This is due to the fact that the feedback coefficient k is larger in the

case of the weir, which provides a better control of the downstream level.

These graphs also show that TDW is quite the same in both cases and is suitable to

estimate T (0). Besides, TΔV varies a lot between both cases, but remains close to T (50).
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Fig. 7. Response time at 90 % all along the channel with a weir at the downstream

end.

In fact, the method to compute TΔV uses the volume variation between the initial and

final steady states. This requires the calculation of the water depth variation induced by

the discharge variation, which is related to the feedback effect. As a consequence, in this

method, the backwater and the feedback effects are taken into account. For these two

methods, the relative error is greater than 20 % for one or both downstream boundary

conditions considered.

The response time along the channel reach

It is often useful to know the response time not only at the downstream end of the

channel, but also at any intermediate position. The test canal has been used to compute the

response time at 90 % using the different methods and for different intermediate positions.

Figs. 7 and 8 show the results with the weir and the gate respectively.

Among the tested methods, the LBLR model is clearly the most accurate in terms of

response time estimation all along the channel and for all values of α. The calculation of

TAnk is able to reproduce the evolution of T
(90)
SIC all along the channel, but with less accuracy
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Fig. 8. Response time at 90 % all along the channel with a gate at the downstream

end.

than with the LBLR model. T
(90)
Sch is clearly not suitable to estimate the response time at

any intermediate position, especially with a gate at the downstream end.

Validation on real data

The LBLR method is now validated on a real canal. The reach considered here is 4.9 km

long. It is part of the Gignac canal, located north west of Montpellier. The design profile of

the canal is prismatic, which was verified in 2000 by a field survey with 191 cross sections.

The bottom slope is 0.000244 m/m, the bottom width is 0.73 m and the bank slope is 0.93

m/m. The Manning coefficient is 0.025, which corresponds to a rough concrete surface.

A gate at the upstream end of the reach allows the control of upstream discharge. A weir

is located at the downstream end. It is 10 m long and 1.1 m high.

The simulated event is a flow release of 100 L/s in October 2008 for an experiment

described in Rabbani et al. (2009). The monitoring time step is 5 min. The graph on the

left in Fig. 9 shows the response at the downstream end to a step input. The solid line

represents a fitted curve used to estimate the real response time.
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The graph on the right shows the response time T (α) with respect to α. Measurements

are compared with two approximations based on the LBLR method. For both approxima-

tions, characteristics of the equivalent canal are used. The first approximation assumes no

downstream boundary condition (classical case of a semi-infinite channel) and the second

one uses the characteristics of the weir to evaluate the downstream boundary condition.

Results clearly show that the LBLR method provides an accurate estimation of the

response time of an open-channel. Besides, the weir at the downstream end significantly

modifies the dynamics by introducing backwater and feedback effects. The LBLR model is

able to take these effects into account.

Design Application

Effects of the downstream boundary condition on the response time

A design application is now presented. Considering the example canal described in Table

1, we analyze how the response time is affected by the weir length, the sill elevation or the

gate opening. In this case, both YX and k may vary.

Fig. 10 and 11 show the relative response time at 90 % T
(90)∗
LBLR with respect to the relative

downstream water depth (Y ∗

X = YX/Yn) and the relative feedback (k∗ = k/kn). kn can be

calculated using the Manning equation that describes a uniform flow. For each downstream

boundary condition (YX , k), T
(90)
LBLR is normalized by the response time at 90 % corresponding

to (Yn, kn). Consequently, the uniform flow corresponds to Y ∗

X = 1 and k∗ = 1; at this point,
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Fig. 10. Relative response time at 90% with respect to the relative downstream water

depth Y ∗

X and the relative feedback k∗ with a weir at the downstream end.

the relative response time T
(90)∗
LBLR is equal to unity. Several points (W, G, A, B, C, D, E

and F) have been added on these graphs to represent different downstream cross structures,

defined in Table 2. Points W and G represent the weir and the gate previously defined,

respectively.

Table 2. Characteristics of the different devices considered.

Point Device Characteristics
W weir height = 1.11 m, length = 21 m
A weir height = 1.11 m, length = 5 m
B weir height = 1.11 m, length = 2 m
C weir height = 0.8 m, length = 21 m
D weir height = 1.5 m, length = 21 m
G gate opening = 0.32 m
E gate opening = 0.4 m
F gate opening = 0.28 m

This application provides a tool which may help the designer to fix the characteristics of

the downstream structure according to response time objectives. For instance, let us consider

a weir at the downstream end (Fig. 10). Changing its length (points W, A and B) has an

effect on the backwater and on the feedback. However, the effect on the response time is

rather limited (T
(90)∗
LBLR varies from about 0.6 to 0.9). On the contrary, if the sill elevation is
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Fig. 11. Relative response time at 90% with respect to the relative downstream water

depth Y ∗

X and the relative feedback k∗ with a gate at the downstream end.

doubled (point C to D), the response time is divided by 2. Concerning the gate (Fig. 11),

increasing the opening (point F to E) leads to a significant decrease of the response time.

One may also remark that each modification of the cross structure characteristics has a

different impact on the flow dynamics. For instance, an increase of the downstream water

depth (and then of the volume of the reach) can be obtained by increasing the sill elevation

(C to D), by decreasing the weir length (W to B) or by decreasing the gate opening (E to

F). Yet, in the first case (C to D), the response time decreases, whereas it increases in the

two other cases (W to B and E to F). Consequently, considering only the evolution of the

downstream water depth is not sufficient to predict the evolution of the response time. It is

essential to take the feedback effect into account, as well as the backwater effect.

Influence of the reference discharge

The last presented application concerns operation on irrigation canals. For management

purposes, it is common to maintain the downstream water level at a specified value, which

may be done by manipulating a gate at the downstream end of the reach.

In this application, the previous canal is considered with a gate at the downstream end.

The downstream water depth is set to 1 m, which is the normal depth corresponding to a

discharge of 1.9 m3/s. Then, we decrease the reference discharge from 1.9 m3/s to 0.5 m3/s.
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The gate opening is calculated for each discharge in order to maintain YX equal to 1 m.

Fig. 12 represents the backwater curves for the different reference discharges. The method

presented previously is then used to compute the response time at 90 % for each discharge

(see Fig. 13). TDW and TΔV are also represented for comparison.

Results show that the response time may vary a lot according to the reference discharge.

This kind of graph may be directly used for manual operations on an irrigation canal, in

order to manage upstream releases according to the flow conditions and to the characteristics

of the hydraulic cross structure.

Conclusions

This paper proposed a clarified description of the response-time of an irrigation canal.
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In particular, the difference between the response time, the travel time and the rising time

has been pointed out. We presented a new method to estimate the response time. It is

based on a physical approximation of the flow dynamics and allows to compute quickly the

response time anywhere in the channel. The method takes the effects of a downstream cross

structure into account, including the feedback effects as well as the backwater effects. It has

been shown in this paper that both effects may have a large impact on the response time.

This new method can be used for feed-forward control problems, or for canal network

management. For instance, it may help the canal designer to choose suitable characteristics of

the downstream hydraulic structure according to the management objectives, when expressed

as constraints on the response time. Finally, the method allows the manager of an irrigation

canal to quickly estimate the response time according the reference discharge when a local

controller is used to maintain the downstream water depth at a specified value.
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Notation

The following symbols are used in this paper:

A = wetted area (m2)

B = channel width (m)

C = wave celerity (ms−1)

F = Froude number

g = gravitational acceleration (ms−2)

k = feedback coefficient (m2s−1)

k∗ = normalized feedback coefficient (m2s−1)

kn = feedback coefficient for the normal flow (m2s−1)

m = bank slope

n = Manning coefficient (sm−1/3)

Q0 = reference discharge (m3s−1)

q = discharge variations (m3s−1)

Sb = bottom slope

Sf = friction slope

t = time (s)

T = top width (m)

T (α) = response time at α % (s)

V = flow velocity (ms−1)

x = longitudinal abscissa (m)

X = channel length (m)

Y = water depth (m)

y = water depth variations (m)

Yn = normal depth (m)

YX = downstream water depth (m)

Y ∗

X = normalized downstream water depth (m)

τ , K = parameters of the LBLR model (s)

ΔV = dynamic storage (m3)
17 S. Munier
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Fig. 14. Canal pool decomposition: uniform and backwater parts for the backwater

curve approximation.

Appendix I. Transfer function in the frequency domain

Munier et al. (2008) linearized the Saint-Venant equations and used a backwater approx-

imation to obtain the transfer function TF (x, s) in the Laplace domain:

q(x, s) = TF (x, s)q(0, s) (9)

where the Laplace variable is denoted s.

The backwater approximation consists in decomposing the channel into two sub-pools: a

uniform part upstream and a backwater part downstream, designated by subscripts 1 and 2

respectively. The backwater curve is approximated by a straight line in each sub-pool. The

abscissa of the separation between the two parts is denoted X1 and defined as shown on Fig.

14. The slope SX of the backwater curve at the downstream end is given by:

SX =
dY

dx

∣∣∣∣∣
X

=
Sb − SfX

1 − F2
X

(10)

where SfX is the friction slope and FX the Froude number, calculated at the downstream

end of the reach (x = X).

The downstream boundary condition is given by the couple (YX , k), where YX is the

downstream water depth and k the feedback coefficient. The decomposition is determined

using the characteristics of the channel and YX , and leads to the length Xi and the mean

water depth Yi for each sub-pool (i = 1, 2). Knowing Yi, each of the following variables can
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be computed for each sub-pool: Ti, Pi, Ai, Vi, Ci and κi, i = 1, 2, where T is the top width

(m), P the wetted perimeter (m), A the wetted area (m2), V = Q0/A the mean velocity

(ms−1), C =
√

gA/T the wave celerity and κ is a parameter defined as below:

κ =
7

3
− 4

3

A

TP

∂P

∂Y
(11)

We define, for i = 1, 2:

λi1 = ai + bis −
√

a2
i + 2aicis + (2aidi + c2

i )s
2 (12)

λi2 = ai + bis +
√

a2
i + 2aicis + (2aidi + c2

i )s
2 (13)

with ai = gSb(1+κi)
2(C2

i
−V 2

i
)
, bi = Vi

C2
i
−V 2

i

, ci = Vi

C2
i
−V 2

i

+ 2
Vi(1+κi)

, di = 1
2ai

(
C2

i

(C2
i
−V 2

i
)2
− c2

i

)
.

We also define:

ρi =
kiλi1 + Tis

kiλi2 + Tis
(14)

with k1 = −T2s
1−ρ2e(λ21−λ22)X2

λ21−λ22ρ2e(λ21−λ22)X2
and k2 = k.

Under these assumptions and given the upstream discharge, the discharge at any position

can be obtained using the Saint-Venant transfer function:

TF (x, s) =

⎧⎪⎪⎨
⎪⎪⎩

1−ρ1e(λ11−λ12)(X1−x)

1−ρ1e(λ11−λ12)X1
eλ11x if x ≤ X1

(1−ρ1)eλ11X1

1−ρ1e(λ11−λ12)X1

1−ρ2e(λ21−λ22)(X2−(x−X1))

1−ρ2e(λ21−λ22)X2
eλ21(x−X1) if x > X1

(15)

The expression of the Saint-Venant transfer function is generally too complex to be

easily inverted back to the time domain explicitly, so an approximation is required to get

the response in the time domain. To that purpose, the classical moment matching method

(Dooge et al. 1987; Munier et al. 2008) is used to derive an approximate first-order-with-
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delay model for flow routing (Eq. (16)).

T̃ F (x, s) =
G(x)e−τ(x)s

1 + K(x)s
(16)

The purpose of the moment matching method is to match the moments of the exact

transfer function TF (x, s) to those of the approximate one T̃ F (x, s), which ensures a good

representation for the low frequency range. To obtain the first three moments of the exact

transfer function, the Taylor series expansion of TF (x, s) is first computed, leading to:

TF (x, s) = A(x) + B(x)s + C(x)s2 + o(s2) (17)

Details of the computation are given in appendix II.

One may note that, according to the continuity equation, the coefficient A(x) is equal to

unity, which leads to G(x) = 1.

Then the moment matching method leads to the following system:

K(x) =
√

2C(x) − B(x)2 (18)

τ(x) = −B(x) −
√

2C(x) − B(x)2 (19)

This method provides a low frequency approximation of the flow transfer and leads to an

analytical and distributed expression of the model parameters. The time delay τ(x) and the

time constant K(x) are obtained as analytical functions of the feedback coefficient k and the

physical parameters of the pool (geometry, friction, discharge, downstream water depth).

According to Eq. (16), the output q(x, t) for a step input is:

q(x, t) = (1 − e−
t−τ(x)
K(x) ) (20)

This expression allows us to easily compute the response time.
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Appendix II. Taylor Series of the Saint-Venant Transfer Function

The moment matching method is used to approximate the transfer function by a first-

order-plus-delay. To apply this method, we compute the Taylor series of the transfer function.

ρi = Bρis + Cρis
2 + o(s2) (21)

Bρi = (bi−ci)Aki+Ti

2aiAki

Cρi = −1
2aiAki

[
diAki + 1

2aiAki
((bi + ci)Aki + Ti)((bi − ci)Aki + Ti) + Ti

Bki

Aki

]
with

k1 = Ak1 + Bk1s + o(s) (22)

Ak1 = k

1−

(
1+k

b2−c2
T2

)
(1−e−2a2X2)

Bk1 =
−A2

k1
T2

[
d2 +

(
2c2Bρ2 + 2a2

(
Cρ2 − 2c2X2Bρ2 + B2

ρ2e
−2a2X2

))
e−2a2X2

]

k2 = Ak2 + Bk2s (23)

Ak2 = k

Bk2 = 0

For each sub-pool (i = 1..2), we define Zi(x) and TFi0(x) as following:

Zi(x) =
1 − ρie

(λi1−λi2)(Xi−x)

1 − ρie(λi1−λi2)Xi

= 1 + BZi(x)s + CZi(x)s2 + o(s2) (24)

BZi(x) = −Bρi(1 − e−2aix)e−2ai(Xi−x)

CZi(x) = −
[
(Cρi − 2BρiciXi + B2

ρi
e−2aiXi)(1 − e−2aix) + 2Bρicix

]
e−2ai(Xi−x)

TFi0(x) = Zi(x)eλi1x = 1 + Bi0(x)s + Ci0(x)s2 + o(s2) (25)

Bi0(x) = (bi − ci)x + BZi(x)

Ci0(x) = (bi − ci)
2 x2

2 − dix + (bi − ci)xBZi(x) + CZi(x)
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if x < X1

TF (x, s) = TF10(x) = 1 + B(x)s + C(x)s2 + o(s2) (26)

B(x) = B10(x)

C(x) = C10(x)

if x > X1

TF (x, s) = TF10(X1)TF20(x − X1) = 1 + B(x)s + C(x)s2 + o(s2) (27)

B(x) = B10(X1) + B20(x − X1)

C(x) = C10(X1) + B10(X1)B20(x − X1) + C20(x − X1)

The two parameters τ(x) and K(x) of the first-order-with-delay are obtained by:

K(x) =
√

2C(x) − B(x)2 (28)

τ(x) = −B(x) −
√

2C(x) − B(x)2 (29)
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