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Abstract

We consider locally minimizing measures for the conservative twist maps of the d-
dimensional annulus or for the Tonelli Hamiltonian flows defined on a cotangent bundle
T ∗M . For weakly hyperbolic such measures (i.e. measures with no zero Lyapunov
exponents), we prove that the mean distance/angle between the stable and the unstable
Oseledet’s bundles gives an upper bound of the sum of the positive Lyapunov exponents
and a lower bound of the smallest positive Lyapunov exponent. Some more precise
results are proved too.

∗ANR Project BLANC07-3 187245, Hamilton-Jacobi and Weak KAM Theory
†ANR DynNonHyp
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1 Introduction

The purpose of this article is to give some relationships between the positive Lyapunov
exponents and the angles of the Oseledet’s bundles for the invariant minimizing Borel
probability measures of the conservative twisting dynamics.

Conservative twisting dynamics are either what is called a Tonelli Hamiltonian
defined on the cotangent bundle T ∗M of a connected and compact manifold M of a
twist map of the d-dimensional annulus Ad = T

d × R
d. Their two main properties are

the following ones:

– they twist the verticals;

– they are symplectic.

A lot of famous dynamical systems are such conservative twisting dynamics. Let us
mention at first all the geodesic flows and mechanical systems (sum of a kinetic en-
ergy and a potential one): they define Tonelli Hamiltonian flows. The twist maps of
the two-dimensional annulus were introduced at the end of the nineteenth century by
H. Poincaré in the study of the restricted planar circular three body problem (which is
a kind of modeling of the system Sun-Earth-Moon). Let us mention too that billiard
maps are conservative twist maps and that the Frenkel-Kontorova model can be rep-
resented by a conservative twist map (see e.g. [11]).

To such dynamics we can associate what is called an action1, defined via a generat-
ing function or a Lagrangian functional. Two types of action can be defined: either it is
a functional defined along the pieces of orbits or the action of every invariant probabil-
ity measure is defined. The objects of our study are then the locally minimizing orbits
or measures. In the case of Tonelli Hamiltonians, it is well-known that those orbits
(resp. measures) are exactly those that have no conjugate points (see for example [7],
[1]). Following [6], we will see in subsection 2.3 that the locally minimizing orbits of
the twist maps of Ad also have no conjugate points.

The following fact is proved in [6] in the case of symplectic twist maps and in [1],
[7] in the case of Tonelli Hamiltonians.
If an orbit is locally minimizing (this means that every piece of this orbit minimizes
locally the action among the segments that have same ends), then there exist along
the orbit two Lagrangian sub-bundles, invariant under the linearized dynamics and
transverse to the vertical bundle, called the Green bundles. These Green bundles
enjoy a lot of nice properties that we will precisely describe later. Following [1] and
[2], we will denote them by G− and G+.

1It will be precisely defined later.
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Let us assume now that there exists along such a locally minimizing orbit either an
Oseledet’s splitting or a partially hyperbolic splitting. We denote the stable, unstable
and center bundles corresponding to this splitting by Es, Eu an Ec. It is proved in [4]
that:

Es ⊂ G− ⊂ Es ⊕ Ec and Eu ⊂ G+ ⊂ Eu ⊕ Ec.

Hence for a minimizing Borel probability µ, the whole information concerning the
positive Lyapunov exponents is contained in the linearized dynamics restricted to the
positive Green bundle G+ above the support of µ. Moreover, the angle/distance be-
tween the stable and unstable bundles is related to angle/distance between the two
Green bundles.
Let us recall too that we proved in [4] that for an ergodic locally minimizing measure of
a Tonelli Hamiltonian flow, two times the almost everywhere dimension of G− ∩G+ is
equal to the number of zero Lyapunov exponents. The result is valid for twist maps too.

For general dynamical systems, one “inequality” between the angles of the Os-
eledet’s splitting and the Lyapunov exponents is well-known; roughly speaking, the
smaller the angle/distance between Es and Eu is, the closer to zero the Lyapunov
exponents are. This will be recalled in section 3. In this section too, we will prove
two exact formulas linking the distance between the two Green bundles and the Lya-
punov exponents of the minimizing measures of the conservative dynamics. They are
contained in the following theorems.

Theorem 1. Let µ be a Borel probability measure with no conjugate points that is
ergodic for a Tonelli Hamiltonian flow. If G+ is the graph of U and G− the graph of
S, the sum of the positive Lyapunov exponents of µ is equal to:

Λ+(µ) =
1

2

∫

tr(
∂2H

∂p2
(U − S))dµ.

Theorem 1 is a slight improvement of a theorem of A. Freire and R. Mané concerning
the geodesic flows that is contained in [10] (see [9] and[7] too). A similar statement
was given in the (non published) thesis of G. Kniepper.
Theorem 2 gives a similar statement for the twist maps. In this statement, Gk(x) =
Dfk(f−1(x))V (x) is some image of the vertical V (x) that will be precisely defined in
section 2.

Theorem 2. Let f : Ad → Ad be a twist map and let µ be a locally minimizing
ergodic measure with compact support . Then, if Λ(µ) is the sum of the non-negative
exponents of µ, if S−, S+ designate the symmetric matrices whose graphs are the two
Green bundles G− and G+ and Sk designates the symmetric matrix whose graph is Gk,
we have:
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Λ(µ) =
1

2

∫

log

(

det (S+(x)− S−1(x))

det (S−(x)− S−1(x))

)

dµ(x).

For general dynamics, there is no inequality in the other sense. More precisely,
the distance between the stable and unstable bundles can be big for measures having
Lyapunov exponents that are close to zero. We will see that this phenomenon cannot
happen for conservative twisting dynamics. In the following theorems, we denote by
q+(S) the smallest positive eigenvalue of a semi-positive non-zero matrix S and we use
the same notation as in theorem 1 for U and S.

Theorem 3. Let µ be an ergodic measure with no conjugate points and with at least
one non zero Lyapunov exponent for the Tonelli Hamiltonian flow of H : T ∗M → R;
then its smallest positive Lyapunov exponent λ(µ) satisfies: λ(µ) ≥ 1

2

∫

q+(
∂2H
∂p2

).q+(U−

S)dµ.

Hence, the gap between the two Green bundles gives a lower bound of the smallest
positive Lyapunov exponent.
For the conservative twist maps, we obtain a similar inequality when all the Lyapunov
exponents are non-zero. In this case, the two Green bundles are nothing else but the
stable and unstable bundles.

Theorem 4. Let f : Ad → Ad be a symplectic twist map and let µ be a locally minimiz-
ing ergodic measure with no zero Lyapunov exponents. We denote the smallest positive
Lyapunov exponent of µ by λ(µ) and an upper bound for ‖s1 − s−1‖ above suppµ by
C. Then we have:

λ(µ) ≥
1

2

∫

log

(

1 +
1

C
q+(U(x)− S(x))

)

dµ(x).

J.-C. Yoccoz pointed to me the following illustration of this last result. Let us con-
sider a minimizing fixed point x0 of a two-dimensional twist map f : A1 → A1. At such
a minimizing fixed point, Df has necessarily two positive eigenvalues denoted by λ and

1
λ
. Let us denote the matrix of Df(x0) in the usual coordinates by : N =

(

a b
c d

)

.

The twist condition gives a constant α > 0 such that b ≥ α. If Df(x0) is bounded by

a constant C, this implies that N cannot be to close to the matrix

(

1 0
0 1

)

. Hence

N cannot have simultaneously two different eigenvalues close to 1 and a big distance
between its eigenspaces. Hence we understand for this example the result contained in
the last theorem.

Let us comment forward about related results. In [3], we proved some results
concerning the invariant probability measures of a 2-dimensional twist map whose

5



support is an irrational Aubry-Mather set A. We defined at each point x of such an
Aubry-Mather set its Bouligand’s paratingent cone CxA, that is a kind of generalized
tangent bundle for sets that are not manifolds. We can identify CxA with the set SxA
of the slopes of its vectors. Then, if g− and g+ designate the slopes of the two Green
bundles, we proved the following inequality : g−(x) ≤ Sx ≤ g+(x). From that and
from theorem 4, we deduce :
The more irregular the Aubry-Mather set is, i.e. the bigger its paratingent cone is, the

bigger the Lyapunov exponents are.

Acknowledgments. I am grateful to H. Eliasson and J.-C. Yoccoz for stimulating
discussions and to S. Crovisier for pointing to me some improvements of the proofs in
section 3.1.

2 Some results about the Green bundles

Notations. We assume that M is a compact and connected d-dimensional manifold
endowed with a fixed Riemannian metric (the associated scalar product is denoted by
(.|.)). We denote a point of its cotangent bundle T ∗M by (q, p) where p ∈ T ∗

q M . If q
are some (local) coordinates on M , then p designate the dual coordinates. This means
that if η ∈ T ∗M and η =

∑

ηidqi, then pi = ηi.
Let us recall that T ∗M can be endowed with a 1-form λ called the Liouville 1-form,
whose expression in all dual coordinates is λ(q, p) =

∑

pidqi. Then the canonical
symplectic form ω is defined on M by ω = −dλ. All the dual coordinates are symplectic
for ω.
We will denote the usual projection from T ∗M to M by π : T ∗M → M . For every
x = (q, p) ∈ T ∗M , we will denote the vertical by V (x) = ker(Dπ(x)). It is a Lagrangian
linear subspace of Tx(T

∗M).
When M = T

d we will use the global coordinates of Ad = T
d × R

d.

2.1 Comparison of two Lagrangian subspaces that are

transverse to the vertical

Let us recall that a d-dimensional subspace G of Tx(T
∗M) that is transverse to the

vertical V (x) is Lagrangian if and only for every dual linear coordinates (δq, δp) of
Tx(T

∗M), then G is the graph of a symmetric matrix in these coordinates.

We defined in [1] an order relation for such Lagrangian subspaces of Tx(T
∗M) that

are transverse to the vertical. The definition is intrinsic and doesn’t depend on the
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chosen dual coordinates, but let us recall its interpretation in terms of symmetric ma-
trices: we say that the graph of ℓ1 is above (resp. strictly above) the graph of ℓ2 if the
symmetric matrix ℓ1 − ℓ2 is a positive semi-definite (resp. definite) matrix.
We need to be more precise. Let us recall what we did in [1]; we associated its height
Q(S,U) to each pair (S,U) of Lagrangian linear subspaces of Tx(T

∗M) that are trans-
verse to the vertical. This height is a quadratic form defined on the quotient linear
space Tx(T

∗M)/V (x). As this last space is canonically isomorphic to TqM if q = π(x),
we modify slightly the set where this quadratic form is defined in comparison with [1]2:
if U , S are two Lagrangian linear subspaces of Tx(T

∗M) that are transverse to the ver-
tical V (x), the relative height between S and U is the quadratic form q(S,U) defined
on TqM by the following way:

if δq ∈ TqM , if δxU ∈ U (resp. δxS ∈ S) is the vector of U (resp. S) such that
Dπ(δxU ) = δq (resp. Dπ(δxS) = δq), then we have: q(S,U)(δq) = ω(δxS , δxU ).

Of course, this definition doesn’t depend on the dual coordinates that we choose. We
associate to this bilinear form a unique symmetric operator s(S,U) : TqM → TqM
defined by: q(S,U)(δq1, δq2) = (s(S,U)δq1|δq2). The operator s(S,U) depends only
on the Riemannian product (.|.). Hence, the eigenvalues of s(S,U) are intrinsically
defined. We denote them by: λ1(S,U) ≤ · · · ≤ λd(S,U).

Definition. The quadratic form q(S,U) : TqM → R is called the height of U above
S. The numbers λ1(S,U) ≤ · · · ≤ λd(S,U) are the characteristic numbers of U above S.

Let us recall some properties that are proved in [1].

Proposition 5. Let L1, L2 and L3 be three Lagrangian subspaces of Tx(T
∗M) that are

transverse to the vertical. Then:

1. ker q(L1, L2) = Dπ(L1 ∩ L2);

2. q(L1, L2) = −q(L2, L1);

3. q(L1, L2) + q(L2, L3) = q(L1, L3).

Definition. The distance between S and U is then
∆(S,U) = ‖q(S,U)‖ = max

‖δqi‖=1,i=1,2
ω(δx1S , δx

2
U ) where δxiU (resp. δxiS) designates the

element of U (resp. S) whose projection on TqM is δqi.

2We thank F. Laudenbach for this suggestion.
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Let us notice that ∆(S,U) is not symplectically invariant.

Remark.There is a relationship between the distance ∆(S,U) and the characteristic
numbers: ∆(S,U) = max{|λ1|, |λd|}.

2.2 Tonelli Hamiltonians

We recall some well-known facts concerning Hamiltonian and Lagrangian dynamics
(see [5], [8]).
Definition. A C2 function H : T ∗M → R is called a Tonelli Hamiltonian if it is:

• superlinear in the fiber, i.e. ∀A ∈ R,∃B ∈ R,∀(q, p) ∈ T ∗M, ‖p‖ ≥ B ⇒ H(q, p) ≥
A‖p‖;

• C2-convex in the fiber i.e. for every (q, p) ∈ T ∗M , the Hessian ∂2H
∂p2

of H in the fiber
direction is positive definite as a quadratic form.
We denote the Hamiltonian flow of H by (ϕt) and the Hamiltonian vector-field by XH .
A Lagrangian function L : TM → R is associated with H. It is defined by
L(q, v) = max

p∈T ∗
q M

(p.v −H(q, p)).

Then L is C2-convex and superlinear in the fiber and has the same regularity as
H. We denote its Euler-Lagrange flow by (ft). Then (ϕt) and (ft) are conjugated by
the Legendre diffeomorphism L : (q, p) ∈ T ∗M → (q, ∂H

∂p
(q, p)) ∈ TM ; more precisely,

we have L ◦ ϕt = ft ◦ L.
Let us recall that the orbit of x ∈ T ∗M is (xt) = (ϕtx)t∈R. An infinitesimal orbit along
the orbit (xt) is then (Dϕt.δx)t∈R where δx ∈ Tx(T

∗M). Such an infinitesimal orbit is
a solution of the linearized Hamilton equations along the orbit (xt).

The Lagrangian action AL(γ) of a C1 arc γ : [a, b] → M is defined by:

AL(γ) =

∫ b

a

L(γ(s), γ̇(s))ds.

A C1 arc γ0 : [a, b] → M is minimizing (resp. locally minimizing) if for every C1 arc
γ : [a, b] → M that has the same endpoints as γ0, i.e. such that γ0(a) = γ(a) and
γ0(b) = γ(b) (resp. that has the same endpoints as γ0, i.e. such that γ0(a) = γ(a)
and γ0(b) = γ(b) and that is sufficiently close to γ0 for the C1-topology), we have:
AL(γ0) ≤ AL(γ). Such a minimizing (resp. locally minimizing) arc is the projection
of a unique piece of orbit of the Hamiltonian flow (and then of the Lagrangian flow
too). We will say that the corresponding piece of orbit (ϕt(x))t∈[a,b] is minimizing
(resp. locally minimizing). We say that a complete orbit is minimizing (resp. locally
minimizing) if all its restrictions to compact intervals are minimizing (resp. locally
minimizing). J. Mather proved at the end of the 80’s (see [15]) that there always exist
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some minimizing orbits. More precisely, he proved the existence of minimizing mea-
sures, i.e. Borel probability invariant measures of T ∗M whose support is filled with
minimizing orbits.

It is well-known that an orbit (xt) = (ϕtx) is locally minimizing if and only if
it has no conjugate points. This means that ∀t 6= u,Dϕt−uV (xu) ∩ V (xt) = {0}. At
every point y of such a minimizing orbit, the family (Gt(y)) = (Dϕt.V (ϕ−ty))t>0 (resp.
(G−t(y)) = (Dϕ−t.V (ϕty))t>0 is a decreasing (resp. increasing) family of Lagrangian
subspaces that are transverse to the vertical V (y) (see [7], [13] or [1]) and for every
t > 0, G−t(y) is strictly under Gt(y). Then we define the two Green bundles by

G−(y) = lim
t→+∞

G−t(y) and G+(y) = lim
t→+∞

Gt(y).

They are transverse to the vertical, between all the G−t and Gt and G+ is above G−

(see [1] for details).
As at the end of the introduction, let us assume now that there exists along a locally

minimizing orbit either an Oseledet’s splitting or a partially hyperbolic splitting. We
denote the stable, unstable and center bundles corresponding to this splitting by Es,
Eu an Ec. It is proved in [4] and [3] that:

Es ⊕ RXH ⊂ G− ⊂ Es ⊕ Ec and Eu ⊕ RXH ⊂ G+ ⊂ Eu ⊕ Ec.

2.3 Twist maps

The main part of this subsection comes from [6] (see [11] too), even if we changed some
proofs. All of what concerns the comparison between the two Green bundles is new.
We consider a C2-function Φ : Rd ×R

d → R such that:

1. Φ is Zd-periodic, i.e: ∀k ∈ Z
d,∀(q,Q) ∈ R

d × R
d,Φ(q + k,Q+ k) = Φ(q,Q);

2. Φ satisfies the uniform twist condition, i.e there exists K > 0 such that:

∀ζ ∈ R
d,
∑

i,j

∂2Φ(q,Q)

∂qi∂Qj

ζiζj ≤ −K‖ζ‖2.

Then, if we denote the derivative with respect to the qi, Qj variables by Φ1 and Φ2

respectively, the following implicit formula defines a symplectic diffeomorphism f̃ of
R
d:

f̃(q, p) = (Q,P ) where P = Φ2(q,Q) and p = −Φ1(q,Q).

We say then that Φ is a generating function for f̃ . We associate a formal function
defined on (Rd)Z to Φ:

A((qn)n∈Z) =

+∞
∑

n=−∞

Φ(qn, qn+1).
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Even if this function is not well-defined, its critical points are well-defined, they satisfy
the equations:

∀n ∈ Z,Φ2(qn−1, qn) + Φ1(qn, qn+1) = 0.

We can denote the partial actions AM,N for M ≤ N by:

AM,N((qn)M≤n≤N ) =
N−1
∑

n=M

Φ(qn, qn+1).

Then (qn)M≤n≤N is a critical point of AM,N restricted to the set of the finite sequences
that have the same endpoints as (qn)M≤n≤N if and only if it is a the projection of a
finite piece of orbit (qn, pn)M≤n≤N for f̃ . In this case, we have:

• pM = −Φ1(qM , qM+1); pN = Φ2(qN−1, qN );

• ∀n ∈ [M + 1, N − 1], pn = Φ2(qn−1, qn) = −Φ1(qn, qn+1).

We say that (qn)M≤n≤N is minimizing (resp. locally minimizing) if it is minimizing
(resp. locally minimizing) among all the segments that have the same endpoints.
Then the corresponding piece of orbit (qn, pn)M≤n≤N is said to be minimizing (resp.
locally minimizing) too. We say that (qn)n∈Z or (qn, pn)n∈Z is minimizing (resp. locally
minimizing) if all its restrictions to segments are minimizing (resp. locally minimizing).

If now (xn) = (qn, pn) ∈ (Ad)
Z is an orbit for f , we say that it is minimizing (resp.

locally minimizing) if its lifted orbit (q̃n, pn) for f̃ is minimizing. Moreover, we will
denote the partial action of the lift by:

ΦN,M((qn)) = AN,M((q̃n)).

Let us now fix an orbit (xn) = (qn, pn) for f . We call an infinitesimal orbit along
(xn) a sequence (Dfn(x0)δx)n∈Z, i.e. an infinitesimal orbit is an orbit for the derivative
of f . The projection of an infinitesimal orbit is called a Jacobi field. Then (ζn) is a
Jacobi field if and only if we have:

∀n ∈ Z, tbn−1ζn−1 + anζn + bnζn+1 = 0;

where bn = Φ12(qn, qn+1) and an = Φ11(qn, qn+1) + Φ22(qn−1, qn).
The Hessian of ΦM,N is:

D2ΦM,N ((xn)) =













aM bM 0 . . . . . . . . . 0
tbM aM+1 bM+1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . aN−1 bN−1

0 . . . . . . . . . 0 tbN−1 aN













.

10



The kernel of this Hessian is made with the Jacobi fields (ζn)M≤n≤N such that ζM−1 =
ζN+1 = 0.
If we assume that (xn) is locally minimizing, then all the Hessians D2ΦM,N ((xn)) are a
priori positive semi-definite. Following [6], let us prove that these Hessians are in fact
positive definite.

Proposition 6. (Bialy-MacKay, [6]) If the orbit (xn) of f is locally minimizing,
then all the Hessians D2ΦM,N((xn)) are positive definite and then the orbit has no
conjugate vectors.

Proof If not, there exist M ≤ N and a Jacobi field (ζn)n∈Z that is different from
(0) but such that ζM−1 = ζN+1 = 0. In other words, this Jacobi field has what is
usually called conjugate vectors. In this case, (0, 0, ζM , ζM+1, . . . , ζN−1, ζN , 0, 0) is in
the isotropic cone of D2ΦM−2,N+2((xn)) but not in its kernel (because it is not a Jacobi
field); this contradicts the fact that the kernel is equal to the isotropic cone (because
this Hessian is positive semi-definite). �

Hence the Jacobi fields along any locally minimizing orbit have no conjugate vectors.
This implies that for any k ∈ Z

∗ and any n ∈ Z, Gk(xn+k) = Dfk(xn).V (xn) is
transverse to V (xn+k) = V (fkxn).

Proposition 7. (Bialy-MacKay, [6]) Let (xk) be a locally minimizing orbit. Then,
for all k ≥ 1, we have along this orbit:

• G−1 is strictly under Gk and G−k is strictly under G1;

• Gk+1 is strictly under Gk and G−k is strictly under G−(k+1).

This result is proved in [6], but we give a slightly different proof.

We deduce that (Gk)k≥1 is a decreasing sequence of Lagrangian subspaces that are
all above G−1, hence we can defineG− = lim

k→+∞
Gk. Similarly, (G−k)k≥1 is an increasing

sequence of Lagrangian subspaces that are all under G1, hence we can define G+ by
taking the limit.

Definition. If the orbit of x is locally minimizing, the two Green bundles at x are the
two Lagrangian subspaces of Tx(T

∗M) that are transverse to the vertical and defined
by:

G−(x) = lim
k→+∞

G−k(x) and G+(x) = lim
k→+∞

Gk(x).

11



Proof We denote the symmetric matrix whose graph is Gk(xn+k) by Sk(xn+k).
Let us notice that:

Df(xn) =

(

−b−1
n Φ11(qn, qn+1) −b−1

n
tbn − Φ22(qn, qn+1)b

−1
n Φ11(qn, qn+1) −Φ22(qn, qn+1)b

−1
n

)

.

We deduce that: G1(xn+1) = graph(Φ22(qn, qn+1)), G−1(xn) = graph(−Φ11(qn, qn+1))
and then S1(xn) = Φ22(qn−1, qn), S−1(xn) = −Φ11(qn, qn+1). Hence: an = S1(xn) −
S−1(xn) is the matrix of the relative height between G−1(xn) and G1(xn) (see subsec-
tion 2.1 for definition). Hence G1 is strictly above G−1.

Let us prove that: ∀k ≥ 1, Sk(xn) − S−1(xn) > 0. If not, there exists k ≥ 2 and
η 6= 0 such that: tη(Sk(xn)−S−1(xn))η ≤ 0. Then we consider the piece of infinitesimal

orbit

(

Df−j

(

η
Sk(xn)η

))

0≤j≤k−1

and the Jacobi field that is the projection of this

infinitesimal orbit: ζi = Dπ ◦Df i−n

(

η
Sk(xn)η

)

for n−k+1 ≤ i ≤ n. Let us compute

D2Φn−k+1,n(x)ζ = ∆.

1. as Df−kGk(xn) = V (xn−k), we have: ∆n−k+1 = an−k+1ζn−k+1+bn−k+1ζn−k+2 =
−tbn−kζn−k = 0;

2. as we have a Jacobi field, for n − k + 1 ≤ i ≤ n − 2, we have: ∆i+1 = tbiζi +
ai+1ζi+1 + bi+1ζi+2 = 0;

3. ∆n = tbn−1ζn−1 + anζn = −bnDπ ◦Df

(

η
Sk(xn)η

)

= −bn
(

−b−1
n (Φ11(qn, qn+1)− Sk(xn))

)

η = −(S−1(xn)− Sk(xn))η.

We deduce that D2Φn−k+1,n(x)(ζ, ζ) = t∆.ζ = tη(Sk(xn) − S−1(xn))η ≤ 0. This
contradicts the fact that the Hessian is positive definite. Hence we have proved that
for all positive k, Gk is strictly above G−1.

Moreover, Gk+1(xn+1) is represented by:

Df(xn)

(

1
Sk(xn)

)

=

(

−b−1
n (Φ11(qn, qn+1) + Sk(xn))

tbn −Φ22(qn, qn+1)b
−1
n (Φ11(qn, qn+1) + Sk(xn))

)

.

This means: Sk+1(xn+1) = −tbn(Φ11(qn, qn+1)+Sk(xn))
−1bn+Φ22(qn, qn+1) and then:

(Sk+1 − S−1)(xn+1) = an+1 −
tbn((Sk − S−1)(xn))

−1bn i.e.:
(Sk+1 − S−1)(xn+1) = (S1 − S−1)(xn+1)−

tbn((Sk − S−1)(xn))
−1bn.

In particular, we have: (S2−S−1)(xn+1) = (S1 −S−1)(xn+1)−
tbna

−1
n bn then S2 < S1.

We can subtract for any k ≥ 2:

(Sk+1 − Sk)(xn+1) =
tbn

(

(Sk−1 − S−1)(xn))
−1 − (Sk − S−1)(xn)

−1
)

bn.

We have proved that for all positive k, Gk is strictly above G−1. We deduce that
(Gk(xn))k≥1 is a strictly decreasing sequence of Lagrangians subspaces. Because all

12



these subspaces are above G−1(xn), they converge to a Lagrangian subspace G+ that is
transverse to the vertical. In the same way, we obtain that (G−k(xn)k≥0 is an increasing
sequence of Lagrangian subspaces that are bounded from above by G1, hence they
converge to a Lagrangian subspace G− that is transverse to the vertical. �

Proposition 8. Let x ∈ T ∗M whose orbit is locally minimizing. Then for all n, k ≥ 1,
G−k(x) is strictly under Gn(x).
Hence G− is under G+.

Proof We denote fm(x) by xm. Let us prove that for all n, k ≥ 1, and all m ∈ Z,
then Gn(xm) is above G−k(xm). We have proved this result for k = 1 or n = 1, then
we assume that n, k ≥ 2.
We recall that if F1, F2 are two transverse Lagrangian subspaces of a symplectic space
whose dimension is denoted by 2d, then the set T (F1, F2) of the Lagrangian subspaces
that are transverse to both L1 and L2 has exactly d+ 1 connected components: it de-
pends on the signature of a certain quadratic form. Let us consider the connected com-
ponent C of T (Gk−1(xk−1+m), Gk−1+n(xk−1+m)) that contains Gk+n(xk−1+m); we have
proved thatGk+n(xk−1+m) andG−1(xk−1+m) are underGk−1(xk−1+m) andGk−1+n(xk−1+m),
hence they are in the same connected component C of T (Gk−1(xk−1+m), Gk−1+n(xk−1+m))

and their images by
(

Dfk−1(xm)
)−1

, that are Gn+1(xm) and G−k(xm), are in the same
connected component of

(

Dfk−1(xm)
)−1

(T (Gk−1(xk−1+m), Gk−1+n(xk−1+m))) .

This last set is equal to:

T (
(

Dfk−1(xm)
)−1

(Gk−1(xk−1+m),
(

Dfk−1(xm)
)−1

(Gk−1+n(xk−1+m)))
= T (V (xm), Gn(xm)).
We have proved that Gn+1(xm) is under Gn(xm). As Gn+1(xm) and G−k(xm) are in
the same connected component of T (V (xm), Gn(xm)), this implies that G−k(xm) is
under Gn(xm).
We deduce that G− is under G+. �

3 Sum of the positive Lyapunov exponents and

upper bounds

Before explaining which results we obtain for the twisting dynamics, we have to explain
that some results are true for general dynamics (not necessarily twisting) and explain
the difference with our results.

13



3.1 Some general results

In this section, we review some more or less well-known results concerning the link
between the Lyapunov exponents and the distance between the Oseledet’s bundles.
Because we didn’t find any precise reference and because the proofs are rather short,
we give here a proof a these results. A good reference for Lyapunov exponents is [14].

We work on a manifold N (not necessarily compact) and we ask ourselves the
following question.
Question. If the Oseledet’s splitting of an invariant measure of a C1-diffeomorphism
is such that Es and Eu are close to each other (in a sense we have to specify), are the
Lyapunov exponents all close to 0?

Let us explain that the answer is yes if Es and Eu are 1-dimensional.

Notations. If E, F are two linear subspaces of TxN that are d-dimensional with
d ≥ 1, the distance between E and F is:

dist(E,F ) = inf
(ei),(fi)

max{‖e1 − f1‖, . . . , ‖ed − fd‖}

where the infimum is taken over all the orthonormal basis (ei) of E, (fi) of F .

Proposition 9. Let K be a compact subset of N and let C > 0 be a real number. Then,
for any f ∈ Diff1(M) so that max{‖Df|K‖, ‖Df−1

|K ‖} ≤ C, if f has an invariant ergodic
measure µ with support in K such that the Oseledet’s stable and unstable bundles Es

and Eu of µ are one dimensional, if we denote by λu the positive Lyapunov exponent
and by λs the negative one, then:

0 < λu − λs ≤ log

(

1 + C2

∫

dist(Eu, Es)dµ

)

.

Proof We denote dist(Eu(x), Es(x)) by α(x).We choose x ∈ suppµ where Es and
Eu are defined and we choose v ∈ Eu(x)\{0}. Then there exists px(v) ∈ Es(x) such
that ‖px(v)‖ = ‖v‖ and ‖px(v)− v‖ ≤ α(x)‖v‖. Then, we have:

‖Df|Eu(x)‖.‖v‖ = ‖Df(x)v‖ ≤ ‖Df(x)px(v)‖ + ‖Df(x)‖.‖px(v) − v‖

≤ ‖Df|Es(x)‖
(

1 + α(x) ‖Df(x)‖
‖Df|Es (x)‖

)

‖v‖.

We deduce:

λu − λs =
∫

log ‖Df|Eu‖dµ−
∫

log ‖Df|Es‖dµ

≤
∫

log(1 + C2α(x))dµ(x) ≤ log
(

1 + C2
∫

α(x)dµ(x)
)

by Jensen inequality. �
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In the higher dimension cases, we obtain a slightly less good estimation.

Proposition 10. Let K be a compact subset of N , let C > 0 be a real number. Then,
for any f ∈ Diff1(M) so that max{‖Df|K‖, ‖Df−1

|K
‖} ≤ C, if f has an invariant ergodic

measure µ with support in K such that the Oseledet’s stable and unstable bundles Es

and Eu of µ have the same dimension d , if we denote by Λu the sum of the positive
Lyapunov exponents and by Λs the sum of the negative Lyapunov exponents, then:

0 < Λu − Λs ≤ d log

(

1 + (C2 + 1)

∫

dist(Eu, Es)dµ

)

.

Proof We denote dist(Eu(x), Es(x)) by α(x). At all the points where Es and Eu are
defined, we choose an orthonormal basis (e1, . . . , ed) of E

s in a measurable way, and an
orthogonal basis (f1, . . . , f

d) of Eu that depends measurably on the considered point
and is such that:

dist(Es, Eu) = max{‖e1 − f1‖, . . . , ‖ed − fd‖}.

Then we denote by Px : Eu(x) → Es(x) the linear map such that Px(fi(x)) = ei(x);
then, each Px is an isometry. Moreover, because ‖Px(fi(x))−fi(x)‖ = ‖fi(x)−ei(x)‖ ≤
α(x), we deduce: ∀v ∈ Eu(x), ‖Px(v) − v‖ ≤ dα(x)‖v‖ and ∀v ∈ Es(x), ‖(Px)

−1(v) −
v‖ ≤ dα(x)‖v‖. We have (we compute the determinant in the previous basis):

Λu − Λs =
∫ (

log(|detDf|Eu(x)|)− log(|detDf|Es(x)|)
)

dµ(x)

=
∫

log
∣

∣det(Df|Eu(x)(Px)
−1(Df|Es(x))

−1Pf(x))
∣

∣ dµ(x).

Let us consider v ∈ Eu(x). Then:

‖Df(x)(Px)
−1 (Df(x))−1Pf(x)v − v‖

≤
∥

∥Df(x)
(

(Px)
−1(Df(x))−1Pf(x)v − (Df(x))−1Pf(x)v)

)∥

∥+
∥

∥Pf(x)v − v
∥

∥

≤ Cdα(x)‖(Df(x))−1Pf(x)v‖+ dα(f(x))‖v‖ ≤ d(C2α(x) + α(f(x)))‖v‖.

Hence we have: ‖Df(x)(Px)
−1(Df(x))−1Pf(x) − IdEu(x)‖ ≤ d(C2α(x) + α(f(x))). We

deduce:

∣

∣det
(

Df|Eu(x)(Px)
−1(Df|Es(x))

−1Pf(x)

)∣

∣ ≤
(

1 + d(C2α(x) + α(f(x)))
)d

and then:
Λu − Λs ≤ d

∫

log
(

1 + d(C2α(x) + α(f(x)))
)

dµ(x)
≤ d log

(

1 + (C2 + 1)
∫

α(x)dµ(x)
)

.

�
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Hence the fact that we will obtain a upper bound of the sum of the positive Lya-
punov exponents that depends on the distance between the two Green bundles in the
case of the twisting dynamics is not surprising. The results contained in section 4, that
give lower bounds that are specific to the twisting dynamics, are more surprising.
What is more interesting in this section is that we obtain some exact formula for the
sum of the positive Lyapunov exponents.

3.2 Tonelli Hamiltonians

Using a Riemannian metric on M , we define the horizontal subspace H as the kernel of
the connection map. Then, for every Lagrangian subspace G of Tx(T

∗M), there exists
a linear map G : H(x) → V (x) whose graph is G. That is the meaning of graph in the
following theorem.
Remark.If K is an invariant compact and locally minimizing subset of T ∗M (for
example the support of a locally minimizing ergodic measure), we have:

∀x ∈ K,G−1(x) ≤ G−(x) ≤ G+(x) ≤ G1(x)

where “≤” designates the relation ”to be below” for the Lagrangian subspaces that are
transverse to the vertical.
Hence G− and G+ are uniformly bounded on K and Dπ : G±(x) → TxM is uniformly
bilipschitz.

In the case of ergodic measures of a geodesic flow with support filled by locally
minimizing orbits, i.e. in the case of measures with no conjugate points, A. Freire and
R. Mané proved in [10] a nice formula for the sum of the positive exponents (see [9]
and [7] too). A slight improvement of this formula gives:

Theorem. 1 Let µ be a Borel probability measure with no conjugate points that is
ergodic for a Tonelli Hamiltonian flow. If G+ is the graph of U and G− the graph of
S, the sum of the positive Lyapunov exponents of µ is equal to:

Λ+(µ) =
1

2

∫

tr(
∂2H

∂p2
(U − S))dµ.

Hence, we see that the more distant the Green bundles are, the greater the sum
of the positive Lyapunov exponents is. This gives an upper bound to the positive
Lyapunov exponents.

16



Proof A consequence of the linearized Hamilton equations is that if the graph G of
a symmetric matrix G is invariant by the linearized flow, then any infinitesimal orbit
(δq,Gδq) satisfies the following equation: δq̇ = (∂

2H
∂p2

G+ ∂2H
∂q∂p

)δq.

Hence, we have: d
dt
det(Dπ ◦Dϕt|G) = tr(∂

2H
∂p2

G+ ∂2H
∂q∂p

) det(Dπ ◦Dϕt|G); we deduce:

1
T
log det(Dπ ◦DϕT |G (q, p))

= 1
T
log det(Dπ(q, p)|G) +

1
T

∫ T

0 tr(∂
2H
∂p2

G+ ∂2H
∂q∂p

)(ϕt(q, p))dt.

Via ergodic Birkhoff’s theorem, we deduce for (q, p) generic that:

lim inf
T→+∞

1

T
log det(Dπ ◦DϕT |G(q, p)) =

∫

tr(
∂2H

∂p2
G+

∂2H

∂q∂p
)dµ.

We have noticed that DπG± is uniformly bilipschitz above suppµ, hence we can remove
Dπ in the previous formula when G is one of the two Green bundles.
Moreover, we know that Es ⊂ G− ⊂ Es⊥ = Ec ⊕ Es and that Eu ⊂ G+ ⊂ Eu⊥ =
Ec⊕Eu. Hence, the sum of the Lyapunov exponents of the restricted cocycle (Dϕt|G+

)
is exactly Λ+(µ) and the sum of the Lyapunov exponents of the restricted cocycle
(Dϕt|G−

) is Λ−(µ) = −Λ+(µ). Then we have:

Λ+(µ) =

∫

tr(
∂2H

∂p2
U+

∂2H

∂q∂p
)dµ and − Λ+(µ) =

∫

tr(
∂2H

∂p2
S+

∂2H

∂q∂p
)dµ.

We obtain the conclusion by subtracting the two equalities. �

3.3 Twist maps

Theorem. 2 Let f : Ad → Ad be a twist map and let µ be a locally minimizing ergodic
measure with compact support. Then, if Λ(µ) is the sum of the non-negative exponents
of µ, if S−, S+ designate the symmetric matrices whose graphs are the two Green
bundles G− and G+ and Sk designates the symmetric matrix whose graph is Gk, we
have:

Λ(µ) =
1

2

∫

log

(

det (S+(x)− S−1(x))

det (S−(x)− S−1(x))

)

dµ(x).

In this case again, we see that the closer the two Green bundles are to each other,
the closer to 0 the Lyapunov exponents are.
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Proof We use coordinates such that G+ becomes the horizontal bundle, i.e. we

use the change of symplectic coordinates whose matrix is

(

1 S+

0 1

)

. This change of

coordinates is not continuous, but it is uniformly bounded because S1 ≤ S+ ≤ S1, and
S−1 and S1 vary continuously in the compact set suppµ. The matrix of Df at x is
then:

M =

(

B1(x)(S+(x)− S−1(x)) B1(x)
0 B1(x)(S1(fx)− S+(fx))

)

.

We know that Eu ⊂ G+ ⊂ Eu⊕Ec, hence along G+ we see the non-negative Lyapunov
exponents. Then we have:

Λ(µ) =

∫

log
∣

∣detDf|G+

∣

∣ dµ =

∫

log |detB1(x)(S+(x)− S−1(x))| dµ.

In the same way, we have:

−Λ(µ) =

∫

log
∣

∣detDf|G−

∣

∣ dµ =

∫

log |detB1(x)(S−(x)− S−1(x))| dµ.

By subtracting these two equalities, we obtain the equality of the theorem.
�

4 Lower bounds for the positive Lyapunov ex-

ponents

Here we prove results that are specific to the twisting dynamics.

4.1 Tonelli Hamiltonians

Lemma 11. Let H : T ∗M → R be a Tonelli Hamiltonian. Let (xt) be a locally
minimizing orbit and let U and S be two Lagrangian bundles along this orbit that are
invariant by the linearized Hamilton flow and transverse to the vertical. Let δxU ∈ U
be an infinitesimal orbit contained in the bundle U and let us denote by δxS the unique
vector of S such that δxU − δxS ∈ V (hence δxS is not an infinitesimal orbit). Then:

d

dt
(ω(xt)(δxS(t), δxU (t)) = (δxU (t)− δxS(t))Hpp(xt)(δxU (t)− δxS(t)) ≥ 0.

Remark. Let us notice that ω(xt)(δxS(t), δxU (t)) is nothing else but the relative
height Q(S,U) of U above S at the vector δqU = Dπ.δxU = Dπ.δxS .
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Proof As the result that we want to prove is local, we can assume that we are in the
domain of a dual chart and express all the things in the corresponding dual linearized
coordinates.
We consider an invariant Lagrangian linear bundle G that is transverse to the vertical
along the orbit of x = (q, p). We denote the symmetric matrix whose graph is G by G
again. An infinitesimal orbit contained in this bundle satisfies: δp = Gδq. We deduce
from the linearized Hamilton equations (if we are along the orbit (q(t), p(t)) = x(t), Ġ
designates d

dt
(G(x(t)))) that:

δq̇ = (Hqp +HppG)δq; δṗ = (Ġ+GHqp +GHppG)δq = −(Hqq +HpqG)δq.

We deduce from these equations the classical Ricatti equation (it is given for example
in [7] for Tonelli Hamiltonians, but the reader can find the initial and simpler Ricatti
equation given by Green in the case of geodesic flows in [12]):

Ġ+GHppG+GHqp +HpqG+Hpp = 0.

Let us assume now that the graphs of the symmetric matrices U and S are invariant
by the linearized flow along the same orbit. We denote by (δqU ,UδqU ) an infinitesimal
orbit that is contained in the graph of U. Then we have:

d

dt
(δqU (U − S)δqU ) = 2δqU (U− S)δq̇U + δqU (U̇− Ṡ)δqU

= 2δqU (U−S)(Hqp+HppU)δqU+δqU (SHppS−UHppU+SHqp+HpqS−UHqp−HpqU)δqU

= δqU (UHqp − SHqp + UHppU− 2SHppU+ SHppS+HpqS−HpqU)δqU

= δqU (U− S)Hpp(U − S)δqU ≥ 0.

To finish the proof, we just need to notice that in coordinates:

ω(δxS , δxU ) = ω(δxU , δxU−δxS) = (δqU ,UδqU )

(

0 1
−1 0

)(

0
(U− S)δqU

)

= δqU (U−S)δqU

�

Notations. If S is a positive semi-definite matrix that is not the null matrix, then
q+(S) is its smallest positive eigenvalue.
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Theorem. 3 Let µ be an ergodic measure with no conjugate points and with at least
one non zero Lyapunov exponent; then its smallest positive Lyapunov exponent λ(µ)

satisfies: λ(µ) ≥ 1
2

∫

m(∂
2H
∂p2

).q+(U− S)dµ.

Hence, the gap between the two Green bundles gives a lower bound of the smallest
positive Lyapunov exponent. It is not surprising that when Es and Eu collapse, the
Lyapunov exponents are 0. What is more surprising and specific to the case of Tonelli
Hamiltonians is the fact that the bigger the gap between Es and Eu is, the greater
the Lyapunov exponents are: in general, along a hyperbolic orbit, you may have a big
angle between the Oseledet’s bundles and some very small Lyapunov exponents.

Proof. Let µ be an ergodic Borel probability measure with no conjugate points; its
support K is compact and then, by the first remark of section 3.2, there exists a
constant C > 0 such that U and S are bounded by C above K. We choose a point
(q, p) that is generic for µ and (δq,Uδq) in the Oseledet’s bundle corresponding to
the smallest positive Lyapunov exponent λ(µ) of µ. Using the linearized Hamilton
equations (see lemma 11), we obtain:

d

dt
((δq(U − S)δq) = δq(U − S)

∂2H

∂p2
(qt, pt)(U− S)δq.

Let us notice that (U − S)
1

2 δq is contained in the orthogonal space to the kernel of
U− S. Hence:

d

dt
((δq(U − S)δq) ≥ m(

∂2H

∂p2
)q+(U− S)δq(U − S)δq.

Moreover δq /∈ ker(U− S) because (δq,Uδq) corresponds to a positive Lyapunov expo-
nent and then (δq,Uδq) /∈ G− ∩G+. Then :

2
T
log(‖δq(T )‖)+ log 2C

T
≥ 1

T
log(δq(T )(U − S)(qT , pT )δq(T )) ≥

1
T
log(δq(0)(U − S)(q, p)δq(0)) + 1

T

∫ T

0 m(∂
2H
∂p2

(qt, pt))q+((U− S)(qt, pt))dt.

Using Birkhoff’s ergodic theorem, we obtain:

λ(µ) ≥
1

2

∫

m(
∂2H

∂p2
)q+(U − S)dµ.

�
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4.2 Twist maps: the weakly hyperbolic case

Theorem. 4 Let f : Ad → Ad be a symplectic twist map and let µ be a locally min-
imizing ergodic measure with no zero Lyapunov exponents. We denote the smallest
Lyapunov exponent of µ by λ(µ) and an upper bound for ‖s1 − s−1‖ above suppµ by
C. Then we have:

λ(µ) ≥
1

2

∫

log

(

1 +
1

C
m(U(x)− S(x))

)

dµ(x).

Proof We assume then that (xn) = (qn, pn) is a generic orbit for µ. Hence there
exists v0 ∈ G+(x0)\{0} such that:

lim
n→∞

1

n
log (‖Dfn(x0)v0‖) = λ(µ).

The Lagrangian bundles G− and G+ being transverse to the vertical at every point
of suppµ, there exist two symmetric matrices S and U such that G− (resp. G+) is
the graph of S (resp. U) in the usual coordinates of Rd × R

d = TxAd. As G− and
G+ are transverse µ-almost everywhere, we know that there exists ε > 0 such that
Aε = {x ∈ suppµ;U − S ≥ ε1} has positive µ-measure. We may then assume that
x0 ∈ Aε and that {n;U(xn) − S(xn) > ε1} is infinite. Let us notice that in this case,
G− and G+ are transverse along the whole orbit of x0 (but U− S can be very small at
some points of this orbit).
Hence, for every n ∈ N, there exists a unique positive definite matrix S0(xn) such that:

S0(xn)
2 = U(xn)− S(xn). Let us recall that a matrix M =

(

a b
c d

)

of dimension 2d is

symplectic if and only if its entries satisfy the following equalities:

tac = tca; tbd = tdb; tda− tbc = 1.

We define along the orbit of x0 the following change of basis: P =

(

S−1
0 S−1

0

SS−1
0 US−1

0

)

.

Then it defines a symplectic change of coordinates, whose inverse is:

Q = P−1 =

(

0 1
−1 0

)

tP

(

0 −1
1 0

)

=

(

S−1
0 U −S−1

0

−S−1
0 S S−1

0

)

.

We use this symplectic change of coordinates along the whole orbit of x0. More pre-
cisely, if we denote the matrix of Dfk in the usual canonical base e = (ei) by Mk,
then the matrix of Dfk in the base Pe = (Pei) is denoted by M̃k; we have then:
M̃k(xn) = P−1(xn+k)Mk(xn)P (xn). Let use notice that the image of the horizontal
(resp. vertical) Lagrangian plane by P is G− (resp. G+). As the bundles G− and G+
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are invariant by f , we deduce that M̃k =

(

ãk 0

0 d̃k

)

; we have tãkd̃k = 1 because this

matrix is symplectic.

Moreover, we know that: Mk(xn) =

(

−bk(xn)s−k(xn) bk(xn)
ck(xn) sk(xk+n)bk(xn)

)

whereGk(xn) =

Dfk.V (xn−k) is the graph of sk(xn).

Writing that M̃k(xn) =

(

ãk(xn) 0

0 d̃k(xn)

)

= P−1(xn+k)Mk(xn)P (xn), we obtain

firstly:

S0(xn+k)
−1tbk(xn)S0(xn)

−1 = S0(xn+k)
−1(S(xn+k)−sk(xn+k))bk(xn)(s−k(xn)−S(xn))S0(xn)

−1;

−S0(xn+k)
−1tbk(xn)S0(xn)

−1 = S0(xn+k)
−1(U(xn+k)−sk(xn+k))bk(xn)(U(xn)−s−k(xn))S0(xn)

−1.

We deduce that: ãk(xn) = S0(xn+k)bk(xn)(S(xn)− s−k(xn))S0(xn)
−1 and:

d̃k(xn) = S0(xn+k)bk(xn)(U(xn)− s−k(xn))S0(xn)
−1.

Because of the changes of basis that we used, (ãk(xn))k represents the linearized dy-
namics (Dfk

|G−(xn)
)k restricted to G− and (d̃k(xn))k the linearized dynamics restricted

to G+. Hence we need to study (d̃k(xn)) to obtain some information about the positive
Lyapunov exponents of µ. Let us compute:
td̃k(xn) = ãk(xn)

−1 = S0(xn)(S(xn)− s−k(xn))
−1bk(xn)

−1S0(xn+k)
−1; we deduce:

td̃k(xn)d̃k(xn) = S0(xn)(S(xn)− s−k(xn))
−1(U(xn)− s−k(xn))S0(xn)

−1

= S0(xn)(S(xn)− s−k(xn))
−1(U(xn)− S(xn) + S(xn)− s−k(xn))S0(xn)

−1

= 1+ S0(xn)(S(xn)− s−k(xn))
−1S0(xn)

= 1+ (U(xn)− S(xn))
1

2 (S(xn)− s−k(xn))
−1(U(xn)− S(xn))

1

2 .

Let us denote the conorm of a (for the usual Euclidean norm of R
d) by: m(a) =

‖a−1‖−1. Then we have:

m(d̃k(xn))
2 = m(td̃k(xn)d̃k(xn));

and then: m(d̃k(xn))
2 ≥ 1+ 1

C
m((U−S)(xn)) where C designates sup ‖s1−s−1‖ above

the (compact) support of µ; indeed, we know that: s1 − s−1 ≥ S− s−k > 0.
The entry d̃k being multiplicative, we deduce that:

m(d̃k(x0))
2 ≥

k−1
∏

n=0

(1 +
1

C
m(U(xn)− S(xn)))

and:

1

k
logm(d̃k(x0)) ≥

1

2k

k−1
∑

n=0

log(1 +
1

C
m(U(xn)− S(xn))).
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When k tends to +∞, we deduce from Birkhoff’s ergodic theorem that:

(∗) lim inf
k→∞

1

k
logm(d̃k(x0)) ≥

1

2

∫

log

(

1 +
1

C
m(U(x)− S(x))

)

dµ(x).

Let us recall that (d̃k(x0)) represents the dynamics along G+, but the change of basis
that we have done is not necessarily bounded. To obtain a true information about
the Lyapunov positive exponents, we need to have a result for the matrix Dk of

(Dfk
|G+(x0)

) in the base of G+ whose matrix in the usual coordinates is:

(

1
U

)

. Since

(d̃k) is the matrix of Dfk in the base whose matrix is

(

S−1
0

US−1
0

)

, we deduce that:

Dk(x0) = S0(xk)d̃k(x0)S0(x0)
−1 and:

m(Dk(x0)) ≥ m(S0(xk))m(d̃k(x0))m(S0(x0)
−1) = (m(U(xk)− S(xk)))

1

2 m(d̃k(x0))m(S(x0)
−1).

We have (∗) and we know that: lim inf
k→∞

m(U(xk)− S(xk)) ≥ ε. We deduce:

λ(µ) ≥ lim inf
k→∞

1

k
logm(Dk(x0)) ≥

1

2

∫

log

(

1 +
1

C
m(U(x)− S(x))

)

dµ(x).

�
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