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Introduction

The purpose of this article is to give some relationships between the positive Lyapunov exponents and the angles of the Oseledet's bundles for the invariant minimizing Borel probability measures of the conservative twisting dynamics.

Conservative twisting dynamics are either what is called a Tonelli Hamiltonian defined on the cotangent bundle T * M of a connected and compact manifold M of a twist map of the d-dimensional annulus A d = T d × R d . Their two main properties are the following ones:

-they twist the verticals; -they are symplectic.

A lot of famous dynamical systems are such conservative twisting dynamics. Let us mention at first all the geodesic flows and mechanical systems (sum of a kinetic energy and a potential one): they define Tonelli Hamiltonian flows. The twist maps of the two-dimensional annulus were introduced at the end of the nineteenth century by H. Poincaré in the study of the restricted planar circular three body problem (which is a kind of modeling of the system Sun-Earth-Moon). Let us mention too that billiard maps are conservative twist maps and that the Frenkel-Kontorova model can be represented by a conservative twist map (see e.g. [START_REF] Golé | Symplectic twist maps. Global variational techniques[END_REF]).

To such dynamics we can associate what is called an action 1 , defined via a generating function or a Lagrangian functional. Two types of action can be defined: either it is a functional defined along the pieces of orbits or the action of every invariant probability measure is defined. The objects of our study are then the locally minimizing orbits or measures. In the case of Tonelli Hamiltonians, it is well-known that those orbits (resp. measures) are exactly those that have no conjugate points (see for example [START_REF] Contreras | Convex Hamiltonians without conjugate points, Ergodic Theory Dynam[END_REF], [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF]). Following [START_REF] Bialy | Symplectic twist maps without conjugate points[END_REF], we will see in subsection 2.3 that the locally minimizing orbits of the twist maps of A d also have no conjugate points.

The following fact is proved in [START_REF] Bialy | Symplectic twist maps without conjugate points[END_REF] in the case of symplectic twist maps and in [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF], [START_REF] Contreras | Convex Hamiltonians without conjugate points, Ergodic Theory Dynam[END_REF] in the case of Tonelli Hamiltonians. If an orbit is locally minimizing (this means that every piece of this orbit minimizes locally the action among the segments that have same ends), then there exist along the orbit two Lagrangian sub-bundles, invariant under the linearized dynamics and transverse to the vertical bundle, called the Green bundles. These Green bundles enjoy a lot of nice properties that we will precisely describe later. Following [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF] and [START_REF] Arnaud | Three results on the regularity of the curves that are invariant by an exact symplectic twist map[END_REF], we will denote them by G -and G + .

Let us assume now that there exists along such a locally minimizing orbit either an Oseledet's splitting or a partially hyperbolic splitting. We denote the stable, unstable and center bundles corresponding to this splitting by E s , E u an E c . It is proved in [START_REF] Arnaud | Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures[END_REF] that:

E s ⊂ G -⊂ E s ⊕ E c and E u ⊂ G + ⊂ E u ⊕ E c .
Hence for a minimizing Borel probability µ, the whole information concerning the positive Lyapunov exponents is contained in the linearized dynamics restricted to the positive Green bundle G + above the support of µ. Moreover, the angle/distance between the stable and unstable bundles is related to angle/distance between the two Green bundles.

Let us recall too that we proved in [START_REF] Arnaud | Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures[END_REF] that for an ergodic locally minimizing measure of a Tonelli Hamiltonian flow, two times the almost everywhere dimension of G -∩ G + is equal to the number of zero Lyapunov exponents. The result is valid for twist maps too.

For general dynamical systems, one "inequality" between the angles of the Oseledet's splitting and the Lyapunov exponents is well-known; roughly speaking, the smaller the angle/distance between E s and E u is, the closer to zero the Lyapunov exponents are. This will be recalled in section 3. In this section too, we will prove two exact formulas linking the distance between the two Green bundles and the Lyapunov exponents of the minimizing measures of the conservative dynamics. They are contained in the following theorems.

Theorem 1. Let µ be a Borel probability measure with no conjugate points that is ergodic for a Tonelli Hamiltonian flow. If G + is the graph of U and G -the graph of S, the sum of the positive Lyapunov exponents of µ is equal to:

Λ + (µ) = 1 2 tr( ∂ 2 H ∂p 2 (U -S))dµ.
Theorem 1 is a slight improvement of a theorem of A. Freire and R. Mané concerning the geodesic flows that is contained in [START_REF] Freire | On the entropy of the geodesic flow in manifolds without conjugate points[END_REF] (see [START_REF] Foulon | Estimation de l'entropie des systèmes lagrangiens sans points conjugués Ann[END_REF] and [START_REF] Contreras | Convex Hamiltonians without conjugate points, Ergodic Theory Dynam[END_REF] too). A similar statement was given in the (non published) thesis of G. Kniepper. Theorem 2 gives a similar statement for the twist maps. In this statement,

G k (x) = Df k (f -1 (x))V (x)
is some image of the vertical V (x) that will be precisely defined in section 2.

Theorem 2. Let f : A d → A d be a twist map and let µ be a locally minimizing ergodic measure with compact support . Then, if Λ(µ) is the sum of the non-negative exponents of µ, if S -, S + designate the symmetric matrices whose graphs are the two Green bundles G -and G + and S k designates the symmetric matrix whose graph is G k , we have:

Λ(µ) = 1 2 log det (S + (x) -S -1 (x)) det (S -(x) -S -1 (x)) dµ(x).
For general dynamics, there is no inequality in the other sense. More precisely, the distance between the stable and unstable bundles can be big for measures having Lyapunov exponents that are close to zero. We will see that this phenomenon cannot happen for conservative twisting dynamics. In the following theorems, we denote by q + (S) the smallest positive eigenvalue of a semi-positive non-zero matrix S and we use the same notation as in theorem 1 for U and S. Theorem 3. Let µ be an ergodic measure with no conjugate points and with at least one non zero Lyapunov exponent for the Tonelli Hamiltonian flow of H :

T * M → R; then its smallest positive Lyapunov exponent λ(µ) satisfies: λ(µ) ≥ 1 2 q + ( ∂ 2 H ∂p 2 ).q + (U- S)dµ.
Hence, the gap between the two Green bundles gives a lower bound of the smallest positive Lyapunov exponent. For the conservative twist maps, we obtain a similar inequality when all the Lyapunov exponents are non-zero. In this case, the two Green bundles are nothing else but the stable and unstable bundles. Theorem 4. Let f : A d → A d be a symplectic twist map and let µ be a locally minimizing ergodic measure with no zero Lyapunov exponents. We denote the smallest positive Lyapunov exponent of µ by λ(µ) and an upper bound for s 1 -s -1 above suppµ by C. Then we have:

λ(µ) ≥ 1 2 log 1 + 1 C q + (U(x) -S(x)) dµ(x).
J.-C. Yoccoz pointed to me the following illustration of this last result. Let us consider a minimizing fixed point x 0 of a two-dimensional twist map f : A 1 → A 1 . At such a minimizing fixed point, Df has necessarily two positive eigenvalues denoted by λ and The twist condition gives a constant α > 0 such that b ≥ α. If Df (x 0 ) is bounded by a constant C, this implies that N cannot be to close to the matrix 1 0 0 1 . Hence N cannot have simultaneously two different eigenvalues close to 1 and a big distance between its eigenspaces. Hence we understand for this example the result contained in the last theorem.

Let us comment forward about related results. In [START_REF] Arnaud | The link between the shape of the Aubry-Mather sets and their Lyapunov exponents[END_REF], we proved some results concerning the invariant probability measures of a 2-dimensional twist map whose support is an irrational Aubry-Mather set A. We defined at each point x of such an Aubry-Mather set its Bouligand's paratingent cone C x A, that is a kind of generalized tangent bundle for sets that are not manifolds. We can identify C x A with the set S x A of the slopes of its vectors. Then, if g -and g + designate the slopes of the two Green bundles, we proved the following inequality : g -(x) ≤ S x ≤ g + (x). From that and from theorem 4, we deduce :

The more irregular the Aubry-Mather set is, i.e. the bigger its paratingent cone is, the bigger the Lyapunov exponents are.

Acknowledgments. I am grateful to H. Eliasson and J.-C. Yoccoz for stimulating discussions and to S. Crovisier for pointing to me some improvements of the proofs in section 3.1.

2 Some results about the Green bundles Notations. We assume that M is a compact and connected d-dimensional manifold endowed with a fixed Riemannian metric (the associated scalar product is denoted by (.|.)). We denote a point of its cotangent bundle T * M by (q, p) where p ∈ T * q M . If q are some (local) coordinates on M , then p designate the dual coordinates. This means that if η ∈ T * M and η = η i dq i , then p i = η i . Let us recall that T * M can be endowed with a 1-form λ called the Liouville 1-form, whose expression in all dual coordinates is λ(q, p) = p i dq i . Then the canonical symplectic form ω is defined on M by ω = -dλ. All the dual coordinates are symplectic for ω. We will denote the usual projection from T * M to M by π : T * M → M . For every x = (q, p) ∈ T * M , we will denote the vertical by V (x) = ker(Dπ(x)). It is a Lagrangian linear subspace of T x (T * M ). When M = T d we will use the global coordinates of

A d = T d × R d .

Comparison of two Lagrangian subspaces that are transverse to the vertical

Let us recall that a d-dimensional subspace G of T x (T * M ) that is transverse to the vertical V (x) is Lagrangian if and only for every dual linear coordinates (δq, δp) of T x (T * M ), then G is the graph of a symmetric matrix in these coordinates.

We defined in [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF] an order relation for such Lagrangian subspaces of T x (T * M ) that are transverse to the vertical. The definition is intrinsic and doesn't depend on the chosen dual coordinates, but let us recall its interpretation in terms of symmetric matrices: we say that the graph of ℓ 1 is above (resp. strictly above) the graph of ℓ 2 if the symmetric matrix ℓ 1 -ℓ 2 is a positive semi-definite (resp. definite) matrix. We need to be more precise. Let us recall what we did in [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF]; we associated its height Q(S, U ) to each pair (S, U ) of Lagrangian linear subspaces of T x (T * M ) that are transverse to the vertical. This height is a quadratic form defined on the quotient linear space T x (T * M )/V (x). As this last space is canonically isomorphic to T q M if q = π(x), we modify slightly the set where this quadratic form is defined in comparison with [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF] 2 : if U , S are two Lagrangian linear subspaces of T x (T * M ) that are transverse to the vertical V (x), the relative height between S and U is the quadratic form q(S, U ) defined on T q M by the following way:

if δq ∈ T q M , if δx U ∈ U (resp. δx S ∈ S) is the vector of U (resp. S) such that Dπ(δx U ) = δq (resp. Dπ(δx S ) = δq), then we have: q(S, U )(δq) = ω(δx S , δx U ).
Of course, this definition doesn't depend on the dual coordinates that we choose. We associate to this bilinear form a unique symmetric operator s(S, U ) : T q M → T q M defined by: q(S, U )(δq 1 , δq 2 ) = (s(S, U )δq 1 |δq 2 ). The operator s(S, U ) depends only on the Riemannian product (.|.). Hence, the eigenvalues of s(S, U ) are intrinsically defined. We denote them by: λ

1 (S, U ) ≤ • • • ≤ λ d (S, U ).
Definition. The quadratic form q(S, U ) :

T q M → R is called the height of U above S. The numbers λ 1 (S, U ) ≤ • • • ≤ λ d (S, U ) are the characteristic numbers of U above S.
Let us recall some properties that are proved in [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF].

Proposition 5. Let L 1 , L 2 and L 3 be three Lagrangian subspaces of T x (T * M ) that are transverse to the vertical. Then:

1. ker q(L 1 , L 2 ) = Dπ(L 1 ∩ L 2 ); 2. q(L 1 , L 2 ) = -q(L 2 , L 1 ); 3. q(L 1 , L 2 ) + q(L 2 , L 3 ) = q(L 1 , L 3 ).
Definition. The distance between S and U is then ∆(S, U ) = q(S, U ) = max

δq i =1,i=1,2 ω(δx 1 S , δx 2 
U ) where δx i U (resp. δx i S ) designates the element of U (resp. S) whose projection on T q M is δq i .

Let us notice that ∆(S, U ) is not symplectically invariant.

Remark.There is a relationship between the distance ∆(S, U ) and the characteristic numbers: ∆(S, U ) = max{|λ 1 |, |λ d |}.

Tonelli Hamiltonians

We recall some well-known facts concerning Hamiltonian and Lagrangian dynamics (see [START_REF] Arnol | Mathematical methods of classical mechanics[END_REF], [START_REF] Fathi | Weak KAM theorems in Lagrangian dynamics[END_REF]).

Definition. A C 2 function H : T * M → R is called a Tonelli Hamiltonian if it is: • superlinear in the fiber, i.e. ∀A ∈ R, ∃B ∈ R, ∀(q, p) ∈ T * M, p ≥ B ⇒ H(q, p) ≥ A p ; • C 2 -convex
in the fiber i.e. for every (q, p) ∈ T * M , the Hessian ∂ 2 H ∂p 2 of H in the fiber direction is positive definite as a quadratic form. We denote the Hamiltonian flow of H by (ϕ t ) and the Hamiltonian vector-field by

X H . A Lagrangian function L : T M → R is associated with H. It is defined by L(q, v) = max p∈T * q M (p.v -H(q, p)).
Then L is C 2 -convex and superlinear in the fiber and has the same regularity as H. We denote its Euler-Lagrange flow by (f t ). Then (ϕ t ) and (f t ) are conjugated by the Legendre diffeomorphism L : (q, p) ∈ T * M → (q, ∂H ∂p (q, p)) ∈ T M ; more precisely, we have

L • ϕ t = f t • L.
Let us recall that the orbit of x ∈ T * M is (x t ) = (ϕ t x) t∈R . An infinitesimal orbit along the orbit (x t ) is then (Dϕ t .δx) t∈R where δx ∈ T x (T * M ). Such an infinitesimal orbit is a solution of the linearized Hamilton equations along the orbit (x t ).

The Lagrangian action

A L (γ) of a C 1 arc γ : [a, b] → M is defined by: A L (γ) = b a L(γ(s), γ(s))ds. A C 1 arc γ 0 : [a, b] → M is minimizing (resp. locally minimizing) if for every C 1 arc γ : [a, b] → M that
has the same endpoints as γ 0 , i.e. such that γ 0 (a) = γ(a) and γ 0 (b) = γ(b) (resp. that has the same endpoints as γ 0 , i.e. such that γ 0 (a) = γ(a) and γ 0 (b) = γ(b) and that is sufficiently close to γ 0 for the C 1 -topology), we have:

A L (γ 0 ) ≤ A L (γ)
. Such a minimizing (resp. locally minimizing) arc is the projection of a unique piece of orbit of the Hamiltonian flow (and then of the Lagrangian flow too). We will say that the corresponding piece of orbit (ϕ t (x)) t∈[a,b] is minimizing (resp. locally minimizing). We say that a complete orbit is minimizing (resp. locally minimizing) if all its restrictions to compact intervals are minimizing (resp. locally minimizing). J. Mather proved at the end of the 80's (see [START_REF] Mather | Action minimizing invariant measures for positive definite Lagrangian systems Math[END_REF]) that there always exist some minimizing orbits. More precisely, he proved the existence of minimizing measures, i.e. Borel probability invariant measures of T * M whose support is filled with minimizing orbits.

It is well-known that an orbit (x t ) = (ϕ t x) is locally minimizing if and only if it has no conjugate points. This means that ∀t = u, Dϕ t-u V (x u ) ∩ V (x t ) = {0}. At every point y of such a minimizing orbit, the family (G t (y)) = (Dϕ t .V (ϕ -t y)) t>0 (resp. (G -t (y)) = (Dϕ -t .V (ϕ t y)) t>0 is a decreasing (resp. increasing) family of Lagrangian subspaces that are transverse to the vertical V (y) (see [START_REF] Contreras | Convex Hamiltonians without conjugate points, Ergodic Theory Dynam[END_REF], [START_REF] Iturriaga | A geometric proof of the existence of the Green bundles[END_REF] or [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF]) and for every t > 0, G -t (y) is strictly under G t (y). Then we define the two Green bundles by

G -(y) = lim t→+∞ G -t (y) and G + (y) = lim t→+∞ G t (y).
They are transverse to the vertical, between all the G -t and G t and G + is above G - (see [START_REF] Arnaud | Fibrés de Green et régularité des graphes C 0 -Lagrangiens invariants par un flot de Tonelli[END_REF] for details).

As at the end of the introduction, let us assume now that there exists along a locally minimizing orbit either an Oseledet's splitting or a partially hyperbolic splitting. We denote the stable, unstable and center bundles corresponding to this splitting by E s , E u an E c . It is proved in [START_REF] Arnaud | Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures[END_REF] and [START_REF] Arnaud | The link between the shape of the Aubry-Mather sets and their Lyapunov exponents[END_REF] that:

E s ⊕ RX H ⊂ G -⊂ E s ⊕ E c and E u ⊕ RX H ⊂ G + ⊂ E u ⊕ E c .

Twist maps

The main part of this subsection comes from [START_REF] Bialy | Symplectic twist maps without conjugate points[END_REF] (see [START_REF] Golé | Symplectic twist maps. Global variational techniques[END_REF] too), even if we changed some proofs. All of what concerns the comparison between the two Green bundles is new. We consider a C 2 -function Φ : R d × R d → R such that:

1. Φ is Z d -periodic, i.e: ∀k ∈ Z d , ∀(q, Q) ∈ R d × R d , Φ(q + k, Q + k) = Φ(q, Q);
2. Φ satisfies the uniform twist condition, i.e there exists K > 0 such that:

∀ζ ∈ R d , i,j ∂ 2 Φ(q, Q) ∂q i ∂Q j ζ i ζ j ≤ -K ζ 2 .
Then, if we denote the derivative with respect to the q i , Q j variables by Φ 1 and Φ 2 respectively, the following implicit formula defines a symplectic diffeomorphism f of R d : f (q, p) = (Q, P ) where P = Φ 2 (q, Q) and p = -Φ 1 (q, Q).

We say then that Φ is a generating function for f . We associate a formal function defined on (R d ) Z to Φ:

A((q n ) n∈Z ) = +∞ n=-∞ Φ(q n , q n+1 ).
Even if this function is not well-defined, its critical points are well-defined, they satisfy the equations: ∀n ∈ Z, Φ 2 (q n-1 , q n ) + Φ 1 (q n , q n+1 ) = 0.

We can denote the partial actions A M,N for M ≤ N by:

A M,N ((q n ) M ≤n≤N ) = N -1 n=M Φ(q n , q n+1 ).
Then (q n ) M ≤n≤N is a critical point of A M,N restricted to the set of the finite sequences that have the same endpoints as (q n ) M ≤n≤N if and only if it is a the projection of a finite piece of orbit (q n , p n ) M ≤n≤N for f . In this case, we have:

• p M = -Φ 1 (q M , q M +1 ); p N = Φ 2 (q N -1 , q N ); • ∀n ∈ [M + 1, N -1], p n = Φ 2 (q n-1 , q n ) = -Φ 1 (q n , q n+1 ).
We say that (q n ) M ≤n≤N is minimizing (resp. locally minimizing) if it is minimizing (resp. locally minimizing) among all the segments that have the same endpoints.

Then the corresponding piece of orbit (q n , p n ) M ≤n≤N is said to be minimizing (resp. locally minimizing) too. We say that (q n ) n∈Z or (q n , p n ) n∈Z is minimizing (resp. locally minimizing) if all its restrictions to segments are minimizing (resp. locally minimizing).

If now (x n ) = (q n , p n ) ∈ (A d )
Z is an orbit for f , we say that it is minimizing (resp. locally minimizing) if its lifted orbit (q n , p n ) for f is minimizing. Moreover, we will denote the partial action of the lift by: Φ N,M ((q n )) = A N,M ((q n )).

Let us now fix an orbit (x n ) = (q n , p n ) for f . We call an infinitesimal orbit along (x n ) a sequence (Df n (x 0 )δx) n∈Z , i.e. an infinitesimal orbit is an orbit for the derivative of f . The projection of an infinitesimal orbit is called a Jacobi field. Then (ζ n ) is a Jacobi field if and only if we have:

∀n ∈ Z, t b n-1 ζ n-1 + a n ζ n + b n ζ n+1 = 0;
where b n = Φ 12 (q n , q n+1 ) and a n = Φ 11 (q n , q n+1 ) + Φ 22 (q n-1 , q n ). The Hessian of Φ M,N is: 

D 2 Φ M,N ((x n )) =       a M b M 0 . . . . . . . . . 0 t b M a M +1 b M +1 0 . . . . . . 0 
b N -1 0 . . . . . . . . . 0 t b N -1 a N      
.

The kernel of this Hessian is made with the Jacobi fields

(ζ n ) M ≤n≤N such that ζ M -1 = ζ N +1 = 0.
If we assume that (x n ) is locally minimizing, then all the Hessians D 2 Φ M,N ((x n )) are a priori positive semi-definite. Following [START_REF] Bialy | Symplectic twist maps without conjugate points[END_REF], let us prove that these Hessians are in fact positive definite.

Proposition 6. (Bialy-MacKay, [START_REF] Bialy | Symplectic twist maps without conjugate points[END_REF]) If the orbit (x n ) of f is locally minimizing, then all the Hessians D 2 Φ M,N ((x n )) are positive definite and then the orbit has no conjugate vectors.

Proof If not, there exist M ≤ N and a Jacobi field

(ζ n ) n∈Z that is different from (0) but such that ζ M -1 = ζ N +1 = 0.
In other words, this Jacobi field has what is usually called conjugate vectors. In this case, (0, 0,

ζ M , ζ M +1 , . . . , ζ N -1 , ζ N , 0, 0) is in the isotropic cone of D 2 Φ M -2,N +2 ((x n ))
but not in its kernel (because it is not a Jacobi field); this contradicts the fact that the kernel is equal to the isotropic cone (because this Hessian is positive semi-definite).

Hence the Jacobi fields along any locally minimizing orbit have no conjugate vectors. This implies that for any k ∈ Z * and any

n ∈ Z, G k (x n+k ) = Df k (x n ).V (x n ) is transverse to V (x n+k ) = V (f k x n ).
Proposition 7. (Bialy-MacKay, [START_REF] Bialy | Symplectic twist maps without conjugate points[END_REF]) Let (x k ) be a locally minimizing orbit. Then, for all k ≥ 1, we have along this orbit:

• G -1 is strictly under G k and G -k is strictly under G 1 ; • G k+1 is strictly under G k and G -k is strictly under G -(k+1) .
This result is proved in [START_REF] Bialy | Symplectic twist maps without conjugate points[END_REF], but we give a slightly different proof.

We deduce that (G k ) k≥1 is a decreasing sequence of Lagrangian subspaces that are all above G -1 , hence we can define G -= lim k→+∞ G k . Similarly, (G -k ) k≥1 is an increasing sequence of Lagrangian subspaces that are all under G 1 , hence we can define G + by taking the limit.

Definition. If the orbit of x is locally minimizing, the two Green bundles at x are the two Lagrangian subspaces of T x (T * M ) that are transverse to the vertical and defined by:

G -(x) = lim k→+∞ G -k (x) and G + (x) = lim k→+∞ G k (x).
Proof We denote the symmetric matrix whose graph is G k (x n+k ) by S k (x n+k ). Let us notice that:

Df (x n ) = -b -1 n Φ 11 (q n , q n+1 ) -b -1 n t b n -Φ 22 (q n , q n+1 )b -1 n Φ 11 (q n , q n+1 ) -Φ 22 (q n , q n+1 )b -1 n .
We deduce that: G 1 (x n+1 ) = graph(Φ 22 (q n , q n+1 )), G -1 (x n ) = graph(-Φ 11 (q n , q n+1 )) and then S 1 (x n ) = Φ 22 (q n-1 , q n ), S -1 (x n ) = -Φ 11 (q n , q n+1 ). Hence:

a n = S 1 (x n ) - S -1 (x n ) is the matrix of the relative height between G -1 (x n ) and G 1 (x n ) (see subsec- tion 2.1 for definition). Hence G 1 is strictly above G -1 . Let us prove that: ∀k ≥ 1, S k (x n ) -S -1 (x n ) > 0.
If not, there exists k ≥ 2 and η = 0 such that:

t η(S k (x n )-S -1 (x n ))η ≤ 0. Then we consider the piece of infinitesimal orbit Df -j η S k (x n )η 0≤j≤k-1
and the Jacobi field that is the projection of this infinitesimal orbit:

ζ i = Dπ • Df i-n η S k (x n )η for n -k + 1 ≤ i ≤ n. Let us compute D 2 Φ n-k+1,n (x)ζ = ∆. 1. as Df -k G k (x n ) = V (x n-k ), we have: ∆ n-k+1 = a n-k+1 ζ n-k+1 + b n-k+1 ζ n-k+2 = -t b n-k ζ n-k = 0;
2. as we have a Jacobi field, for

n -k + 1 ≤ i ≤ n -2, we have: ∆ i+1 = t b i ζ i + a i+1 ζ i+1 + b i+1 ζ i+2 = 0; 3. ∆ n = t b n-1 ζ n-1 + a n ζ n = -b n Dπ • Df η S k (x n )η = -b n -b -1 n (Φ 11 (q n , q n+1 ) -S k (x n )) η = -(S -1 (x n ) -S k (x n ))η. We deduce that D 2 Φ n-k+1,n (x)(ζ, ζ) = t ∆.ζ = t η(S k (x n ) -S -1 (x n ))η ≤ 0.
This contradicts the fact that the Hessian is positive definite. Hence we have proved that for all positive k, G k is strictly above G -1 .

Moreover, G k+1 (x n+1 ) is represented by:

Df (x n ) 1 S k (x n ) = -b -1 n (Φ 11 (q n , q n+1 ) + S k (x n )) t b n -Φ 22 (q n , q n+1 )b -1 n (Φ 11 (q n , q n+1 ) + S k (x n ))
.

This means: S k+1 (x n+1 ) = -t b n (Φ 11 (q n , q n+1 ) + S k (x n )) -1 b n + Φ 22 (q n , q n+1 ) and then:

(S k+1 -S -1 )(x n+1 ) = a n+1 -t b n ((S k -S -1 )(x n )) -1 b n i.e.: (S k+1 -S -1 )(x n+1 ) = (S 1 -S -1 )(x n+1 ) -t b n ((S k -S -1 )(x n )) -1 b n .
In particular, we have:

(S 2 -S -1 )(x n+1 ) = (S 1 -S -1 )(x n+1 ) -t b n a -1 n b n then S 2 < S 1 . We can subtract for any k ≥ 2: (S k+1 -S k )(x n+1 ) = t b n (S k-1 -S -1 )(x n )) -1 -(S k -S -1 )(x n ) -1 b n .
We have proved that for all positive k, G k is strictly above G -1 . We deduce that (G k (x n )) k≥1 is a strictly decreasing sequence of Lagrangians subspaces. Because all these subspaces are above G -1 (x n ), they converge to a Lagrangian subspace G + that is transverse to the vertical. In the same way, we obtain that (G -k (x n ) k≥0 is an increasing sequence of Lagrangian subspaces that are bounded from above by G 1 , hence they converge to a Lagrangian subspace G -that is transverse to the vertical. Proposition 8. Let x ∈ T * M whose orbit is locally minimizing. Then for all n, k ≥ 1,

G -k (x) is strictly under G n (x). Hence G -is under G + .
Proof We denote f m (x) by x m . Let us prove that for all n, k ≥ 1, and all m ∈ Z, then G n (x m ) is above G -k (x m ). We have proved this result for k = 1 or n = 1, then we assume that n, k ≥ 2. We recall that if F 1 , F 2 are two transverse Lagrangian subspaces of a symplectic space whose dimension is denoted by 2d, then the set T (F 1 , F 2 ) of the Lagrangian subspaces that are transverse to both L 1 and L 2 has exactly d + 1 connected components: it depends on the signature of a certain quadratic form. Let us consider the connected component

C of T (G k-1 (x k-1+m ), G k-1+n (x k-1+m )) that contains G k+n (x k-1+m ); we have proved that G k+n (x k-1+m ) and G -1 (x k-1+m ) are under G k-1 (x k-1+m ) and G k-1+n (x k-1+m ), hence they are in the same connected component C of T (G k-1 (x k-1+m ), G k-1+n (x k-1+m )) and their images by Df k-1 (x m ) -1 , that are G n+1 (x m ) and G -k (x m ), are in the same connected component of Df k-1 (x m ) -1 (T (G k-1 (x k-1+m ), G k-1+n (x k-1+m ))) .
This last set is equal to:

T ( Df k-1 (x m ) -1 (G k-1 (x k-1+m ), Df k-1 (x m ) -1 (G k-1+n (x k-1+m ))) = T (V (x m ), G n (x m )). We have proved that G n+1 (x m ) is under G n (x m ). As G n+1 (x m ) and G -k (x m ) are in the same connected component of T (V (x m ), G n (x m )), this implies that G -k (x m ) is under G n (x m ).
We deduce that G -is under G + .

3 Sum of the positive Lyapunov exponents and upper bounds 3.1

Some general results

In this section, we review some more or less well-known results concerning the link between the Lyapunov exponents and the distance between the Oseledet's bundles.

Because we didn't find any precise reference and because the proofs are rather short, we give here a proof a these results. A good reference for Lyapunov exponents is [START_REF] Ledrappier | Quelques propriétés des exposants caractéristiques[END_REF]. We work on a manifold N (not necessarily compact) and we ask ourselves the following question. Question. If the Oseledet's splitting of an invariant measure of a C 1 -diffeomorphism is such that E s and E u are close to each other (in a sense we have to specify), are the Lyapunov exponents all close to 0?

Let us explain that the answer is yes if E s and E u are 1-dimensional.

Notations. If E, F are two linear subspaces of T x N that are d-dimensional with d ≥ 1, the distance between E and F is:

dist(E, F ) = inf (e i ),(f i ) max{ e 1 -f 1 , . . . , e d -f d }
where the infimum is taken over all the orthonormal basis (e i ) of E, (f i ) of F .

Proposition 9. Let K be a compact subset of N and let C > 0 be a real number. Then, for any f ∈ Diff 1 (M ) so that max{ Df |K , Df -1 |K } ≤ C, if f has an invariant ergodic measure µ with support in K such that the Oseledet's stable and unstable bundles E s and E u of µ are one dimensional, if we denote by λ u the positive Lyapunov exponent and by λ s the negative one, then:

0 < λ u -λ s ≤ log 1 + C 2 dist(E u , E s )dµ .
Proof We denote dist(E u (x), E s (x)) by α(x).We choose x ∈ suppµ where E s and E u are defined and we choose v ∈ E u (x)\{0}. Then there exists p x (v) ∈ E s (x) such that p x (v) = v and p x (v) -v ≤ α(x) v . Then, we have:

Df |E u (x) . v = Df (x)v ≤ Df (x)p x (v) + Df (x) . p x (v) -v ≤ Df |E s (x) 1 + α(x) Df (x) Df |E s (x) v .
We deduce:

λ u -λ s = log Df |E u dµ -log Df |E s dµ ≤ log(1 + C 2 α(x))dµ(x) ≤ log 1 + C 2 α(x)dµ(x)
by Jensen inequality.

In the higher dimension cases, we obtain a slightly less good estimation.

Proposition 10. Let K be a compact subset of N , let C > 0 be a real number. Then, for any f ∈ Diff 1 (M ) so that max{ Df |K , Df -1 |K } ≤ C, if f has an invariant ergodic measure µ with support in K such that the Oseledet's stable and unstable bundles E s and E u of µ have the same dimension d , if we denote by Λ u the sum of the positive Lyapunov exponents and by Λ s the sum of the negative Lyapunov exponents, then:

0 < Λ u -Λ s ≤ d log 1 + (C 2 + 1) dist(E u , E s )dµ .
Proof We denote dist(E u (x), E s (x)) by α(x). At all the points where E s and E u are defined, we choose an orthonormal basis (e 1 , . . . , e d ) of E s in a measurable way, and an orthogonal basis (f 1 , . . . , f d ) of E u that depends measurably on the considered point and is such that:

dist(E s , E u ) = max{ e 1 -f 1 , . . . , e d -f d }.
Then we denote by P x : E u (x) → E s (x) the linear map such that P x (f i (x)) = e i (x); then, each P x is an isometry. Moreover, because

P x (f i (x))-f i (x) = f i (x)-e i (x) ≤ α(x), we deduce: ∀v ∈ E u (x), P x (v) -v ≤ dα(x) v and ∀v ∈ E s (x), (P x ) -1 (v) - v ≤ dα(x) v .
We have (we compute the determinant in the previous basis):

Λ u -Λ s = log(| det Df |E u (x) |) -log(| det Df |E s (x) |) dµ(x) = log det(Df |E u (x) (P x ) -1 (Df |E s (x) ) -1 P f (x) ) dµ(x).
Let us consider v ∈ E u (x). Then:

Df (x)(P x ) -1 (Df (x)) -1 P f (x) v -v ≤ Df (x) (P x ) -1 (Df (x)) -1 P f (x) v -(Df (x)) -1 P f (x) v) + P f (x) v -v ≤ Cdα(x) (Df (x)) -1 P f (x) v + dα(f (x)) v ≤ d(C 2 α(x) + α(f (x))) v .
Hence we have:

Df (x)(P x ) -1 (Df (x)) -1 P f (x) -Id E u (x) ≤ d(C 2 α(x) + α(f (x))). We deduce: det Df |E u (x) (P x ) -1 (Df |E s (x) ) -1 P f (x) ≤ 1 + d(C 2 α(x) + α(f (x))) d and then: Λ u -Λ s ≤ d log 1 + d(C 2 α(x) + α(f (x))) dµ(x) ≤ d log 1 + (C 2 + 1) α(x)dµ(x) .
Hence the fact that we will obtain a upper bound of the sum of the positive Lyapunov exponents that depends on the distance between the two Green bundles in the case of the twisting dynamics is not surprising. The results contained in section 4, that give lower bounds that are specific to the twisting dynamics, are more surprising. What is more interesting in this section is that we obtain some exact formula for the sum of the positive Lyapunov exponents.

Tonelli Hamiltonians

Using a Riemannian metric on M , we define the horizontal subspace H as the kernel of the connection map. Then, for every Lagrangian subspace G of T x (T * M ), there exists a linear map G : H(x) → V (x) whose graph is G. That is the meaning of graph in the following theorem. Remark.If K is an invariant compact and locally minimizing subset of T * M (for example the support of a locally minimizing ergodic measure), we have:

∀x ∈ K, G -1 (x) ≤ G -(x) ≤ G + (x) ≤ G 1 (x)
where "≤" designates the relation "to be below" for the Lagrangian subspaces that are transverse to the vertical. Hence G -and G + are uniformly bounded on K and Dπ : G ± (x) → T x M is uniformly bilipschitz.

In the case of ergodic measures of a geodesic flow with support filled by locally minimizing orbits, i.e. in the case of measures with no conjugate points, A. Freire and R. Mané proved in [START_REF] Freire | On the entropy of the geodesic flow in manifolds without conjugate points[END_REF] a nice formula for the sum of the positive exponents (see [START_REF] Foulon | Estimation de l'entropie des systèmes lagrangiens sans points conjugués Ann[END_REF] and [START_REF] Contreras | Convex Hamiltonians without conjugate points, Ergodic Theory Dynam[END_REF] too). A slight improvement of this formula gives:

Theorem. 1 Let µ be a Borel probability measure with no conjugate points that is ergodic for a Tonelli Hamiltonian flow. If G + is the graph of U and G -the graph of S, the sum of the positive Lyapunov exponents of µ is equal to:

Λ + (µ) = 1 2 tr( ∂ 2 H ∂p 2 (U -S))dµ.
Hence, we see that the more distant the Green bundles are, the greater the sum of the positive Lyapunov exponents is. This gives an upper bound to the positive Lyapunov exponents.

Proof A consequence of the linearized Hamilton equations is that if the graph G of a symmetric matrix G is invariant by the linearized flow, then any infinitesimal orbit (δq, Gδq) satisfies the following equation:

δ q = ( ∂ 2 H ∂p 2 G + ∂ 2 H ∂q∂p )δq. Hence, we have: d dt det(Dπ • Dϕ t|G ) = tr( ∂ 2 H ∂p 2 G + ∂ 2 H
∂q∂p ) det(Dπ • Dϕ t|G ); we deduce:

1 T log det(Dπ • Dϕ T |G (q, p)) = 1 T log det(Dπ(q, p) |G ) + 1 T T 0 tr( ∂ 2 H ∂p 2 G + ∂ 2 H
∂q∂p )(ϕ t (q, p))dt. Via ergodic Birkhoff's theorem, we deduce for (q, p) generic that:

lim inf T →+∞ 1 T log det(Dπ • Dϕ T |G (q, p)) = tr( ∂ 2 H ∂p 2 G + ∂ 2 H ∂q∂p )dµ.
We have noticed that Dπ G ± is uniformly bilipschitz above suppµ, hence we can remove Dπ in the previous formula when G is one of the two Green bundles. Moreover, we know that

E s ⊂ G -⊂ E s⊥ = E c ⊕ E s and that E u ⊂ G + ⊂ E u⊥ = E c ⊕ E u .
Hence, the sum of the Lyapunov exponents of the restricted cocycle (Dϕ t|G + ) is exactly Λ + (µ) and the sum of the Lyapunov exponents of the restricted cocycle (Dϕ t|G -) is Λ -(µ) = -Λ + (µ). Then we have:

Λ + (µ) = tr( ∂ 2 H ∂p 2 U + ∂ 2 H ∂q∂p )dµ and -Λ + (µ) = tr( ∂ 2 H ∂p 2 S + ∂ 2 H ∂q∂p )dµ.
We obtain the conclusion by subtracting the two equalities.

Twist maps

Theorem. 2 Let f : A d → A d be a twist map and let µ be a locally minimizing ergodic measure with compact support. Then, if Λ(µ) is the sum of the non-negative exponents of µ, if S -, S + designate the symmetric matrices whose graphs are the two Green bundles G -and G + and S k designates the symmetric matrix whose graph is G k , we have:

Λ(µ) = 1 2 log det (S + (x) -S -1 (x)) det (S -(x) -S -1 (x)) dµ(x).
In this case again, we see that the closer the two Green bundles are to each other, the closer to 0 the Lyapunov exponents are.

Proof As the result that we want to prove is local, we can assume that we are in the domain of a dual chart and express all the things in the corresponding dual linearized coordinates. We consider an invariant Lagrangian linear bundle G that is transverse to the vertical along the orbit of x = (q, p). We denote the symmetric matrix whose graph is G by G again. An infinitesimal orbit contained in this bundle satisfies: δp = Gδq. We deduce from the linearized Hamilton equations (if we are along the orbit (q(t), p(t)) = x(t), Ġ designates d dt (G(x(t)))) that:

δ q = (H qp + H pp G)δq; δ ṗ = ( Ġ + GH qp + GH pp G)δq = -(H qq + H pq G)δq.
We deduce from these equations the classical Ricatti equation (it is given for example in [START_REF] Contreras | Convex Hamiltonians without conjugate points, Ergodic Theory Dynam[END_REF] for Tonelli Hamiltonians, but the reader can find the initial and simpler Ricatti equation given by Green in the case of geodesic flows in [START_REF] Green | A theorem of E. Hopf[END_REF]):

Ġ + GH pp G + GH qp + H pq G + H pp = 0.
Let us assume now that the graphs of the symmetric matrices U and S are invariant by the linearized flow along the same orbit. We denote by (δq U , Uδq U ) an infinitesimal orbit that is contained in the graph of U. Then we have: = δq U (U -S)H pp (U -S)δq U ≥ 0.

d dt (δq U (U -S)δq U ) = 2δq U (U -S)δ qU + δq U ( U -Ṡ)δq U = 2δq U (U-
To finish the proof, we just need to notice that in coordinates:

ω(δx S , δx U ) = ω(δx U , δx U -δx S ) = (δq U , Uδq U ) 0 1 -1 0 0 (U -S)δq U = δq U (U-S)δq U
Notations. If S is a positive semi-definite matrix that is not the null matrix, then q + (S) is its smallest positive eigenvalue.

Theorem. 3 Let µ be an ergodic measure with no conjugate points and with at least one non zero Lyapunov exponent; then its smallest positive Lyapunov exponent λ(µ) satisfies: λ(µ) ≥ 1 2 m( ∂ 2 H ∂p 2 ).q + (U -S)dµ. Hence, the gap between the two Green bundles gives a lower bound of the smallest positive Lyapunov exponent. It is not surprising that when E s and E u collapse, the Lyapunov exponents are 0. What is more surprising and specific to the case of Tonelli Hamiltonians is the fact that the bigger the gap between E s and E u is, the greater the Lyapunov exponents are: in general, along a hyperbolic orbit, you may have a big angle between the Oseledet's bundles and some very small Lyapunov exponents.

Proof. Let µ be an ergodic Borel probability measure with no conjugate points; its support K is compact and then, by the first remark of section 3.2, there exists a constant C > 0 such that U and S are bounded by C above K. We choose a point (q, p) that is generic for µ and (δq, Uδq) in the Oseledet's bundle corresponding to the smallest positive Lyapunov exponent λ(µ) of µ. Using the linearized Hamilton equations (see lemma 11), we obtain:

d dt ((δq(U -S)δq) = δq(U -S) ∂ 2 H ∂p 2 (q t , p t )(U -S)δq.
Let us notice that (U -S)

1
2 δq is contained in the orthogonal space to the kernel of U -S. Hence:

d dt ((δq(U -S)δq) ≥ m( ∂ 2 H ∂p 2 )q + (U -S)δq(U -S)δq.
Moreover δq / ∈ ker(U -S) because (δq, Uδq) corresponds to a positive Lyapunov exponent and then (δq, Uδq) / ∈ G -∩ G + . Then :

2 T log( δq(T ) )+ log 2C T ≥ 1 T log(δq(T )(U -S)(q T , p T )δq(T )) ≥ 1 T log(δq(0)(U -S)(q, p)δq(0)) + 1 T T 0 m( ∂ 2 H ∂p 2 (q t , p t ))q + ((U -S)(q t , p t ))dt.
Using Birkhoff's ergodic theorem, we obtain:

λ(µ) ≥ 1 2 m( ∂ 2 H ∂p 2 )q + (U -S)dµ.

Twist maps: the weakly hyperbolic case

Theorem. 4 Let f : A d → A d be a symplectic twist map and let µ be a locally minimizing ergodic measure with no zero Lyapunov exponents. We denote the smallest Lyapunov exponent of µ by λ(µ) and an upper bound for s 1 -s -1 above suppµ by C. Then we have:

λ(µ) ≥ 1 2 log 1 + 1 C m(U(x) -S(x)) dµ(x).
Proof We assume then that (x n ) = (q n , p n ) is a generic orbit for µ. Hence there exists v 0 ∈ G + (x 0 )\{0} such that:

lim n→∞ 1 n log ( Df n (x 0 )v 0 ) = λ(µ).
The Lagrangian bundles G -and G + being transverse to the vertical at every point of suppµ, there exist two symmetric matrices S and U such that G

-(resp. G + ) is the graph of S (resp. U) in the usual coordinates of R d × R d = T x A d .
As G -and G + are transverse µ-almost everywhere, we know that there exists ε > 0 such that A ε = {x ∈ suppµ; U -S ≥ ε1} has positive µ-measure. We may then assume that x 0 ∈ A ε and that {n; U(x n ) -S(x n ) > ε1} is infinite. Let us notice that in this case, G -and G + are transverse along the whole orbit of x 0 (but U -S can be very small at some points of this orbit). Hence, for every n ∈ N, there exists a unique positive definite matrix S 0 (x n ) such that:

S 0 (x n ) 2 = U(x n ) -S(x n ).
Let us recall that a matrix M = a b c d of dimension 2d is symplectic if and only if its entries satisfy the following equalities:

t ac = t ca; t bd = t db; t da -t bc = 1.

We define along the orbit of x 0 the following change of basis:

P = S -1 0 S -1 0 SS -1 0 US -1 0 .
Then it defines a symplectic change of coordinates, whose inverse is:

Q = P -1 = 0 1 -1 0 t P 0 -1 1 0 = S -1 0 U -S -1 0 -S -1 0 S S -1 0 .
We use this symplectic change of coordinates along the whole orbit of x 0 . More precisely, if we denote the matrix of Df k in the usual canonical base e = (e i ) by M k , then the matrix of Df k in the base P e = (P e i ) is denoted by Mk ; we have then: Mk (x n ) = P -1 (x n+k )M k (x n )P (x n ). Let use notice that the image of the horizontal (resp. vertical) Lagrangian plane by P is G -(resp. G + ). As the bundles G -and G + are invariant by f , we deduce that Mk = ãk 0 0 dk ; we have t ãk dk = 1 because this matrix is symplectic.

Moreover, we know that:

M k (x n ) = -b k (x n )s -k (x n ) b k (x n ) c k (x n ) s k (x k+n )b k (x n ) where G k (x n ) = Df k .V (x n-k ) is the graph of s k (x n ).
Writing that Mk (x n ) = ãk (x n ) 0 0 dk (x n ) = P -1 (x n+k )M k (x n )P (x n ), we obtain firstly:

S 0 (x n+k ) -1t b k (x n )S 0 (x n ) -1 = S 0 (x n+k ) -1 (S(x n+k )-s k (x n+k ))b k (x n )(s -k (x n )-S(x n ))S 0 (x n ) -1 ; -S 0 (x n+k ) -1t b k (x n )S 0 (x n ) -1 = S 0 (x n+k ) -1 (U(x n+k )-s k (x n+k ))b k (x n )(U(x n )-s -k (x n ))S 0 (x n ) -1 .
We deduce that: ãk (x n ) = S 0 (x n+k )b k (x n )(S(x n ) -s -k (x n ))S 0 (x n ) -1 and: dk (

x n ) = S 0 (x n+k )b k (x n )(U(x n ) -s -k (x n ))S 0 (x n ) -1 .
Because of the changes of basis that we used, (ã k (x n )) k represents the linearized dynamics (Df k |G - (xn) ) k restricted to G -and ( dk (x n )) k the linearized dynamics restricted to G + . Hence we need to study ( dk (x n )) to obtain some information about the positive Lyapunov exponents of µ. Let us compute:

t dk (x n ) = ãk (x n ) -1 = S 0 (x n )(S(x n ) -s -k (x n )) -1 b k (x n ) -1 S 0 (x n+k ) -1 ; we deduce: t dk (x n ) dk (x n ) = S 0 (x n )(S(x n ) -s -k (x n )) -1 (U(x n ) -s -k (x n ))S 0 (x n ) -1 = S 0 (x n )(S(x n ) -s -k (x n )) -1 (U(x n ) -S(x n ) + S(x n ) -s -k (x n ))S 0 (x n ) -1 = 1 + S 0 (x n )(S(x n ) -s -k (x n )) -1 S 0 (x n ) = 1 + (U(x n ) -S(x n )) 1 2 (S(x n ) -s -k (x n )) -1 (U(x n ) -S(x n )) 1 2 .
Let us denote the conorm of a (for the usual Euclidean norm of R d ) by: m(a) = a -1 -1 . Then we have:

m( dk (x n )) 2 = m( t dk (x n ) dk (x n ));
and then: m( dk (x n )) 2 ≥ 1 + 1 C m((U -S)(x n )) where C designates sup s 1 -s -1 above the (compact) support of µ; indeed, we know that: s 1 -s -1 ≥ S -s -k > 0.

The entry dk being multiplicative, we deduce that:

m( dk (x 0 )) 2 ≥ k-1 n=0 (1 + 1 C m(U(x n ) -S(x n )))
and:

1 k log m( dk (x 0 )) ≥ 1 2k k-1 n=0 log(1 + 1 C m(U(x n ) -S(x n ))).
When k tends to +∞, we deduce from Birkhoff's ergodic theorem that:

( * ) lim inf Let us recall that ( dk (x 0 )) represents the dynamics along G + , but the change of basis that we have done is not necessarily bounded. To obtain a true information about the Lyapunov positive exponents, we need to have a result for the matrix D k of (Df k |G + (x 0 ) ) in the base of G + whose matrix in the usual coordinates is: 

1 λ

 1 . Let us denote the matrix of Df (x 0 ) in the usual coordinates by : N = a b c d .

  x) -S(x)) dµ(x).

1 0- 1 0,

 11 is the matrix of Df k in the base whose matrix is S -US we deduce that:D k (x 0 ) = S 0 (x k ) dk (x 0 )S 0 (x 0 ) -1 and: m(D k (x 0 )) ≥ m(S 0 (x k ))m( dk (x 0 ))m(S 0 (x 0 ) -1 ) = (m(U(x k ) -S(x k ))) 1 2 m( dk (x 0 ))m(S(x 0 ) -1 ).We have ( * ) and we know that: lim inf k→∞ m(U(x k ) -S(x k )) ≥ ε. We deduce:λ(µ) ≥ lim inf k→∞ 1 k log m(D k (x 0 )) x) -S(x)) dµ(x).

  S)(H qp +H pp U)δq U +δq U (SH pp S-UH pp U+SH qp +H pq S-UH qp -H pq U)δq U = δq U (UH qp -SH qp + UH pp U -2SH pp U + SH pp S + H pq S -H pq U)δq U

It will be precisely defined later.

We thank F. Laudenbach for this suggestion.

Before explaining which results we obtain for the twisting dynamics, we have to explain that some results are true for general dynamics (not necessarily twisting) and explain the difference with our results.

Proof We use coordinates such that G + becomes the horizontal bundle, i.e. we use the change of symplectic coordinates whose matrix is 1 S + 0 1 . This change of coordinates is not continuous, but it is uniformly bounded because S 1 ≤ S + ≤ S 1 , and S -1 and S 1 vary continuously in the compact set suppµ. The matrix of Df at x is then:

We know that

, hence along G + we see the non-negative Lyapunov exponents. Then we have:

In the same way, we have:

By subtracting these two equalities, we obtain the equality of the theorem.

Lower bounds for the positive Lyapunov exponents

Here we prove results that are specific to the twisting dynamics.

Tonelli Hamiltonians

Lemma 11. Let H : T * M → R be a Tonelli Hamiltonian. Let (x t ) be a locally minimizing orbit and let U and S be two Lagrangian bundles along this orbit that are invariant by the linearized Hamilton flow and transverse to the vertical. Let δx U ∈ U be an infinitesimal orbit contained in the bundle U and let us denote by δx S the unique vector of S such that δx U -δx S ∈ V (hence δx S is not an infinitesimal orbit). Then:

Remark. Let us notice that ω(x t )(δx S (t), δx U (t)) is nothing else but the relative height Q(S, U ) of U above S at the vector δq U = Dπ.δx U = Dπ.δx S .