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UNIQUENESS TYPE RESULT IN DIMENSION 3

We give some estimates of type sup × inf on Riemannian manifold of dimension 3 for the prescribed curvature type equation. As a consequence, we derive an uniqueness type result.

INTRODUCTION AND MAIN RESULTS

In this paper, we deal with the following prescribed scalar curvature type equation in dimension 3: ∆u + h(x)u = V (x)u 5 , u > 0.

(E) Where h, V are two continuous functions. In the case 8h = R g the scalar curvature, we call V the prescribed scalar curvature. Here, we assume h a bounded function and h 0 = ||h|| L ∞ (M) .

We consider three positive real number a, b, A and we suppose V lipschitzian:

0 < a ≤ V (x) ≤ b < +∞ and ||∇V || L ∞ (M) ≤ A. (C)
The equation (E) was studied a lot, when M = Ω ⊂ R n or M = S n see for example, [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF][START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF][START_REF] Bahoura | Lower bounds for sup+inf and sup × inf and an extension of Chen-Lin result in dimension 3[END_REF], [START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF], [START_REF] Yy | Prescribing scalar curvature on Sn and related Problems[END_REF]. In this case we have a sup × inf inequality.

The corresponding equation in two dimensions on open set Ω of R 2 , is:

∆u = V (x)e u
, (E ′ ) The equation (E ′ ) was studed by many authors and we can find very important result about a priori estimates in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], and [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF]. In particular in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] we have the following interior estimate:

sup K u ≤ c = c(inf Ω V, ||V || L ∞ (Ω) , inf Ω u, K, Ω).
And, precisely, in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], and [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], we have:

C sup K u + inf Ω u ≤ c = c(inf Ω V, ||V || L ∞ (Ω) , K, Ω),
and,

sup K u + inf Ω u ≤ c = c(inf Ω V, ||V || C α (Ω) , K, Ω).
where K is a compact subset of Ω, C is a positive constant which depends on inf Ω V sup Ω V , and,

α ∈ (0, 1].
In the case V ≡ 1 and M compact, the equation (E) is Yamabe equation. Yamabe has tried to solve problem but he could not, see [START_REF] Yamabe | On a deformation of Riemannian structures on compact manifolds[END_REF]. T.Aubin and R.Schoen have proved the existence of solution in this case, see for example [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF] and [START_REF] Lee | The Yamabe problem[END_REF] for a complete and detailed summary.

When M is a compact Riemannian manifold, there exist some compactness result for equation (E) see [START_REF] Yy | Yamabe Type Equations On Three Dimensional Riemannian Manifolds[END_REF]. Li and Zhu see [START_REF] Yy | Yamabe Type Equations On Three Dimensional Riemannian Manifolds[END_REF], proved that the energy is bounded and if we suppose M not diffeormorfic to the three sphere, the solutions are uniformly bounded. To have this result they use the positive mass theorem. Now, if we suppose M Riemannian manifold (not necessarily compact) and V ≡ 1, Li and Zhang [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF] proved that the product sup × inf is bounded. Here we extend the result of [START_REF] Bahoura | sup × inf inequality on manifold of dimension 3[END_REF].

Our proof is an extension of Brezis-Li and Li-Zhang result in dimension 3, see [START_REF] Brezis | Some nonlinear elliptic equations have only constant solutions[END_REF] and [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF], and, the moving-plane method is used to have this estimate. We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. Also, we can see in [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], one of the application of this method.

Here, we give an equality of type sup × inf for the equation (E) with general conditions (C). Note that, in our proof, we do not need a classification result for some particular elliptic PDEs on R 3 .

In dimension greater than 3 we have other type of estimates by using moving-plane method, see for example [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF][START_REF] Bahoura | Estimations uniformes pour l'quation de Yamabe en dimensions 5 et 6[END_REF].

There are other estimates of type sup + inf on complex Monge-Ampere equation on compact manifolds, see [START_REF] Siu | The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group[END_REF][START_REF] Tian | A Harnack type inequality for certain complex Monge-Ampre equations[END_REF] . They consider, on compact Kahler manifold (M, g), the following equation:

(ω g + ∂ ∂ϕ) n = e f -tϕ ω n g , ω g + ∂ ∂ϕ > 0 on M
And, they prove some estimates of type sup M +m inf M ≤ C or sup M +m inf M ≥ C under the positivity of the first Chern class of M.

Here, we have, Theorem 1.1. For all compact set K of M and all positive numbers a, b, A, h 0 there is a positive constant c, which depends only on, a, b, A, h 0 , K, M, g such that:

sup K u × inf M u ≤ c,
for all u solution of (E) with conditions (C).

This theorem generalise Li-Zhang result, see [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF] in the case V ≡ 1. Here, we use Li and Zhang method in [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF].

In the case h ≡ ǫ ∈ (0, 1) and u ǫ solution of :

∆u ǫ + ǫu ǫ = V ǫ u 5 ǫ , u ǫ > 0. (E ǫ )
We have:

Corollary 1.2. For all compact set K of M and all positive numbers a, b, A there is a positive constant c, which depends only on, a, b, A, K, M, g such that:

sup K u ǫ × inf M u ǫ ≤ c,
for all u solution of (E ǫ ) with conditions (C). Now, if we assume M a compact riemannian manifold and 0 < a ≤ V ǫ ≤ b < +∞ we have: Theorem 1.3. (see [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF]). For all positive numbers a, b, m there is a positive constant c, which depends only on, a, b, m, M, g such that:

ǫ sup M u ǫ × inf M u ǫ ≥ c, for all u ǫ solution of (E ǫ ) with max M u ǫ ≥ m > 0 .
As a consequence of the two previous theorems, we have: Theorem 1.4. For all positive numbers a, b, A we have:

max M u ǫ → 0,
and (up to a subsequence),

max M u ǫ ǫ 1/4
→ w 0 > 0, and, min M u ǫ ǫ 1/4 → w 0 > 0.

Remarks:

• It is not necessary to have u ǫ ≡ w 0 ǫ 1/4 , because if we take a nonconsant function V , we can find by the variational approach a non constant positive solution of the subcritical equation:

∆u ǫ + ǫu ǫ = µ ǫ V u 5-ǫ ǫ
, with µ ǫ , u ǫ > 0. In this case (subcritical which tends to the critical) we also have the sup × inf inequalities and the uniqueness type theorem.

• In fact, we prove, up to a subsequence that u ǫ ǫ 1/4 converge to a constant which depends on a, b and A.

PROOF OF THE THEOREMS

Proof of theorem 1.1:

We want to prove that:

ǫ max B(0,ǫ) u × min B(0,4ǫ) u ≤ c = c(a, b, A, M, g) (1) 
We argue by contradiction and we assume that:

max B(0,ǫ k ) u k × min B(0,4ǫ k ) u k ≥ kǫ k -1 (2) 
Step 1: The blow-up analysis

The blow-up analysis gives us : For some xk ∈ B(0, ǫ k ), u k (x k ) = max B(0,ǫ k ) u k , and, from the hypothesis,

u k (x k ) 2 ǫ k → +∞. By a standard selection process, we can find x k ∈ B(x k , ǫ k /2) and σ k ∈ (0, ǫ k /4) satisfying, u k (x k ) 2 σ k → +∞, (3) 
u k (x k ) ≥ u k (x k ), (4) and, 
u k (x) ≤ C 1 u k (x k ), in B(x k , σ k ),
(5) where C 1 is some universal constant. It follows from above ( (2), ( 4)) that:

u k (x k ) × min ∂B(x k ,2ǫ k ) u k ǫ k ≥ u k (x k ) × min B(0,4ǫ k ) u k ǫ k ≥ k → +∞. ( 6 
)
We use {z 1 , . . . , z n } to denote some geodesic normal coordinates centered at x k (we use the exponential map). In the geodesic normal coordinates, g = g ij (z)dzdz j ,

g ij (z) = δ ij = O(r 2 ), g := det(g ij (z)) = 1 + O(r 2 ), h(z) = O(1), (7) 
where r = |z|. Thus,

∆ g u = 1 √ g ∂ i ( √ gg ij ∂ j u) = ∆u + b i ∂ i u + d ij ∂ ij u, where b j = O(r), ∂ ij = O(r 2 ) (8) We have a new function: v k (y) = M -1 k u k (M -2 k y) for |y| ≤ 3ǫ k M 2 k
where M k = u k (0). From (5), ( 6), we have:

         ∆v k + bi ∂ i v k + dij ∂ ij v k -cv k + v k 5 = 0 for |y| ≤ 3ǫ k M 2 k v k (0) = 1 v k (y) ≤ C 1 for |y| ≤ σ k M 2 k lim k→+∞ min |y|=2ǫ k M 2 k (v k (y)|y|) = +∞ (9) where C 1 is a universal constant and bi (y) = M -2 k b i (M -2 k y), dij (y) = d ij (M -2 k y) (10) and, c(y) = M -4 k h(M -2 k y) (11) 
We can see that for |y| ≤ 3ǫ k M 2 k , we have:

| bi (y)| ≤ CM -4 k |y|, | dij (y)| ≤ CM -4 k |y| 2 , |c(y)| ≤ CM -4 k ( 12 
)
where C depends on n, M, g.

It follows from ( 9), ( 10), ( 11), ( 12) and the elliptic estimates, that, along a subsequence, v k converges in C 2 norm on any compact subset of R 2 to a positive function U satisfying:

∆U + U 5 = 0 in R 2 U (0) = 1, 0 < U ≤ C 1 (13) 
Step 2: The Kelvin transform and moving-plane method For x ∈ R 2 and λ > 0, let,

v λ,x k (y) := λ |y -x| v k x + λ 2 (y -x)
|y -x| 2 denote the Kelvin transformation of v k with respect to the ball centered at x and of radius λ.

We want to compare for fixed x, v k and v λ,x k . For simplicity we assume x = 0. We have:

v λ k (y) := λ |y| v k (y λ ), with y λ = λ 2 y |y| 2 For λ > 0, we set, Σ λ = B 0, ǫ k M k 2 -B(0, λ).
The boundary condition, (9), become:

lim k→+∞ min |y|=ǫ k M 2 k (v k (y)|y|) = lim k→+∞ min |y|=2ǫ k M 2 k (v k (y)|y|) = +∞ (14) 
We have:

∆v λ k + V λ k (v λ k ) 5 = E 1 (y) for y ∈ Σ λ (15) where, E 1 (y) = - λ |y| 5 bi (y λ )∂ i v k (y λ ) + dij (y λ )∂ ij v k (y λ ) -c(y λ )v k (y λ ) . (16) 
Clearly, from (10), [START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF], there exists

C 2 = C 2 (λ 1 ) such that, |E 1 (y)| ≤ C 2 λ 5 M -4 k |y| -5 for y ∈ Σ λ (17) 
Let,

w λ = v k -v λ k .
Here, we have, for simplicity, omitted k. We observe that by (9), [START_REF] Yy | Prescribing scalar curvature on Sn and related Problems[END_REF]:

∆w λ + bi ∂ i w λ + dij ∂ ij w λ -cw λ + 5ξ 4 V k w λ = E λ in Σ λ (18) 
where ξ stay between v k and v λ k , and,

E λ = -bi ∂ i v λ k + dij ∂ ij v λ k + cv λ k -E 1 -(V k -V λ k )(v λ k ) 5 . (19) 
A computations give us the following two estimates:

|∂ i v λ k (y)| ≤ Cλ|y| -2 , and |∂ ij v λ k (y)| ≤ Cλ|y| -3 in Σ λ (20) 
From ( 10), [START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF], [START_REF] Siu | The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group[END_REF], we have,

Lemma 2.1. . For somme constant C 3 = C 3 (λ) |E λ | ≤ C 3 λM -4 k |y| -1 + C 3 λ 5 M -2 k |y| -4 in Σ λ (21) 
we consider the following auxiliary function:

h λ = -C 1 AM -2 k λ 2 1 - λ |y| + C 2 AM -2 k λ 3 1 - λ |y| 2 -C 3 M -4 k λ(|y| -λ),
where C 1 , C 2 and C 3 are three positive numbers.

Lemma 2.2. . We have,

w λ + h λ ≥ 0, in Σ λ ∀0 < λ ≤ λ 1 (22) 
Proof of Lemma 2.2. We divide the proof into two steps.

Step 1. There exists λ 0,k > 0 such that (22) holds :

w λ + h λ ≥ 0, in Σ λ ∀0 < λ ≤ λ 0,k .
To see this, we write:

w λ = v k (y) -v λ k (y) = 1 |y| |y|v k (y) -|y λ |v k (y λ ) .
Note that y and y λ are on the same ray starting from the origin. Let, in polar coordinates,

f (r, θ) = √ rv k (r, θ).
From the uniform convergence of v k , there exists r 0 > 0 and C > 0 independant of k such that, ∂f ∂r (r, θ) > Cr -1/2 for 0 < r < r 0 .

Consequently, for 0 < λ < |y| < r 0 , we have:

w λ (y) + h λ (y) = v k (y) -v λ k (y) + h λ (y), > 1 √ r 0 C √ r 0 -1/2 (|y| -|y λ |) + h λ (y) > ( C r 0 -C 3 λM -2 k )(|y| -λ) since |y| -|y λ | > |y| -λ > 0. ( 23 
)
Since,

|h λ (y)| + v λ k (y) ≤ C(k, r 0 )λ, r 0 ≤ |y| ≤ ǫ k M k 2 ,
we can pick small λ 0,k ∈ (0, r 0 ) such that for all 0 < λ ≤ λ 0,k we have,

w λ (y) + h λ (y) ≥ min B(0,ǫ k M 2 k ) v k -C(k, r 0 )λ 0,k > 0 ∀ r 0 ≤ |y| ≤ ǫ k M k 2
Step 1 follows from (23).

Let,

λk = sup{0 < λ ≤ λ 1 , w µ + h µ ≥ 0, in Σ µ ∀0 < µ ≤ λ} (24) 
Step 2. λk = λ 1 , (22) holds.

For this, the main estimate needed is:

(∆ + bi ∂ i + dij ∂ ij -c + 5ξ 4 V k )(w λ + h λ ) ≤ 0 in Σ λ (25) 
Thus,

∆h λ + bi ∂ i h λ + dij ∂ ij h λ + (-c + 5ξ 4 V k )h λ + E λ ≤ 0 in Σ λ . (26) 
We have h λ < 0, and, (12) and a computation give us, From (25) and above we conclude that λk = λ 1 and lemma 2.2 is proved.

|ch λ | ≤ C 3 λM -4 k |y| -1 + C 3 λ 2 M -6 k ≤ C 3 λM -4 k |y| -1 , and, | bi ∂ i h λ | + | dij ∂ ij h λ | ≤ C 3 λM -8 k |y| + C 3 λ 3 M -6 k |y| -1 + C 3 λ 5 M -6 k |y| -2 , ≤ C 3 λM -4 k |y| -1 + C 3 λ 5 M -2 k |y| -4 Thus, | bi ∂ i h λ | + | dij ∂ ij h λ | + |ch λ | ≤ C 3 λM

-4 k |y| - 1 + 2 ,

 12 C 3 λ 5 M -2 k |y| -4 in Σ λ Thus, by[START_REF] Tian | A Harnack type inequality for certain complex Monge-Ampre equations[END_REF],∆h λ + bi ∂ i h λ + dij ∂ ij h λ + (-c + 5ξ 4 V k )h λ + E λ ≤ ≤ ∆h λ + C 3 λM -4 k |y| -1 + C 3 λ 5 M -2 k |y| -4 + |E λ | ≤ 0, because, ∆h λ = -2C 3 λM -4 k |y| -1 -2C 3 λ 5 M -2 k |y| -4 .From the boundary condition and the definition of v λk and h λ , we have:|h λ (y)| + v λ k (y) ≤ C(λ 1 ) |y| , ∀ |y| = ǫ k M k 2 ,and, thus,wλk (y) + hλk (y) > 0 ∀ |y| = ǫ k M kWe can use the maximum principal and the Hopf lemma to have:wλk + hλk > 0, in Σ λ ,and, ∂ ∂ν (wλk + hλk ) > 0, in Σ λ .

Given any λ > 0, since the sequence v k converges to U and hλk converges to 0 on any compact subset of R 2 , we have:

Since λ 1 > 0 is arbitrary, and since we can apply the same argument to compare v k and v λ,x k , we have:

Thus implies that U is a constant which is a contradiction.

Proof of theorem 1.4:

From theorem 2.1 (see [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF]), we have:

We conclude with the aid of the elliptic estimates and the classical Harnack inequality that:

where C is a positive constant independant of ǫ.

Let G ǫ the Green function of the operator ∆ + ǫ, we have,

We write:

With the similar argument, we have :

Finaly, we have:

Where C 1 and C 2 are two positive constant independant of ǫ.

We set w ǫ = u ǫ ǫ 1/4 , then, ∆w ǫ + ǫw ǫ = ǫV ǫ w 5 ǫ . The theorem follow from the standard elliptic estimate, the Green function of the lapalcian and the Green representation formula for the solutions of the previous equation.