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This paper describes an experimental procedure for the simultaneous determination of heat sources and
mechanical energy involved locally during a heterogeneous tensile test. This procedure involves two
complementary imaging techniques: digital image correlation (DIC) and infrared thermography (IRT).
The first technique gives displacement fields from which strains are derived while the second provides
temperature fields with which the heat sources are estimated using a local form of the heat equation.
Moreover, a method based on integration of equilibrium equations under the plane stress assumption is
used to determine the stress distribution during the test. The distribution of the local deformation energy
developed by the material is then assessed using stress and strain-rate fields.

Tensile tests were performed on thin flat steel samples. The results revealed early and gradual devel-
opment of strain localization within the gauge part of the specimen. Energy balances were performed
inside and outside the necking zone based on the assumption that the thermoelastic part of the behaviour
remains linear and isotropic. Finally, indirect estimate of the stored energy led us to compute the time
course of the local Taylor–Quinney coefficient.

Introduction

The conversion of mechanical energy into heat has been investigated in a wide range of materials by
many researchers, including [Taylor and Quinney 1934; Schmidt et al. 1945; Chrysochoos and Martin
1989; Rittel 1999]. Using different experimental arrangements (calorimeter [Shenogin et al. 2002], ther-
mocouples [Zehnder et al. 1998], IR sensors [Guduru et al. 2001; Chrysochoos and Louche 2000]), these
studies gave similar results, showing that a variable amount of mechanical energy is converted into heat
during inelastic transformation. Such techniques generally provide a macroscopic estimate of the Taylor–
Quinney coefficient that links mechanical and dissipated energies. Here macroscopic means at the scale
of the sample gauge part. This coefficient plays a key role in the modelling of plasticity each time the
dissipated energy has to be introduced within a pure mechanical elastic-plastic framework. It has been
used to compute the plastic strain-induced heat without having to invoke a particular thermodynamic
framework [Batra and Chen 2001; Campagne et al. 2005; Rusinek et al. 2007]. Moreover, we stress that
this coefficient is nearly always regarded as a constant material parameter, independent of the loading
path and strain hardening history. In such particular cases, the stored energy ratio is then equal to
the ratio of the stored energy rate, as we will see hereafter. This latter ratio often appears in the heat
equation associated with anisothermal viscoplastic models developed to describe dynamic localization
mechanisms [Mercier and Molinari 1998; Rosakis et al. 2000]. Nevertheless, in the case of heterogeneous
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loading (necking, shear bands, etc.), energy fields are then both representative of the material behaviour
combined with structure effects. Under such conditions, the overall Taylor–Quinney coefficient can no
longer be only representative of the material behaviour.

In this paper, we present a specific setup for local estimate of different terms of the energy balance
for quasistatic, heterogeneous tests. This setup combines two imaging techniques, that is, digital image
correlation (DIC) and infrared thermography (IRT). The experimental design enables us to estimate the
local distribution of deformation energy rate developed by the material and heat sources induced by
the loading. DIC techniques are now commonly used to measure displacement and strain fields on the
surface of thin specimens [Chu et al. 1985]. Besides, IRT camera performances have been considerably
improved with the advent of infrared focal plane array sensors (IRFPA). These new cameras provide
IR films with fine spatial resolution, low thermal noise, and reasonably high frame rates for quasistatic
mechanical tests.

In what follows, we first review the theoretical background used to define the energy balance. We then
describe the different devices involved in the setup and experimental procedure. In the third part, we
detail the data processing procedures and their validation. Finally, we present and discuss some results
obtained during straining of an interstitial-free steel (commercial grade: IF–Ti).

Energy balance and heat equation

To draw up the energy balance, we worked within the classical formalism of generalised standard mate-
rials [Halphen and Nguyen 1975] which are sometimes used to deal with material behaviours [Lemaitre
and Chaboche 1985], particularly in plasticity [Lubliner 1991]. In this framework, the thermodynamic
state of each volume element of the material is characterised by a finite set of variables. In the case of
plasticity, this set includes the absolute temperature T , a strain tensor denoted by ε, and a vector α whose
components characterize the microstructural state of the material. The chosen thermodynamic potential
associated with such a state variable set is the Helmholtz free energy ψ(T, ε, α).

The dissipation is a volume heat source associated with irreversible processes induced by deformation
mechanisms and heat diffusion. Its definition is classically derived from the local expression of the 2nd
principle of thermodynamics defining the irreversible entropy source. As usual, we suppose that the
intrinsic (mechanical) dissipation d1 and the thermal dissipation d2 are separately positive. With the
chosen set of state variables, d1 is defined by

d1 = σ : D− ρ
∂ψ

∂ε
: ε̇− ρ

∂ψ

∂α
· α̇ ≥ 0, (1)

where ρ is the mass density, σ is the Cauchy stress tensor, and D the Eulerian strain-rate tensor. The
superimposed dot represents the time derivative. Naturally, the equality d1 = 0 corresponds to mechani-
cally reversible processes. Note that the intrinsic dissipation d1 is the difference between the deformation
energy rate w•def, and the sum of the elastic w•e and stored w•s energy rates

w•def = σ : D, (2)

w•e +w
•

s = ρ
∂ψ

∂ε
:ε̇+ ρ

∂ψ

∂α
· α̇, (3)



In Equations (2) and (3), the notation ()• means that the variation of () is path-dependent. These
different energies are therefore not state functions a priori. We define the corresponding energy variations
by

wx =

∫ t

t0
w•x dτ,

where x symbolizes the energy type (for example, deformation, elastic, stored) while t0 and t are re-
spectively the times of initial and current states. Similarly, the dissipated energy variation is defined
by

wd =

∫ t

t0
d1 dτ.

Temperature variations within the sample are governed by the heat equation. Combining the first and
second principles of thermodynamics, we derive its following local expression

ρCṪ + divq= d1+ re+w•tec+w•tmc, (4)

where C stands for the specific heat capacity at constant ε and α, while q is the heat influx vector.
Assuming a Fourier’s law of heat conduction (q =−k grad T , where k is the constant isotropic conduc-
tion coefficient), the left hand side of Equation (4) becomes a partial derivative operator applied to the
temperature field T .

Heat sources responsible for temperature variations within the specimen are gathered on the right hand
member of Equation (4). They correspond to the intrinsic dissipation d1, the external volume heat supply
re, and thermomechanical couplings w•tec and w•tmc. The term w•tec represents the famous thermoelastic
coupling (that is, Lord Kelvin’s term), and w•tmc represents all other possible thermomechanical couplings
associated with interactions between the temperature and microstructure. In the general case, the sum
w•tec+w

•
tmc reads

w•tec+w
•

tmc = ρT
∂2ψ

∂T ∂ε
: ε̇+ ρT

∂2ψ

∂T ∂α
· α̇.

In the following, we will assume that the thermoelastic part of the behaviour remains linear and
isotropic. We will also neglect all other thermomechanical couplings. This latter hypothesis is justified
by the fact that temperature variations remain relatively small, thus inducing no microstructure variation
(no self-induced annealing). We thus introduce w•h as the overall heat source defined by w•h = d1+w

•
tec

and verifying

ρC θ̇ − k1θ = w•h + re (5)

with θ being the local temperature difference T − T0, where T0 is the current room temperature.
In this setting, the stored energy ratio can then be defined by

Fw =
ws

win
=
wdef−we−wd

wdef−we
=

ws

ws+wd
.

The difference wdef−we represents the inelastic work win. In the case of plastic hardening at finite
strain, the elastic energy generally remains very low relative to the deformation energy so that Fw ≈
1−wd/wdef.



As often supposed in the literature, the stored energy ratio is considered as a constant regardless of
the initial hardening state and the loading path (typically Fw = 0.1). In this particular case, the ratio of
the stored energy rate is also constant and equal to the stored energy ratio itself

Ḟw =
d
dt

( ws

win

)
=
winw

•
s −w

•

inws

w2
in

= 0⇒ Fw• =
w•s
w•in
= Fw. (6)

Conversely, if the stored energy ratio changes, it is no longer equal to the stored energy rate ratio.

Experimental procedure

The experimental tests involved performing, at room temperature, displacement-controlled tensile load-
ing at constant velocity (v0 = 250µm s−1). The following constant dimensions were allocated to the
gauge part of the specimen: the gauge length L0 and depth D0 were 50 and 0.3 mm, respectively. Con-
versely, the width W0(X) might depend on the longitudinal Lagrangian coordinate X to force, for exam-
ple, the development of the strain localization around a given cross-section. We chose W0 = 12.5 mm
for samples with constant W0. The depth was set at a particularly low measurement to ensure the plane
stress hypothesis and legitimate the hypothesis of uniform strain in the depth direction. A simultaneous
record of infrared and visible images was performed on each side of the sample surface L ×W during
tensile straining. Figure 1 illustrates the experimental set-up designed for this purpose. It involves a
MTS hydraulic testing machine (frame: 100 kN, load cell: 25 kN), a Cedip Jade III infrared camera and
a Camelia 8M high resolution CCD camera. The optical axis of both cameras was set perpendicularly
to the frame of the testing machine, and it remained fixed during the test.

The main characteristics of the two cameras are given in Table 1. The chemical composition of the
material tested is given in Table 2.

Each camera was controlled by a separate computer. A specific electronic device was designed to
synchronise the frame grabbing of the two cameras. The principle of this device is as follows. A fre-
quency generator is used to produce the trigger signal of the master camera. This frequency is divided
or multiplied by an integer factor to generate the trigger signal of the slave camera. Each time an image
acquisition is completed, the analogical signals provided by the machine sensors are digitised, and the

Figure 1. Experimental set-up.



image size (pix) scale factor frame rate (Hz)
(µm pix−1)

IR: Cedip Jade III 320×240 524 25
CCD: Camelia 8M (binning: 4×4) 875×575 136 5

Table 1. Main camera characteristics.

time is given, on each acquisition computer, by a common clock having a 0.1 ms period. Using this
device, we estimated that the synchronisation error between the two cameras was less than 0.05 ms.

Data processing

This section briefly reviews the numerical processing principles developed to determine the different
energy fields. We focus particularly on the validation procedure improvements to check the data process-
ing.

Visible images. The surface of the specimen observed by the visible CCD camera is speckled with white
paint in order to obtain a random pattern defining the local optical signature of each material surface
element (MSE). A classical digital image correlation algorithm allowed us to determine the in-plane
components of the displacement field on a regular rectangular grid. The in-plane velocity and strain
components were derived from the displacement data by a numerical differentiation method based on a
local polynomial approximation of the displacement field [Wattrisse et al. 2001a]. The local time fitting
of displacement fields involves a 2nd order polynomial while the local space fitting is associated with
a coupled 1st order polynomial of the two in-plane coordinates. The choice of the approximation zone
AZ is very important in the differentiation process. The optimized AZ depends on the signal-to-noise
ratio and the amplitude of the sought derivatives. The image processing remains then relevant as long as
the localization zone is greater than AZ . The camera resolution led us to choose centred AZ spanning
around ±2.5 s by ±3.5 mm by ±3.5 mm. In such conditions, the incertitude on strain measurements was
estimated at 5× 10−4 [Wattrisse et al. 2001a].

Using the kinematical data obtained by the DIC algorithm, we constructed the local stress distribution,
assuming a quasistatic, plane stress, isochoric transformation. For each acquisition time t , corresponding
to an applied load F(t), the tensile component of the stress tensor σxx was assumed to be homogeneously
distributed over each cross-section S(X, t)=W (X, t)× D(X, t) of the specimen

σxx(X, t)=
F(t)

S0(X) · exp(−εxx(X, t))
(7)

C Mn P S Si Al N Ti

% (w) 0.003 0.15 0.007 0.007 0.007 0.02 0.003 0.06

Table 2. Chemical composition of the tested steel [Béranger et al. 1994].



where ε henceforth represents the Hencky strain, derived from displacement fields after a standard polar
decomposition of the transformation gradient tensor. The independence of εxx from the Y coordinate (that
is, the width direction) was confirmed by the experimental observations while the independence from
the Z coordinate (that is, the depth direction) was legitimated by the small sample thickness. The two
other stress components (shear: σxy and contraction: σyy) were computed by integrating the momentum
equations [Wattrisse et al. 2001b]

σxy(X, Y, t)=−
∂σxx

(
x(X, Y, t), t

)
∂x

y(X, Y, t),

σyy(X, Y, t)=
∂2σxx

(
x(X, Y, t), t

)
∂x2 ·

(
y(X, Y, t)2

2
−

W 2
0 (X) exp(−εxx(X, t))

8

)
.

The deformation energy locally developed by the material w•def (X, Y, t) was then estimated using
Equation (2)

w•def = σxx Dxx + 2σxy Dxy + σyy Dyy .

Thermal images. The infrared camera records the thermal radiations of the observed scene. Using the
pixel calibration protocol described in [Honorat et al. 2005], we deduced the temperature variations of the
specimen induced by the mechanical loading. To filter thermal data, local least-squares approximation of
temperature fields was performed using the same set of polynomials as the one already used for visible
images. In standard conditions, we estimated that the peak-to-peak thermal noise was about 200 mK
(that is, before data filtering) and the range of the thermal noise dropped to 20 mK for standard filtering
parameters. Moreover, the order of magnitude of the spatial resolution (in terms of pixel size) was about
0.4 mm and the temporal resolution was considered to be equal to the 0.04 s.

By integrating the heat Equation (4) over the depth of the sample [Chrysochoos and Louche 2000],
and defining the mean thermal disequilibrium over the thickness between the sample and its surroundings
by 2= θ − θ ref, we obtained the following 2D differential equation:

ρC2̇− k
(
∂22

∂x2 +
∂22

∂y2

)
+ ρC

2

τ 2D
th
= w•h. (8)

The external heat supply re defined in Equation (4) is here taken into account by monitoring the
uniform temperature variations θ ref

= T ref
−T ref

0 of an unloaded reference specimen of the same geometry
placed near the specimen in the field of view of the IR camera

re = ρC θ̇ ref
+
θ ref

τ 2D
th
.

The parameter τ 2D
th represents a time constant characterising heat losses by convection and radiation

between the sample surfaces and the surroundings, and 2̇= ∂2
∂t +v ·grad2 is the particular time derivative

of 2, v representing the velocity vector.
Table 3 presents the different thermophysical parameters used in the heat source computations.
An overall estimate of the incertitude on heat sources should take into account every possible error

sources associated with: (i) temperature accuracy, (ii) knowledge of the thermophysical parameters,
(iii) relevance of the thermal modelling (heat exchanges, source distribution), and its identification, (iv)



Figure 2. Calibration target: visible image (left); IR image (right).

mapping between kinematic and thermal data, (v) image processing robustness (derivation of discrete
noisy temperature fields). Limiting the error analysis to items (i) and (v), we estimated the incertitude by
computing the heat sources distribution from set of IR images of a nonloaded specimen. The parasitic
sources derived from the image processing then gave an order of magnitude of the relative incertitude on
the heat source fields. We found about a mean value of parasitic heat source of about 1.8×10−5 W mm−3

for a standard deviation of 2.7× 10−5 W mm−3.
In the case of localized flow, the time derivative should take the convective term v · grad2 induced by

the material flow into account. Once more, in accordance with the plane stress assumption, the smallness
of the sample thickness and the high thermal diffusivity of the tested material, the depth-wise averaged
temperatures were assumed to remain close to the surface temperatures. This enabled us to compute the
convective term using the kinematic and thermal data.

Reference speckle and infrared images were mapped using a calibration target (see Figure 2). Com-
paring the visible and infrared images of the target, we determined the rigid body movements and the
scale factor ratios between the two cameras.

For each acquisition time, the thermal data given by the IR camera (measured in the current, deformed
configuration) were linearly interpolated spatiotemporally using the positions of the deformed configura-
tion given by the DIC computation. This operation allowed us to track material particles associated with
the DIC mesh, and it thus enabled us to compute temperature variations in the Lagrangian configuration.
Figure 3 illustrates the distribution of temperature variations after 50 s of loading. Figure 3 (left) gives

ρ (kg m−3) C (J kg−1 K−1) k (W m−1 K−1) λ 106(K−1) T ref
0 (K) τ 2D

th (s)

7800 480 60 12.5 293 32

Table 3. Thermophysical parameters.



Figure 3. Thermal images represented in the current configuration (O, x, y) (left) and
in the reference configuration (O, X, Y ) (right).

the temperature distribution in the current (Eulerian) configuration, while Figure 3 (right) shows the
temperature distribution brought back in the reference (Lagrangian) configuration. Both figures are
associated with a material zone, initially of 6 mm width, centred on the gauge part of the specimen.

To illustrate the temperature patterns throughout the test, we plotted, in a single diagram, the time
course of the temperature longitudinal profile captured in the middle of the sample width (y = Y =
0 mm). Figure 4 represents variations in the profile throughout the test, in the Eulerian configuration
(θ(x, y = 0, t), Figure 4, left) and in the Lagrangian configuration (θ(X, Y = 0, t), Figure 4, right).
In these figures, the horizontal axis represents the time while the vertical axis represents the sample
longitudinal axis in the current configuration (x in Figure 4 (left)) or in the initial configuration (X in
Figure 4 (right)). A conventional stress versus time curve was also superimposed in order to link the
local thermal data to the overall mechanical loading. The paths of three MSE (named A, B and C) were
plotted to illustrate the material flows. Element A is quite specific as it is the fracture point. Naturally,
as material particles remain fixed in the Lagrangian configuration, their paths are simple horizontal lines
in Figure 4 (right).

We can observe that the level curves in Figure 4 (left) appear to be noisier than those of Figure 4
(right). This is simply due to the fact that the Eulerian representation was here constructed without any
temperature filtering (crude data) unlike the Lagrangian one.

The temperature time and spatial partial derivatives were then computed using a local polynomial
fitting technique [Moreau et al. 2004]. Naturally, the spatial derivation was performed with respect to
the current deformed state. In the Lagrangian configuration, the particular derivative of the temperature
is equal to the partial time derivative 2̇= ∂2/∂t(X, Y = 0, t) and can thus be easily computed. Figure 5
(top left) gives the particular time derivative of the temperature during the test, while Figure 5 (top right)
shows changes in the convective term v (x, y = 0, t) ·grad2(x, y = 0, t). This latter term can here reach
up to 50% of the particular derivative and thus cannot be neglected in the time derivation. To more easily
understand the particular distribution of the convective terms during strain localization, the longitudinal



Figure 4. Temperature profile variations during a tensile test performed on a IF–Ti steel
represented (δθ between two consecutive level curves: 0.66 K). The deformed configu-
ration (O, x, t) (left); and the reference configuration (O, X, t) (right).

thermal gradients ∂2/∂x(X, Y = 0, t = 80) and the longitudinal velocity profile vx(X, Y = 0, t = 80)
were plotted in Figure 5 (bottom) as functions of the Lagrangian coordinate X . The strain localization
zone is characterized by a high strain rate in the necking region and inversion of the thermal gradient
induced by the combined effect of the concentration of heat sources and heat diffusion.

Data processing validation

DIC and IRT image processing algorithms have been widely presented and checked in previous works
[Wattrisse et al. 2001a; Chrysochoos and Louche 2000]. In what follows, we tested the reliability of
the energy balance construction by comparing the overall heat sources w•h with the mechanical energy
rate w•def developed by the material. Indeed, as the elastic deformation energy and the heat induced by
thermoelastic coupling remain small in plasticity, the plastic work and dissipated energy must be of the
same order of magnitude.

Hereafter, the validation mainly deals with the local deformation energy. As it is experimentally
impossible to impose a heterogeneous distribution of mechanical energy on a structure, we chose to check
the image processing through numerical tests. A displacement-controlled tensile test was simulated using
a finite element code (Cast3M) and a Prager elastoplastic model with linear kinematic hardening. We per-
formed a three-dimensional computation in order to account for the triaxiality effect in the development
of the neck. Furthermore, to obtain localized stress and strain patterns consistent with the development
of necking, we used an initial geometry corresponding to an already necked specimen. To facilitate the
three-dimensional FE computation (no need of remeshing due to mesh distortion), we chose to simulate
the straining on a thicker specimen of about 2 mm (to be compared with the 0.3 mm of the real specimens).
We were thus able to reproduce localized flow using a simple and thus easily identifiable homogeneous
model. Figure 6 shows the initial geometry of the specimen used in the computation, measured by a



Figure 5. Time derivation of the temperature field: particular derivative (0.06 K s−1) be-
tween two level curves (top left); convective term (0.04 K s−1) between two level curves
(top right); and Ox profiles of the longitudinal thermal gradient and velocity at t = 80 s
(bottom).

3-axis measurement machine. It clearly highlights the presence of the neck in the middle of the sample
(X, Y )= (0, 0).

The material properties used in the FE computation are given in Table 4. The upper side of the sample
was fixed and a vertical displacement was imposed on its lower side. We deduced the mechanical energy
rate distribution w•def (X, Y, Z , t) from the stress and strain-rate patterns given by the computation. By
averaging this quantity over the specimen depth, we obtained the time patterns of the 2D distribution
of the mechanical energy rate w•def(X, Y, t) = 1/D0

∫ D0/2
−D0/2

w•def(X, Y, Z , t)d Z . We also extracted the
in-plane components of the displacement vector of points located on the sample surface to analyze.



Figure 6. Initial geometry of the specimen used in the finite element computation.

The numerical displacement fields represented the kinematic data obtained by DIC. They were used to
compute the in-plane strain-rate D(X, Y, t) and the stress tensors σ(X, Y, t) with the data processing
described in the previous section.

In Figure 7, we compared the distribution of w•def given by the finite element simulations with those
associated with the depthwise-averaged tensor product σ : D. Figure 8 shows the longitudinal profile
of the w•def and σ : D integrated over slides of equivalent length (1X = 0.827 mm) D0 × W0(X)×
1X of the specimen. As expected, the mechanical energy was localized in the neck. Even in this
highly heterogeneous triaxial situation, we obtained a satisfactory correlation on the distribution, and
quantitatively good estimates of the mechanical energy rate amplitudes.

Experimental results

DIC analysis reveals variations in various kinematical data such as the Eulerian strain-rate tensor D, and
the acceleration vector γ . Figure 9 (left) shows the spatiotemporal diagram of the strain-rate component
Dxx(X, Y = 0, t), and Figure 9 (right) illustrates variations in the axial components of the acceleration
vector γX (X, Y = 0, t). All the results presented here correspond to the same displacement-controlled
test, with a conventional strain-rate ε̇c of about of 5× 10−3 s−1, performed on IF–Ti steel.

At the beginning of the test, Dxx was lower than ε̇c throughout the test section of the specimen
because of the finite elastic stiffness of the testing machine frame. The early and steady narrowing
of the level curves indicates that the necking region (located around point A) gradually concentrates
before the maximum load is reached. This also means that the gauge part of the sample is no longer
uniformly strained (and stressed), thus complicating extraction of the material response and consequently
its modelling and identification.

Figure 9 (right) shows that the acceleration amplitude is negligible compared with the gravity acceler-
ation, which is classically ignored in the case of quasistatic tensile tests. This experimental result and the

Young modulus E (MPa) Poisson ratio ν Yield stress σ0 (MPa) Hardening modulus H (MPa)

210000 0.3 315 5200

Table 4. Material properties used for the finite element computation.



Figure 7. Distribution of the deformation energy rate given by the finite element code
(left) and computed as σ : D (right).

sample geometry (thin specimen) confirms the hypotheses used in the stress calculation (see section on
Data processing). At the beginning of the test, uniform acceleration profiles of “significant” level (that
is, 10−5 m s−2) can be observed. They are induced by a combination of the mechanical gaps and finite
stiffness of the testing machine and the time fitting of displacement data. As it was already shown in a

Figure 8. Longitudinal profiles of the deformation energy rate received by equally-
spaced, 0.827 mm width, slices of the sample derived from kinematical data with the
equilibrium equations (computed as σ : D) and directly computed within the FE code.



Figure 9. Spatiotemporal variation in Dxx(X, 0, t), 10−3 s−1 between two level curves
(left) and γX (X, 0, t), 0.002 mm s−2 between two level curves (right). Different profiles
of gx acceleration at t = 40, 70, 80 s are also shown (bottom).

previous paper [Wattrisse et al. 2001b], a steady concentration of level curves of positive and negative
acceleration, distributed on both sides of the necking zones, can be clearly observed. The section where
the fracture will take place (that is, MSE A) is then characterized by zero acceleration. This cross-section
can be easily predetermined on the basis of Figure 9 (bottom) where acceleration profiles captured at
time t = 40 s, 70 s, and 80 s intersect in a given cross-section. It seems like the specimen knew where
the crack would take place a long time before the crack occurred. Moreover, the odd distribution of
acceleration profiles with respect to MSE A is consistent with a symmetric strain distribution centred on
the neck.

The heterogeneity of the specimen response can also be clearly observed in Figure 10, illustrating
variations in the longitudinal distribution of tensile stress throughout the test.



Figure 10. Mechanical response. Time duration of σxx(X, 0, t), 25 MPa between two
level curves (left); stress-strain diagrams of the three MSE A, B and C with the conven-
tional stress-strain response of the specimen (right).

As expected, the stress was rather homogeneous in the sample gauge part at the beginning of the test.
A stress concentration appeared in the necking zone as localization developed. Combining the local stress
and strain measurements, we plotted the local stress-strain correspondence in the MSE, denoted A, B and
C (Figure 10, right). All the curves describe a unique path at the beginning of hardening. Nevertheless, as
the imposed macroscopic strain εC increased, the stress amplitudes at A, B and C rapidly diverged. Once
the structure started to soften, σxx decreased in sections in which the strain-rate vanished (B and C), while
it continued to increase in the section of the current necking zone. It thus seems that softening of the
sample, translated by a nonmonotone load-elongation curve, was induced by heterogeneous hardening
accompanied by elastic unloading in cross-sections outside the localization zone.

Figure 11 (left) presents the spatiotemporal distribution of the deformation energy rate during strain
hardening. The data processing was stopped before the rapid growth of localized necking in order to
consider relatively low temperature, stress and strain-rate gradients. In the late stages of localization,
the spatial resolution of the method was not sufficient to catch the high thermal and high kinematical
gradients. Investigations require then to change the scale of observation or the data processing parame-
ters. The gradual narrowing of level curves observed in Figure 11 (left) again highlights the progressive
development of localization, but now in terms of deformation energy.

The different terms on the left-hand side of Equation (8) were successively calculated to estimate the
overall heat source. Figure 11 (right) shows heat source variations along the longitudinal axis of the sam-
ple. Again, the contour plot revealed progressive narrowing of the level curves. We obviously attributed
the concentration of heat sources to the development of dissipative mechanisms due to localization of
hardening and damage.

The intrinsic dissipation was deduced from Equation (8). For simplicity, we assumed a linear, isotropic
thermoelastic behavior. The quantity w•tec was determined using the computed stress data and following



Figure 11. Spatiotemporal variations in energy rates: w•def(X, 0, t) (left); w•h(X, 0, t) (right).

the approximated definition

w•tec ≈−λT0tr(σ̇ ), (9)

where λ stands for the linear thermal dilatation coefficient. The validity of this approximation is mainly
due to the smallness of λ. In previous papers we already underlined that Equation (9) holds true as long
as

9Kλ2

ρC
T ≈

9Kλ2

ρC
T0� 1,

where K is the bulk elastic modulus.

Figure 12. Spatiotemporal variations in d1(X, 0, t) (left); w•s (X, 0, t) (right).



During elastic loading and in the early stages of plasticity, the intrinsic dissipation was very small (see
Figure 12, left), and then increased with hardening. The same trends could be observed in the d1 and w•h
patterns.

According to Equations (1)–(3), the stored energy rate was then estimated by the relation

w•s = w
•

def− d1−w
•

e .

The local evaluation of stored energy rate obtained via Equation (6) must be considered with caution
owing to the successive approximations. Nevertheless, we decided to show a detailed picture of the
stored energy rate in Figure 12 (right). The distribution appears to be heterogeneous and concentrated in
the vicinity of the necking region.

The energy distributions (wdef(X, Y, t), wd(X, Y, t), ws(X, Y, t), . . . ) were computed by integrating
the corresponding energy rates over time. Figure 13 (left) shows variations in the different energies
involved in the energy balance at MSE A, B and C for the same macroscopic applied load. These energies
are plotted with respect to the local strain reached at each point. The test heterogeneity is noted by the
fact that the curves corresponding to the three points are not identical: the trends are fairly similar, but the
energy levels reached are not the same (they increase as they get close to the localization zone). Note that
we did not observe significant decrease of the stored energy for large strain, particularly in the necking
zone. We have to mention that this last result then differs from findings recently published by Oliferuk
and Maj [2007] who observed strong decreases of the (overall) stored energy at the maximum load
defining the famous Considère instability point. It is worth noting that the method developed to estimate
the dissipated energy used an electrical analogy, these authors tuning in Joule’s effects to determine the
dissipated heat, the adjustment of the electrical power being controlled by the thermal response.

Figure 13 (right) shows variations in the Taylor–Quinney stored energy ratio Fw with the local strain
reached at MSE A, B and C. We observed negative values of the stored energy at the beginning of
strain hardening induced by an underestimate of the thermoelastic source intensity. This poor estimate
was associated with disputable values of standard thermoelastic constants extracted from the literature.

Figure 13. Energy balance at MSE A, B and C: variations in the stored ws, dissipated
wd and inelastic win energies (left); local Taylor–Quinney ratio Fw (right).



This effect on the stored energy ratio is here naturally amplified by the computation of a ratio involving
two small noisy amounts of energy. Once the anelastic energy becomes significant, the Fw variations
are fairly similar from one point to another: rapid increase during the first stages of hardening, until a
maximum is reached (Fw ≈ 0.25), followed by a small decrease (Fw ≈ 0.2). Further tests on different
steel grades are under way to confirm these trends. Contrary to most literature results, in this study the
Taylor–Quinney coefficient distributions were determined on relatively small volume elements (typically
around 1 mm3). The main advantage is to reduce the effects of localization on the energy balance. In
return, the signal–to–noise-ratios are lower, so well controlled data processing techniques are required.

Conclusions

In conclusion, we designed a set-up that combined DIC with IRT. Many technical difficulties were
overcome and the first results presented in this paper are encouraging. Both imaging techniques gave
similar spatial distributions and temporal patterns concerning heat sources and mechanical energy rates
throughout the test (especially during strain localization). The capabilities of the imaging techniques
allowed us to check the local quasistatic character of strain localization. Despite the low acceleration
intensities, the kinematical image processing showed that the cross-section where the crack initiated was
early characterized during hardening by zero acceleration, dividing the gauge part of the sample into
two parts where the accelerations were positive and negative, respectively. The combination of thermal
and kinematical data illustrated that heat involved by matter convection could represent up to more than
50% of the overall heat sources. This underlined the necessity of combining DIC with IRT as soon as
localization occurs.

However, several metrology problems remain. The next stage is to increase the signal-to-noise ratios of
both cameras to obtain more reliable quantitative results. Moreover, the data processing will be improved
in order to better account for the last localization stages. The fine knowledge of the material parameters
involved in the heat conduction equation, and their possible variations with the material state, are critical
for the heat source computation. Collaborations are under way with several research teams, within the
framework of the French National Research Agency program, to better characterize the influence of
hardening and damage on the thermophysical properties of materials.

Local determination of dissipated and stored energies is essential to test the reliability of the constitu-
tive equations proposed in thermomechanical formalism of plasticity and damage. This could give rise to
a method for separating hardening from damage, inasmuch as the latter is purely dissipative, unlike the
first one. This should be performed on elastoplastic cohesive zone models used to numerically manage
fracture in heterogeneous materials.
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