
HAL Id: hal-00572116
https://hal.science/hal-00572116

Submitted on 1 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Endogenous production of nitric oxide synthase
inhibitors

Shelagh Anthony, James Leiper, Patrick Vallance

To cite this version:
Shelagh Anthony, James Leiper, Patrick Vallance. Endogenous production of nitric oxide synthase
inhibitors. Vascular Medicine, 2005, 10 (2), pp.S3-S9. �10.1191/1358863x05vm595oa�. �hal-00572116�

https://hal.science/hal-00572116
https://hal.archives-ouvertes.fr


Introduction

In 1986 Hibbs and colleagues identified NGmonomethyl-
L-arginine (L-NMMA) as a compound that inhibits
cytotoxic effects of activated macrophages and pre-
vents the release of nitrate and nitrite derived from L-
arginine within these cells.1 A year later, Furchgott’s
endothelium-derived relaxing factor was identified as
nitric oxide (NO)2 and it soon became clear that L-argi-
nine was the substrate for endothelial NO (eNO) gen-
eration in a process inhibited by L-NMMA.3 Very soon 
L-NMMA became the standard pharmacological tool
with which to probe the biological significance of the
L-arginine:NO pathway in the cardiovascular, nervous
and immune systems. Injection of L-NMMA was
shown to increase blood pressure in guinea-pigs4 and
rabbits,5 and local intra-arterial infusion of the drug
caused a dose-dependent arteriolar vasoconstriction in
humans.6 It appeared that L-NMMA might even have
therapeutic utility, and it has now been used to prevent
the overproduction of NO that contributes to vasodi-
latation and hypotension in septic shock,7 although
it is not clear if this improves outcome. However, 
L-NMMA is also a naturally occurring arginine
analogue. Together with asymmetric dimethylarginine
(ADMA) and symmetric dimethylarginine (SDMA) it
forms a trio of guanidine-substituted arginine analogues
that have the potential to affect arginine handling
and/or NO synthesis in biological systems (Figure 1).
In this review we discuss the origin of these
compounds, their biological effects and their possible
clinical significance.

Identification of protein-arginine

methyltransferase activity

The presence of methylated arginine residues within 
a range of proteins including myelin basic protein,8
heat shock proteins,9 and nuclear and nucleolar
proteins10,11 has been known for many years. When
initially identified in calf thymus, a single protein-
arginine methyltransferase (PRMT) enzyme was
thought to be responsible for the arginine methyla-
tion of all substrate proteins.12 However, advances in
enzymology revealed two subtypes of PRMT activity
(type I and type II) in mammals. One has a wide sub-
strate specificity that includes histones and nonhistone
nuclear proteins but has no activity toward myelin
basic protein, and the second appears specifically to
methylate myelin basic protein.13 Both types of
PRMT utilise S-adenosyl methionine as a methyl
donor and both produce S-adensoyl homocysteine as a
by-product (Figure 2). More recent studies have indi-
cated that, in the nucleus, the preferred substrates for
the nonmyelin basic protein methyltransferase are
RNA binding proteins (hnRNP) that constitute the
nuclear RNA-splicing machinery.14 In addition to dif-
ferent substrate specificities, these two subclasses of
PRMT appear to have different catalytic activities: the
myelin basic protein-specific activity (type II) cataly-
ses the formation of L-NMMA and SDMA, while the
nonmyelin basic protein-specific activity (type I)
catalyses the formation of L-NMMA and ADMA.13,15

Thus type I PRMT activity is the major source of
asymmetric methylarginines, and these are the ones
that inhibit nitric oxide synthase (NOS).

Cloning of a gene family encoding human

PRMTs

To date molecular cloning has revealed the presence
of seven PRMT genes, PRMT1–7.16–22 All PRMTs
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contain a conserved catalytic core region of about 310
amino acids,18 however the sequence at the N-termi-
nal of PRMTs is not well conserved.

Recombinant expression and enzymatic characteri-
zation of these genes has been used to classify the
gene products as either type I or type II enzymes. This
analysis has indicated that PRMT1–4 and 6 are type I
and PRMT5 and 7 are type II enzymes.16,18–22 Recent
studies have indicated that alternative splicing of the
PRMT1 mRNA results in the production of three
mRNA species that vary at their 5� ends although the
physiological relevance of this processing remains
unclear.

The tissue distribution of mammalian PRMT
expression is widespread, with many tissues express-
ing multiple isoforms. Within individual cells the
intracellular localization of different PRMT isoforms
varies, with some (PRMT1, 2, 4 and 6) being predom-
inantly nuclear while the remainder (3 and 5) are
predominantly cytosolic (Table 1). The intracellular
localization of PRMT isoforms may be related to the
localization of their substrate proteins and some
reports suggest that it may be regulated in response to
extracellular stimuli.16

The classification of type I and type II proteins was
originally made on the basis of substrate specificity

Endogenous production of nitric oxide synthase inhibitors S5
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Figure 1 Structure of L-arginine and endogenously produced methylarginines. Only asymmetrically methylated
arginines (L-NMMA and ADMA) are nitric oxide synthase inhibitors.

Figure 2 Methylation of arginine residues in proteins by protein-arginine methyltransferases (PRMTs). Arginine residues (®) in
proteins that lie within appropriate consensus sequences can be post-translationally methylated by the action of PRMTs. S-adenosyl
methionine (SAM) is the methyl donor in these reactions and S-adenosyl homocysteine (SAH) is produced.



with type I methylating histones and type II methylat-
ing myelin basic protein. Since then numerous other
substrates have been identified, predominantly for
type I PRMT enzymes. There appears to be overlap in
the protein substrates that can be methylated by the
PRMT family, for example, in the case of histones.
PRMT1, PRMT4 and PRMT5 have been shown to
methylate histones H4, H3 and H4 respectively,20,22–24

with all three also methylating histone H2A. The
known substrates of each PRMT isoform are listed in
Table 1.

Physiological roles for protein-arginine

methylation

Until recently, very little was known about the physio-
logical role of methylation of arginine residues within
proteins. Along with identification and cloning of
PRMT1, Lin et al demonstrated that PRMT1 is able to
interact with many proteins, including the early
response proteins TIS21 and BTG1, both of which are
thought to play a role in negatively regulating cell
growth. Interaction of PRMT1 with these two proteins
can in turn regulate its enzymatic activity.16

Protein arginine methylation may modify the acti-
vity of proteins required for transcription,25 and may
modulate the affinity of nucleic acid binding proteins
for nucleic acids and may therefore be involved in
mediating protein–RNA interactions.25,26 Arginine
methylation has also been implicated in the process of
protein sorting19 and PRMT1 has been shown to
regulate interferon-signalling pathways by altering
targeting of nuclear proteins.27 PRMT1 is also
required for the activation of the transcription factor
STAT1 following interferon stimulation of cells.28

PRMT1 has co-activator function through methyla-
tion of histone H423 and, similarly, PRMT4 via methy-
lation of histone H3 can stimulate transcriptional
activation by nuclear receptors in combination with
the p160 family of co-activators.19 PRMT4 was origi-
nally noted to interact with glucocorticoid receptor
interacting protein 1 (GRIP1)19 and, together with
PRMT1, has also been found to interact with the p160
family of co-activators and can act in synergy with
PRMT1.29 The ability of PRMT1 and PRMT4 to act
as coactivators for nuclear receptors has led to the sug-
gestion that acetylation and methylation may co-operate
with one another in the regulation of histone func-
tion.19,29,30 PRMT1 has been shown to act in synergy
with acetylation on histone H4,23 suggesting a role for
protein-arginine methylation in the modulation of
chromatin structure and gene transcription. In support
of this suggestion, PRMT4 synergises with p300 as
nuclear receptor coactivators.30,31 PRMT4 may also
play a role in the regulation of mRNA stability as
PRMT4 can methylate the mRNA binding protein
HuR. Methylation of HuR promotes its binding to the

3� untranslated regions of certain mRNAs, resulting in
the stabilization of the message and increased protein
expression.32

The development of a PRMT1 knockout mouse has
allowed the identification of possible physiological
roles for protein methylation. Pawlak et al demon-
strated that the PRMT1 homozygous null mutant
mouse has an embryonic lethal phenotype, thus
suggesting a role for PRMT1 in the early stages of
development in mice.33 PRMT4 is required for mor-
phological skeletal muscle differentiation by acting as
a co-activator for myocyte enhancer factor-2 mediated
gene transcription.34

Taken together these studies indicate that the syn-
thesis of asymmetric methylarginine residues is a
highly regulated process. Indeed, protein methylation
has been suggested to be analogous to protein phos-
phorylation in the regulation of protein function.35

Recent data suggest that some methylated arginine
residues, particularly those found within histone tails,
may be demethylated in a reaction catalysed by protein
arginine deiminase.36 However, it appears that for
many proteins the reversal of the effects of arginine
methylation may require proteolysis of the methylated
protein and new protein synthesis. Proteolysis of pro-
teins containing methylarginine residues leads to the
release of free methylarginines into the cytoplasm.37

Many of the nuclear proteins that have been identified
as substrates for type I PRMTs are highly abundant
and contain clusters of methylarginine residues, which
account for a significant proportion of the protein. For
example, the nuclear protein fibrillarin contains
~4 mol% ADMA and the hnRNP complex contains
~1 mol% ADMA. Proteolysis of such proteins would
liberate significant amounts of free asymmetric
methylarginine residues into the cytoplasm.

Inhibition of NOS by asymmetric

methylarginines

The IC50 for L-NMMA on all three isoforms of 
NOS is in the order of 2–5 �M.38 ADMA is also an
effective inhibitor of NOS and is equipotent with 
L-NMMA. SDMA has no effect on NOS. Inhibition of
NOS activity by L-NMMA is reversible by addition of
arginine, however, the stoichiometery in biological
systems is not 1:1 and an excess of arginine is required
to reverse inhibition caused by L-NMMA or ADMA.
In the presence of L-NMMA or ADMA the apparent
Km of NOS for arginine increases.39 It has also been
suggested that L-NMMA may irreversibly inhibit NOS
under certain conditions40 and that when arginine con-
centrations are very low L-NMMA can cause eNOS to
generate oxygen free radicals,40 although whether this
occurs in vivo remains to be demonstrated.

Circulating levels of ADMA in healthy individuals
are in the 0.5–1.0 �M range but in an increasing

S6 S Anthony et al
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number of disease states higher levels have been
reported (Table 2). Initial observations of increased
methylarginine concentrations came from studies of
individuals with renal failure. Methylarginines are
eliminated from the body by a combination of renal
excretion and metabolism. In situations of renal failure,
methylarginine excretion is decreased and concentra-
tions of both ADMA and SDMA are elevated to levels
as high as 10 �M. These initial observations from
renal failure cohorts have now been extended to cover
a wide range of disorders, including a number in
which reduced NO generation has been suggested to
play a role in pathology.

Summary

An increasing volume of literature now suggests that the
production of methylarginine is actively regulated.
Intracellular and plasma concentrations of methy-
larginines are determined by the activity of synthetic and

metabolic pathways and therefore misregulation of
either might result in increased levels of free methylargi-
nine. Free asymmetric methylarginines compete for the
active site of NOS and may account for reduced NO
generation in some disease states (Figure 3). Members
of the PRMT family of enzymes are clearly key determi-
nants of ADMA production in vivo, however isoform-
specific molecular, pharmacological and biochemical
reagents will be required fully to elucidate the role of
these enzymes in the regulation of ADMA production in
physiological and pathophysiological states.
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