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Introduction

Atherosclerosis, a multifactorial disease of great com-
plexity, starts in fetal life, progresses slowly through
childhood and adolescence and accelerates in adult
life. The characteristic component of the atheroscle-
rotic plaque is the macrophage derived foam cell.1
This cholesterol laden macrophage is thought to result
from the uptake of oxidatively modified low density
lipoprotein (LDL).2 However, intracellular free cho-
lesterol (FC) can be toxic to the cell3 and therefore an

efficient cholesterol efflux mechanism in the
macrophage is mandatory to prevent cholesterol
accumulation. High density lipoprotein (HDL) and
its apolipoproteins, especially apolipoprotein A1
(apoA1), are responsible for the transfer of cholesterol
from peripheral cells to the liver for biliary excretion,
the process of reverse cholesterol transport.4 ATP
binding cassette transporter A1 (ABCA1), a mem-
brane transporter abundant in macrophages, mediates
this cholesterol and phospholipid (PL) efflux to lipid-
poor apoA1, the precursor of HDL, and plays a major
role in cholesterol homeostasis and reverse cholesterol
transport.5

The various functions of ABCA1 became apparent
after the discovery in 1999 that mutations in the
ABCA1 gene caused Tangier disease (TD), an
autosomal recessive hereditary disorder characterized
by severe HDL deficiency, sterol deposition in
macrophages and premature atherosclerosis.6 TD
patients with homozygote mutations in the ABCA1
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gene have virtually absent HDL and apoA1, decreased
low density lipoprotein (LDL) level (40% normal) and
hypertriglyceridemia.7 The association between
ABCA1 and HDL is ascertained by the fact that reduc-
tion in ABCA1 activity is associated with a significant
decrease in plasma HDL levels.8 Apart from its role in
lipid metabolism, ABCA1 has also been implicated
in promoting engulfment of apoptotic cells,9 LDL
oxidation10 and the release of inflammatory media-
tors.11,12 ABCA1 also binds to other lipoproteins
including apolipoprotein E thus playing a role in its
anti-atherogenic effect.13

Atherosclerotic plaque composition is the major
determinant of plaque disruption and the ensuing
complications. The aetio-pathogenesis of an athero-
matous plaque is influenced by lipid metabolism, dis-
ordered cell turnover and extracellular matrix turnover

within its structure. ABCA1 plays a role in all of these
events, thus potentially implicating this transporter in
the initiation, progression and pathogenesis of athero-
sclerotic vascular disease (Figure 1). In this review 
we will focus on the potential role of ABCA1 in
atherosclerotic vascular disease.

Structure and distribution

ABCA1 is a member of the superfamily of ABC trans-
porters that utilize ATP as a source of energy to trans-
port various molecules across membranes.14 The
ABCA1 gene consists of 50 exons spanning 149 kb
and encodes a protein that contains 2261 amino
acids.15 Immunofluorescence studies suggest that
ABCA1 localises in the plasma membrane16 although

Figure 1 The influence of ABCA1 on the atherosclerotic plaque.



shuttling of ABCA1 between intracellular endocytic
components and the plasma membrane has been
reported.17 The structure of ABCA1 is characterized
by the presence of two transmembrane domains with
six helices each and a nucleotide binding domain
containing two conserved peptide motifs (Walker A
and B) that are characteristic for the superfamily of
ABC transporters. It also has two large extracellular
loops joined by a disulfide linkage which are thought
to be important for the binding of apoA1.18

ABCA1 has been shown to be highly expressed in
macrophages.19,20 Though a near ubiquitous tissue
expression has been proposed, Wellington et al21

have shown a significant discordance between relative
mRNA and protein expression patterns of ABCA1 in
murine tissues.

Mechanism of cholesterol efflux

Cholesterol efflux occurs through different mecha-
nisms, ABCA1 being one of them. The efflux of FC
promoted by ABCA1 is considered to be unidirec-
tional and by active transport to apoA1. It is suggested
that the golgi apparatus processes excess intracellular
FC into vesicles that are translocated to plasma
membrane ABCA1 for exocytosis.22 Recent literature
suggests that ABCA1 mediates concurrent transport of
FC and PL to apolipoproteins23 though the availability
of different lipids in the vicinity of ABCA1 may result
in modification of the ratio of cholesterol/phospho-
lipid undergoing efflux.24 It also has been recently
shown in transgenic mice that in vivo modification of
the PL/apoA1 ratio by various lipases could play a
major role in directing FC efflux through either 
the ABCA1 or the scavenger receptor B1 (SR-B1)
pathway.25

ApoA1 and ABCA1

It is well established that free apolipoproteins play a
role in mediating removal of cellular cholesterol.26

ApoA1 is the most abundant apolipoprotein in HDL
and is known to play a role in cholesterol efflux through
ABCA1 dependent27 and independent mechanisms.28

To date no clear consensus exists regarding the
process by which apoA1 removes cholesterol and PL
from the plasma membrane. There are studies support-
ing the theory of membrane solubilization wherein
apoA1 and ABCA1 simultaneously remove both PL
and cholesterol through a single step process.29

Another proposed mechanism includes a two step
process in which ABCA1 lipidates apoA1 with PL
first to form phospholipid rich nascent HDL particles
which then remove cholesterol from cells by diffu-
sion.30,31 The flopping of phosphatidylserine (PS)
from the inner to the outer leaflet which is promoted

by ABCA1 was also thought to play a role in apoA1
mediated lipid efflux32 although a recent study sug-
gests that the small increase in PS translocation caused
by ABCA1 might be insufficient for apoA1 binding
and lipid efflux.33

There is increasing evidence that apoA1 directly
interacts with ABCA1.27,34 Further proof of this are
studies which showed that mutations in the extracellu-
lar loops of ABCA1 impaired both cross-linking with
apoA1 and lipid efflux.18 Moreover, truncation muta-
tions of apoA1 lacking helix 10 impaired cholesterol
transport through the ABCA1 pathway.35 For efficient
apoA1 mediated transport, a functional ABCA1 pro-
tein and specific binding at the plasma membrane32 is
crucial as mutated ABCA1 seen in diseases like TD6

and familial HDL deficiency,36 can result in increased
catabolism of apoA1 thus affecting HDL production.37

Animal studies have revealed that apoA1 itself,
independent of HDL cholesterol, has properties that
protect against atherosclerosis.38 ApoA1 has docu-
mented roles in inhibiting LDL oxidation,10,39,40 and
also has an anti-inflammatory effect both by inhibiting
secretion of interleukin-1� (IL-1�) and tumour necro-
sis factor-� (TNF-�)41 and via the removal of reactive
oxygen species. It has been suggested that ABCA1
may be linked to these functions via apoA1.10

The apoA1 concentration in the extracellular fluid is
dependent on synthesis, catabolism, dissociation and
its reassociation with the lipoproteins in the plasma
compartment represented by the HDL component.42

This in turn could potentially influence lipid efflux in
the plaque environment.

ABCA1 and the atherosclerotic plaque

The atherosclerotic plaque is a dynamic structure
composed of lipids, cells and extracellular matrix.
Plaques with high levels of collagen and smooth
muscle cells providing a thick fibrous cap are charac-
teristic of an advanced stable plaque, while unstable
plaques have a thin cap, dense inflammatory infiltrate
and a large lipid core.43 Unstable plaques are prone to
rupture with subsequent in situ thrombosis and
embolism,44 leading to significant clinical conse-
quences. The behaviour of these plaques is highly
unpredictable and the precise mechanisms causing the
transition to instability are incompletely understood.
The development and subsequent progression of
plaques are determined by changes in its three major
constituents, and ABCA1 could potentially influence
all of the processes governing plaque architecture,
namely:

(1) lipid accumulation and metabolism;
(2) alterations in cell turnover involving apoptosis

and inflammation;
(3) altered extracellular matrix turnover.
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ABCA1 and lipid metabolism

A large lipid core in the atheromatous plaque is one of
the major indicators of potential instability. Inefficient
macrophage function to clear lipids and cell debris
could lead to an increase in the volume of lipid within
the central core of the plaque. In the Tromso study45,46

it was reported that lipid rich echolucent carotid
plaques are associated with low levels of HDL choles-
terol and increased risk of ischemic cerebrovascular
events independent of the degree of stenosis and car-
diovascular risk factors. Furthermore low HDL levels
were shown to be associated with increased carotid
intima-media thickness independent of other risk
factors.47

Cholesterol from peripheral cells is returned to the
liver by ABCA1 dependent and independent mecha-
nisms. ApoA1 that is secreted or regenerated from
HDL by the liver is lipidated by ABCA1 in peripheral
cells to form pre-� HDL (nascent HDL) which then
collects cholesterol from various cells. Although a
basal level of phospholipidation of apoA1 may occur
through an ABCA1 independent pathway,48 the major
part of it is done by ABCA1. It is also thought that 
the cholesterol processed from LDL receptor uptake in
the liver is transferred to HDL by hepatic ABCA1 to
be secreted into bile. In addition ABCA1 might also
be involved in the removal of FC through apoA1
independent mechanisms via the formation of large
membrane FC rich vesicles.49

Animal studies have provided further proof of
ABCA1 function. Classical examples are ABCA1
knock out42 and transgenic mice50–53 as well as the
Wisconsin Hypoalpha Mutant Chicken (WHAM)54,55

which is the naturally occurring animal model of TD.
In the context of human studies on ABCA1, a 2–3-
fold increase in cardiovascular disease in TD patients
and obligate ABCA1 heterozygotes as compared to
age and sex matched controls from the Framingham
study56 was found. A recent study revealed that het-
erozygotes with ABCA1 mutations had lower
amounts of cholesterol efflux, lower HDL concentra-
tions and greater carotid intima-media thickness than
the control group.57 This study also indicated that the
upper limit of normal intima-media thickness
(0.80 mm) is reached in ABCA1 heterozygotes at the
age of 55 as compared to 80 years in the control group.

In this context, a potentially variable role of ABCA1
in hepatocytes and macrophages towards its contribu-
tion to HDL formation has been suggested. Studies in
mice have highlighted the importance of both hepatic
and macrophage ABCA1. Mice specifically overex-
pressing ABCA158 in hepatocytes and macrophages
showed significant increases in HDL levels. However,
selective inactivation studies of ABCA1 in
macrophages showed clear evidence of increased
atherosclerosis in hyperlipidemic mice58 but had very
minimal impact on HDL formation.59 Similarly mice

selectively deficient in leukocyte ABCA1 developed
large advanced atherosclerotic lesions without any
change in plasma HDL levels.60 This implies that
hepatic ABCA1 may be responsible for the main con-
tribution of ABCA1 to plasma HDL. Recent studies
by Sahoo et al61 seem to support this finding. Taken
together, these findings suggest that hepatic ABCA1
exerts a generalized anti-atherogenic effect via its
contribution to HDL formation while macrophage
ABCA1 provides a peripheral anti-atherogenic effect
on the vasculature.

However, interesting questions did arise by 
studying TD and ABCA1 deficient mice. First, the
accumulation of cholesteryl esters in these conditions
is localized primarily to macrophages and certain 
tissues.7 The reason for this observation is still under
investigation, but it has been suggested that lipids
accumulate predominantly in tissues with high cell
turnover and a large population of macrophages.
Secondly, TD patients have only a 4-fold increase in
atherosclerotic disease compared to the general 
population, despite the fact that more severe 
atherosclerosis would be expected as a consequence of
the complete absence of HDL.

It has been proposed7 that the source of cholesterol
may differ between different macrophage subtypes
with arterial macrophages primarily obtaining 
cholesterol from lipoproteins while other peripheral
macrophages accumulate cholesterol from phago-
cytosed cell membranes. Thus despite ABCA1 
deficiency and low HDL levels in TD patients, the
expected aggressive atherosclerosis fails to develop in
the background of a less atherogenic lipid profile 
(less than 40% LDL) which provides a potentially
diminished cholesterol pool for arterial macrophages.
Hence it may be speculated that in the presence 
of normal or increased levels of LDL, ABCA1 
deficiency could potentially enhance atherosclerosis.

ABCA1 and alterations in cell turnover

Apoptosis
Apoptosis is known to play a major role in regulating
cell turnover in the plaque. Apoptosis (Greek: leaf-
fall), often used synonymously with programmed cell
death, is a physiologically highly selective method to
eliminate old or injured cells before the leakage of
intracellular contents can induce an immune response.
The initial phase of apoptosis has to be followed by an
efficient phagocytic phase to render the process
immunologically silent. Therefore recognition of an
apoptotic cell by the phagocyte is crucial. After stim-
ulation, PS, an anionic phospholipid which resides in
the inner leaflet, is translocated to the outer leaflet, a
process which is sufficient to guarantee recognition by
the phagocyte.62 ABCA1 was found to be involved in
PS translocation and in promoting engulfment of
apoptotic cells.9 This study revealed that phagocytosis
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is impaired in ABCA1 deficient macrophages and that
forced expression of ABCA1 can confer engulfment
ability to non-phagocytic cells. ABCA1 null animals
were found to manifest reduced externalization of 
PS and similar findings were obtained in other
studies.33 The externalization of PS is paramount in
the atherosclerotic plaque due to its known tendency
to promote procoagulant potential63,64 and the coagu-
lation cascade. ABCA1 was also shown to interact
with the Fas associated death domain (FADD) pro-
tein,65 a process which may play a role in regulating
apoptosis.

Inflammation
Cellular cholesterol levels determine the levels of
intracellular oxygenated sterols which in turn regu-
lates LDL oxidation, activation of IL-166 and promo-
tion of apoptotic pathways.67 ABCA1 which is proven
to selectively remove cytotoxic FC from the cell68

could potentially control intracellular oxysterol levels.
Macrophages and activated T lymphocytes in the
plaque69 release proinflammatory cytokines, mainly
interferon-gamma (IFN-�) from T lymphocytes), TNF
and IL-1 (both from macrophages). These cytokines
have been reported to decrease the mRNA and 
protein levels of ABCA1.16,70–73 Moreover, lipopoly-
saccharide found in infectious agents like Chlamydia
was also reported to downregulate ABCA1 expres-
sion.70,74 It has been demonstrated that IFN-� can
cause a 3-fold downregulation of ABCA1 and simul-
taneously an increase in acyl- CoA: cholesterol acyl-
transferase (ACAT) activity71,73 thus promoting
atherosclerosis. IL-1�, responsible for the activation
of MMPs and other interleukins have also been
reported to inhibit ABCA1 function thus promoting
lipid accumulation.72 It has been recently reported that
myeloperoxidase present in atheromas75 promotes
atherogenesis by impairing ABCA1 function.76 There
is evidence that ABCA1 is involved in the secretion of
IL-1� and macrophage inhibitory factor (MIF) from
macrophages and monocytes respectively.11,12,77

However, the role of ABCA1 in the transport of these
proinflammatory cytokines needs further evaluation.

Hence it could be speculated that a vicious cycle
might ensue where the initial cytokine induction could
cause ABCA1 deficiency, which in turn results in
inadequate clearance of apoptotic and necrotic cells
that further aggravates inflammatory mediators lead-
ing to plaque instability. All of the previously men-
tioned findings suggest that therapeutic upregulation
of ABCA1 expression could be a promising approach
in the context of treatment of atherosclerosis.

ABCA1 and extracellular matrix turnover
The integrity of the extracellular matrix (ECM) which
influences the strength of the fibrous cap in the
plaque78 is determined by the balance between matrix
metalloproteinases (MMP) and tissue inhibitors of

MMPs.79 There is general agreement that increased
levels of intra-plaque MMPs could lead to plaque
rupture80 and clinically significant plaque instability
has been shown to be associated with increased levels
of MMP-9.81 The MMPs which are secreted by
inflammatory cells promote VSMC migration and
ECM degradation.82 The proinflammatory cytokine
IL-1� is reported to upregulate MMP-9 produc-
tion.83,84 The interaction of ABCA1 with apoA1 may
reduce MMP-9 production as apoA1 is documented to
suppress cytokine IL-1� production.41 Furthermore
the nuclear receptors liver-X-receptor (LXR) and
peroxisome proliferator-activated receptor (PPAR),
which are the key regulators of ABCA1 function, 
have documented anti-inflammatory and anti-MMP
activity.85–89

Regulation of ABCA1
The pivotal role played by ABCA1 in cholesterol
homeostasis mandates a tight regulatory pathway. In
addition to increased lipid efflux, a consequence of
ABCA1 overexpression could also be the potential
alteration of membrane structure with subsequent
detrimental effects.16 Evidence for the tight regulation
of ABCA1 is the short half life of the ABCA1 pro-
tein90,91 and its rapid turnover in macrophage cell
lines.92 It is regulated at transcriptional and post-
transcriptional levels (Figure 2).

Transcriptional regulation

Sterols
The large intracellular sterol concentration in foam
cells plays a major role in ABCA1 regulation.
Acetylated LDL upregulates ABCA1 mRNA and
protein which can be reversed by incubation of these
macrophages in HDL.19 It was also reported that
ABCA1 mRNA and protein were upregulated in a
time and dose dependent fashion by native LDL.93

Nuclear receptors
Nuclear receptors are ligand activated transcription 
factors that regulate the expression of their target
genes. The tissue specific expression and ligand avail-
ability tightly controls its activity.94 LXR and PPAR,
belonging to a subgroup called adopted orphan nuclear
receptor group, are the major players in ABCA1 
regulation and will therefore be discussed below.

LXRs act as cholesterol sensors that respond to
elevated sterol concentrations and activate a cadre of
genes that govern transport, catabolism and elimina-
tion of cholesterol.95 LXR� expressed in the
macrophage is important in terms of plaque physiology
as it seems to be capable of activating and suppressing
the ABCA1 gene based on ligand availability.96 The
ligands that activate these receptors in the macrophage
are mainly oxysterols like 27-hydroxycholesterol.97

ABCA1 and atherosclerosis 113

Vascular Medicine 2005; 10: 109–119

ABCA1 and atherosclerosis 113



LXR� influences ABCA1 expression transcription-
ally and post-transcriptionally (Figure 3). Studies have
reported that the oxysterol induction of ABCA1 is
partly through the LXR pathway.98,99 Recent studies
have highlighted the anti-atherogenic activity of
LXR.100,101 In human macrophages exclusively, it has
been observed that the LXR� gene itself is a target for
the LXR signaling pathway, an effective autoregula-
tory mechanism to amplify the ABCA1 lipid efflux
pathway.102,103

PPARs have been implicated in the regulation of
both inflammation and lipid homeostasis in the
macrophage and polyunsaturated fatty acids serve as
their ligands.94 PPAR� enhances cholesterol efflux 
by inducing the transcription of LXR� and thus
ABCA1.104,105 The observation that PPAR agonists
and LXR ligands are ineffective in macrophages of
TD patients99,105 indicates that functional ABCA1 is
required for this pathway of cholesterol efflux. With
regard to the role of these nuclear receptors in the
context of plaque pathophysiology, LXR� and PPAR�
have been documented to have anti-inflammatory86–88

and anti-MMP activity.85,89 The PPAR�–LXR�
–ABCA1 cascade does represent a powerful means 
of cholesterol efflux from the macrophage and there-
fore could play a significant role in influencing the
progression of atherosclerotic plaques.

Post-transcriptional regulation

Studies in mice have revealed a significant discor-
dance between ABCA1 protein and mRNA levels,

suggesting that post-transcriptional regulation plays a
major role21 in ABCA1 protein expression.
Unsaturated fatty acids have been found to promote
ABCA1 protein degradation directly92,106 and indi-
rectly.107,108 This may be significant in disorders like
type 2 diabetes and insulin resistance, conditions with
increased levels of fatty acids where accelerated ather-
osclerosis is observed. Cytotoxic levels of intracellu-
lar FC109 were also found to promote ABCA1 protein
degradation through the proteolysis pathway. ABCA1
phosphorylation, which is reported to be influenced by
apoA1110 and protein kinase C,111 may also have a
major effect on protein stability. The PEST sequence
identified in ABCA1 by Wang et al112 appears signifi-
cant in protein degradation as deletion of this motif
resulted in a 4–5-fold increase in ABCA1 protein,
increased ABCA1 mediated efflux and enhanced
apoA1 binding.

In vitro experiments with peritoneal macrophages,
transfected cells and mouse primary hepatocytes have
shown that apoA1 binding increased ABCA1 protein
without affecting mRNA levels.112 Interestingly
this apoA1 mediated stabilization of ABCA1 protein
is achieved by inhibition of PEST sequence mediated
degradation by proteases.90,112 There is also evi-
dence that PLTP interacts with ABCA1 for its 
function in cholesterol efflux and also stabilizes
ABCA1 protein.113

We have reported that, in human carotid atheroscle-
rotic plaques, ABCA1 protein is significantly reduced
despite increased mRNA.114 The observed upreg-
ulation in this study of both LXR� and ABCA1
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Figure 2 Regulation of ABCA1 at transcriptional and post-transcriptional levels.
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mRNA in atherosclerotic tissues could be attributed 
to the oxysterol-rich environment inside the plaque
potentially amplified by low ABCA1 protein levels. 
It is possible that the degradation of ABCA1 protein 
in the plaque microenvironment might be the key
factor influencing cholesterol homeostasis at the
macrophage level. The resulting localized deficiency
in ABCA1 function could lead to decreased lipid
efflux, accumulation of oxysterols and acceleration of
the atherosclerotic process.

Therapeutic modulation

The nuclear receptors PPAR� and LXR� are promis-
ing targets for pharmacological manipulation of the
ABCA1 pathway. In vitro studies have shown that
PPAR agonists such as the glitazones used in type 2
diabetes induce cholesterol efflux from macrophages
through the activation of ABCA1.105,115 It is interest-
ing to note that PPAR agonists can effectively override
the cytokine IL-1� induced suppression of ABCA1
and promote cholesterol efflux.72 This effect in itself
may be valuable in terms of plaque pathophysiology.
ACAT inhibitors which increase intracellular FC 

levels have also been reported to upregulate ABCA1
both at the mRNA and protein level116 but are unlikely
to be considered for general use.

Studies on rats showed that clofibrate, widely used
as a hypolipidemic agent, increases ABCA1 mRNA
through activation of LXR�.117 Recently verapamil
was shown to enhance both ABCA1 mRNA and pro-
tein expression through LXR independent mecha-
nisms.118 Ando et al119 demonstrated that in vivo
pravastatin increased LXR� mRNA levels. Statins
increase HDL levels in addition to the significant
reductions in total cholesterol and triglycerides.120,121

In fact it is suggested that the increase in HDL choles-
terol produced by statins could partly also be through
the upregulation of ABCA1 and apoA1.122,123 PPAR
and LXR agonism may be beneficial in terms of its
generalized effect on HDL and inflammation but its
effect on the localized atheromatous plaque has not
been studied in detail.

The benefits of transcriptional upregulation may be
potentially annulled by the in vivo plaque micro-
environment that promotes ABCA1 protein degra-
dation.114 In addition to ABCA1 transcriptional
upregulation, ABCA1 protein stabilization may be
crucial to promote function of cholesterol efflux.

ABCA1 and atherosclerosis 115

Figure 3 Influence of nuclear receptors LXR� and PPAR� on ABCA1 expression. LXR� has been shown to activate
the sterol regulatory element binding protein-1 (SREBP-1)124 and stearoyl-CoA desaturases-1 and 2 (SCD)108 which
results in increased unsaturated fatty acid synthesis. These unsaturated fatty acids serve as ligands for PPAR 
activation94 but have been implicated in causing ABCA1 protein degradation.92,106 Therefore the enhanced ABCA1 
transcription induced by LXR ligands may be counteracted by increased ABCA1 protein degradation.



Synthetic peptides based on the structure of apoA1
have been found to be effective in stabilizing ABCA1
protein.125,126 Calpain protease inhibitors and specific
LXR agonists127 are further venues for exploration in
the quest to promote cholesterol efflux therapeutically.
Therefore it would be interesting to assess the effect of
combined transcriptional upregulation with protein
stabilization of ABCA1 in the context of treatment of
atherosclerosis.

Conclusion

The critical role of ABCA1 at the macrophage and
hepatic level regarding lipid efflux and HDL forma-
tion could have a major influence on the biogenesis
and progression of atheromatous plaques. Further
studies need to be focused on apoA1 and ABCA1
interactions that seem to regulate each other and have
a potent role in protection against atherosclerosis. The
PPAR–LXR–ABCA1 cascade has a substantial role in
cholesterol homeostasis and inflammation and there-
fore has a promising potential for therapeutic manipu-
lation. The efficacy of combined therapy with ABCA1
transcriptional upregulation and protein stabilization
needs to be evaluated. Further work needs to be under-
taken to unravel other functions of this transporter 
and its pathways so that therapeutic strategies could 
be devised to prevent atherosclerotic disease and its
complications.
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