
HAL Id: hal-00571220
https://hal.science/hal-00571220

Submitted on 1 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Engineering Design Processes onto a
Service-grid: Turbine Design Optimization
Sanjay Goel, Shashishekara S. Talya, Michael Sobolewski

To cite this version:
Sanjay Goel, Shashishekara S. Talya, Michael Sobolewski. Mapping Engineering Design Processes onto
a Service-grid: Turbine Design Optimization. Concurrent Engineering: Research and Applications,
2008, 16 (2), pp.139-147. �10.1177/1063293X08092487�. �hal-00571220�

https://hal.science/hal-00571220
https://hal.archives-ouvertes.fr

CONCURRENT ENGINEERING: Research and Applications

Mapping Engineering Design Processes
onto a Service-grid: Turbine Design Optimization

Sanjay Goel,1,* Shashishekara S. Talya2 and Michael Sobolewski3

1School of Business, University at Albany, State University of New York, BA 310b

1400 Washington Avenue, Albany, NY 12222
2Product Engineering GE Energy, Gasification, Houston, TX

3Department of Computer Science, Texas Tech University, Box 43104

Boston and 8 th St., Lubbock, TX 79409

Abstract: This study presents an application of a distributed service-oriented architecture (FIPER) for the preliminary design of gas turbines.

The FIPER architecture is based on the concept of registration and discovery of services in real time. It uses a service catalog that registers the

services started on the network. These services are then discovered in real time from the grid and used in the design process. The turbine prelimi-

nary design process involves changing the configuration of the turbine incrementally and evaluating its performance using analysis (simulation)

code. During the design process a one-dimensional analysis code is wrapped into a service using a standard interface developed in FIPER and

launched on the network. Several such services were distributed across a grid of workstations. These services were then used to support the turbi-

ne configuration optimization process. The study presents the results of the optimization as well as the scalability characteristics of the service-grid.

Key Words: service-oriented computing, grid computing, turbine design, business process reengineering, FIPER, engineering automation,

network resilience.

1. Introduction

Design of engineering systems, such as gas turbines,
involves a complex process with multiple steps and
several feedback loops. The design entails an interaction
between several engineering disciplines, such as heat
transfer, aerodynamics, and structural analysis. The
objective of the design is to satisfy the problem
constraints and to maximize the performance of the
design. Performance metrics vary for different types of
design, for instance, in a power-generation turbine the
objective is to maximize the fuel efficiency and in a
fighter-engine turbine the objective would be to get
maximum thrust. Such designs do not have a closed form
solution; however, analysis codes that can numerically
compute the performance of specific design configura-
tions are available. The design thus involves evaluating
alternate configurations of the design, from which the
design that maximizes the performance of the turbine is
selected. Designers, during the manual process, use
expert judgments based upon prior experience to select
alternate configurations of the design and systematically
narrow down the search space. Nevertheless, this is a

labor-intensive activity that requires expertise of skilled
designers that are not easily available.

Therefore, there is a strong incentive to automate these
processes using automation/integration environments
that can capture the designer intelligence. The design
problem can be posed as an optimization problem and
an optimization algorithm can be used to select the
best design among the alternate configurations.
Such automation has the advantage of faster execution
speed; however, its performance in decision-making is
poorer compared to skilled designers. The automated
design processes thus require a relatively larger number
of iterations to determine the solution. The optimization
is typically executed on a single node where the
design iterations are sequentially run. Although each
analysis executes relatively quickly, a computational
bottleneck is created, as a large number of analysis
runs are required especially when using stochastic
optimization techniques, such as genetic algorithms for
driving the optimization.

Use of distributed computing eases the computational
bottleneck by simultaneously evaluating multiple config-
urations across a network of services. Use of distributed
environments is typically plagued with high maintenance
cost and high unpredictability, primarily due to lack of
network reliability. However, use of a service-based
distributed architecture significantly reduces the main-
tenance overhead due to its inherent resilience by virtue

*Author to whom correspondence should be addressed.
E-mail: goel@albany.edu
Figures 1, 4 and 5 appear in color online: http://cer.sagepub.com

Volume 16 Number 2 June 2008 139
1063-293X/08/02 0139–9 $10.00/0 DOI: 10.1177/1063293X08092487

� SAGE Publications 2008

Los Angeles, London, New Delhi and Singapore

of the protocol that allows real-time discovery of services.
Using this architecture, complex processes can be
automated by mapping multiple services from the
network grid into the design process. Changes to
individual services can be accommodated easily by
adding new services and phasing out old services without
any changes to the basic architecture.
This study presents the application of FIPER, a

service-based architecture developed for distributed
computing in an engineering environment, to solve the
turbine design problem. The work presented in this study
utilizes the architecture developed at the General Electric
Company under the National Institute of Standards and
Technology Advanced Technology Program (NIST-
ATP) Federated Intelligent Product EnviRonment
(FIPER)1 contract [1]. The goal of the FIPER program
was to develop technology to reduce design cycle time,
and time-to-market by intelligently automating elements
of large scaled distributed design processes in a linked,
associative environment. It is important to note that the
goal of the FIPER program was to develop and
demonstrate technology, which differs from the com-
mercial FIPER software product developed and mar-
keted by ESI [2]. Any reference to FIPER in this
manuscript is to the work done under the FIPER
contract and is not directly related to the commercial
software product.
Turbine design problems start with a preliminary

design that uses 1-D analysis and then progresses to 2-D
and 3-D design. In the design process the computational
complexity of the analysis increases as the design
advances along the process. The automation of the
design process is more useful when the computational
effort is relatively much lower compared to the
manual effort. Since designers are typically more
efficient in narrowing down the search space compared
to search algorithms, the payoff in automating
the design process is much higher when using analysis
codes with lower computational burden. In the turbine
design problem, the analysis codes are least computa-
tionally intensive during the preliminary design.
The study focuses on the problem of preliminary
design of the turbines and presents the optimization
formulation as well as the application of the FIPER
architecture to the problem.
The rest of the study is organized as follows: Section 2

presents a review of the relevant literature. Section 3
presents the FIPER architecture, the turbine design
problem formulation and the application of the FIPER
architecture to the problem. Section 4 presents the
performance results of the distributed computing model.
This is followed by some concluding remarks and plans
for future work.

2. Literature Review

Two streams of literature are relevant to this research,
namely, design process automation and distributed
analysis environments. Traditionally, design process
automation tools are used for automation of processes
on individual nodes of the network. Resources on the web
are occasionally used via use of remote execution scripts
that distribute the computational burden on the grid.
While simple to implement, these scripts are brittle with
little error correction and resilience built in. Distributed
analysis environments on the other hand are robust in
remote execution of analysis codes on the network but
lack the basic infrastructure for process automation.
Executing of engineering processes on a grid of work-
stations requires both a distributed execution environ-
ment and automation tools. The literature review
discusses the two streams of work in the context of the
FIPER distributed automation/execution environment.

Design process automation requires mapping the
design tasks into a process map which may include
loops, branching, and transitions. The tasks typically
involve analyzing different designs for performance,
structural integrity, resilience, reliability, etc. The design
usually does not have a closed form solution and requires
repeated execution of an analysis code in which alternate
configurations of the design are evaluated. Automation
of these tasks requires optimization models that drive the
design to maximize (or minimize) a set of objectives
subject to the constraints of the problem. The entire
design process is then simulated by executing the codes in
sequences provided in the process map and cascading
outputs from one analysis code to the next. Several
attempts have been made in the past to create a
collaborative design environment through the automa-
tion of tasks in the design process, [3–6] with an objective
of design cycle time reduction and performance improve-
ment. These automation efforts, though robust at the
individual task level where the process is standardized [1],
are brittle at the process level. Brittleness here refers to
inflexibility and inability to adapt to changes. The reason
for brittleness at the process level is that analysis codes, as
well as the process, change and render the couplings
between tasks ineffective thereby breaking the process
map. The maintenance burden of fixing broken links is
onerous andmakes the automated processes inefficient in
terms of the maintenance cost versus productivity gains.

In discussing distributed analysis environments P2P
systems need to be distinguished from distributed com-
puting. Distributed computing involves breaking down a
computationally large task into several subtasks that are
distributed over the network, while P2P systems engage
in direct communication among nodes.While some of the

1FIPER contract was a four year (1999–2003), $21.5 million NIST-ATP project that teamed General Electric with Engineous Software Incorporated (ESI), Goodrich,
Parker Hannifin, Ohio Aerospace Institute, and Ohio University.

140 S. GOEL ET AL.

issues in the two domains overlap, this discussion is
primarily focused on distributed computing. The pro-
blem of coordinating distributing computation across
multiple network nodes has also been investigated under
the rubric of parallel computing2 and meta-computing
(grid) systems. Grid computing organizes computational
and data resources distributed across a network to make
computationally intensive problems feasible to solve.
Most of the distributed computing systems are based on
centralized coordination; however, some distributed
computing systems based on P2P architecture are begin-
ning to emerge. One notable application is Seti@home
[7], which shares processing load across distributed
nodes. The application divides processing into small
chunks, distributes them to other nodes, and then reasse-
mbles the results to obtain the overall solution. The
application achieves resilience through redundancy, i.e.,
by using multiple nodes to perform the same computa-
tion task and eliminating specious or incongruous results.
I-Way [8] is another project that demonstrates the
feasibility of sharing distributed resources. In the I-Way
project, multiple super computers process execution tasks
and communicate over high-bandwidth ATM networks
reducing execution time for complex analysis.

Grid computing poses several challenges, including
scheduling, coordination of activities, access control,
load balancing, fault tolerance, and integration of hetero-
geneous systems [9]. Researchers are just beginning to
explore these issues as grid computing becomes more
prominent. Interestingly, grid-computing applications
employ centralized scheduling architectures. Generally,
a central scheduler manages the distribution of proces-
sing tasks to network resources and aggregates the
processing results. These applications assume a tightly
coupled network topology, which does not automatically
adapt to the changing network topology. Load sharing
and job scheduling schemes have been studied extensively
with formal performance evaluation models [10,11].
Generic grid computing toolkits that can be adapted to
multiple applications, include, Globus [12], Legion [13],
Simgrid [14], and Globe [15]. These toolkits provide sup-
port for basic elements of distributed computing, such as
communication, resource location, scheduling, authenti-
cation, and security through a centralized control. Other
toolkits have been developed for specific applications,
such as GradSolve [16], Ninf [6], and NetSolve [17], and
are based on remote procedure calls.

The FIPER design environment bridges the gap
between distributed environments and process automa-
tion tools, creating a comprehensive tool that allows
complex engineering processes to be mapped to a
network grid. It breaks the tasks into services on the
network that are coordinated via a central control.

This architecture has inherent resilience by allowing
services to be discovered in real time such that a disabled
service can be replaced by locating another service in the
network without disrupting the process. The architec-
tural details are discussed in the next section.

3. FIPER Architecture

FIPER is a service-to-service (S2S) distributed envir-
onment based on the Jini Network Technology [18–20],
which supports a federation of services that collaborate
dynamically over a network. In Jini, a service is
essentially a Java interface that is implemented as a
remote object. Therefore, any object implementing
multiple interfaces could be turned into a provider of
multiple services. The Jini service-oriented architecture
has a concept of dynamic discovery and join of services
whereby services are registered on the network and
discovered in real-time via a unicast or multicast
protocols on the network.

Jini provides a registry called lookup service (LUS),
which is a service registry that allows service requestors to
locate needed services by object types (interfaces) and
associated complementary attributes. During startup, a
service provider registers its services with the LUS.
Clients use the LUS to locate the services they are
interested in. The LUS itself is discovered through the
discovery protocols by issuing multicast or unicast
requests, as well as by receiving multicast announce-
ments. Service requestors and providers use the discovery
protocols to locate LUSs. In FIPER, discovery of LUSs
is delegated to a specialized service provider, called
cataloger, which maintains a catalog of domain specific
services from all available LUSs. Multiple catalogers are
usually maintained on the network to partition all
services into dynamic application specific groups across
all running LUSs (aero, thermal, mechanical, analysis,
etc.). When the services first enter the grid they receive a
lease from a LUS for a specific time period which is
renewed periodically by their service provider. If the
service gets disabled, then the lease is not renewed and
the service is deregistered from the LUS and thus leaves
the network. This mechanism of leasing keeps the grid
healthy and robust. New services entering the network
become available immediately via a cataloger or directly
from LUSs and the existing services that are disabled are
automatically disposed from the grid.

FIPER allows a virtual mapping of an engineering
process on a grid of virtual services. This mapping is
defined by a service-oriented program, called an exertion,
in terms of the data for each service, the service
operations to be invoked on each associated service

2Traditionally, researchers and practitioners have called distributed resource sharing parallel computing; however, since the mid-nineties, grid computing is more
commonly used, especially as it relates to high performance distributed computing.

Mapping Engineering Design Processes 141

provider, and the control strategy defining which
operations use when and where. A service operation is
defined by what is called a service signature. A service
signature is a reference to a remote method implemented
by any service provider in the network. Thus, a service
provider runs a set of remote methods which are exposed
to service requestors via a provider’s interfaces. A service
signature is a pair (i, o), where i is the name of the
provider interface and o is the name of operation
(selector). Service data that are passed as an argument
to the remote call is called a service context. A service
context [21,22] is a tree-like structure with leave nodes
containing data and tree paths providing the context
namespace. A task is an elementary grid operation that is
defined by data and a service signature, i.e., task t¼ (c, s),
where s is the service signature and c is the service context.
A composite exertion is called a job. It is an aggregation
of tasks and other jobs. The job defines a virtual mapping
of engineering process and also encapsulates the control
strategy for the job execution. A job j¼ (c, s) where s is a
service signature and c is the service context in which the
data nodes are the tasks and other jobs. The context
model for a job also encapsulates information required
for defining the control strategy of the process repre-
sented by the job. Tasks and jobs are in fact grid
programs, more precisely grid instructions and proce-
dures respectively and are collectively called exertions.
All the engineering analysis codes are wrapped into

services and distributed on the network. A rendezvous
service called a jobber finds the services that are necessary
to complete synchronously the entire process defined by
job. A jobber creates and manages a federation of services
using the cataloger – or finds them in discovered LUSs by
itself. FIPER also extends task/job execution abilities
through the use of a rendezvous service called spacer. The
spacer service can drop a task into a shared exertion space
provided by JavaSpaces [20] in which several providers can

retrieve relevant tasks or jobs from the exertion space,
execute them, and return the results back to the object
space. While the jobber federation acts synchronously, the
spacer federation is asynchronous in nature. These
federated services by either jobber or spacer complete the
process and disperse to join other federations in the grid.

Alternatively, a service requestor can use an exertion
space and simply drop the exertion (task or job) into the
shared exertion space. Each FIPER provider can look
continuously into the space for exertions that match the
provider’s interfaces and complementary provider’s
attributes. The provider that picks up a matched exertion
from the object space returns the exertion being
asynchronously executed back into the space. Then, the
requestor that placed the exertion picks the executed
exertion up from the space. The exertion space provides a
kind of automatic load balancing—the fastest available
service provider gets an exertion from the space. When a
service provider gets its task, the task method specified
in its signature is executed; otherwise jobs are picked up
and executed by jobbers or spacers depending on the
exertion’s control strategy. To illustrate a very flexible
distributed control strategy of FIPER service-oriented
programs, let us consider the case presented in Figure 1.
This control strategy defines a virtual mapping of an
engineering process on a grid of virtual services. A service
requestor R1 submits a job J1 to a jobber (action 1).
In that case R1 finds a jobber directly by itself (discovery
of LUSs and selecting the jobber). In the case of R6, the
jobber is found using a cataloger (actions a and b, but the
cataloger is found directly by R6). The control strategy is
driven by the service context associated with J1 as it is
described above. A service context of each job defines a
control strategy by four attributes as follows:

1. Discovery: delegated (cataloger) or self
2. Coordination: delegated (jobber or spacer) or self

Service
requestors

Service
brokers

Service providers
(Virtual services)

Dynamic
provisioning
grid

Exertion space

Service cataloger
Jobbers

Catalogers

Service cataloger

P1 P2 P3 P4 P5 P6 P7 P8

8

7

4

3

2

b

a

5

6

1

10

1112

13
1415

J3

J2

J1

9

P9

R1 R6

Figure 1. FIPER layered architecture (requestors, brokers, providers, provisioners).

142 S. GOEL ET AL.

3. Dispatch: push (jobber for jobs and matching
providers for tasks) or pull (exertion space)

4. Execution strategy: sequential or parallel

In Figure 1, the control strategy of the job J1 is
defined as follows:

1. discovery method: delegated (cataloger)
2. coordination method: delegated (jobber)
3. dispatch method: push (jobber)
4. execution strategy: parallel

The control strategy of the job J2 (the subexertion of
J1) is defined as:

1. discovery method: self
2. coordination method: delegated (jobber)
3. dispatch method: push (jobber)
4. execution strategy: parallel

Finally, the control strategy of the job J3 (the
subexertion of J2) is defined as follows:

1. discovery method: self
2. coordination method: delegated (spacer)
3. dispatch method: pull (exertion space)
4. execution strategy: parallel

At the inception of the process, the job J1 is submitted
to a jobber (action 1). The jobber then obtains the
proxies to all the required services using the cataloger
(action 2). The submitted (outer) job J1 by R1 is
coordinated by the jobber that include actions 3, 4, 5
(executing tasks), and 6 (executing the inner job J2 of
J1). The provider P9 calls on P8 using the cataloger:
actions 7 and 8. The current jobber then finds another
jobber (action 6) that coordinates execution of the inner
job J2. The job J2 is executed in parallel – the inner
job J3 of J2 is being executed via actions 9 and 10, 11, 12
– tasks being executed by providers P6, P5, and P4
correspondingly. Job J3 is dropped into the exertion
space and coordinated by its spacer (action 9) and is
executed by providers P3, P2, and P1 in parallel –
actions 13, 14, and 15 correspondingly.

Exertion-oriented programming can allow us to per-
form executions on various service providers, but where
does the S2S communication come into play? Often
times, a service provider may request the services of
another provider to help complete a certain task or job,
much like a peer in a P2P system. How do these
services communicate with one another if they are
all different? Top-level communication between
services, or the sending of service requests, is done
through the use of a method called service (Servicer.sevice
(Exertion):Exertion) that all FIPER services are
required to provide. This top-level service operation

takes an exertion as an argument and gives back an
exertion as the return value.

So why are exertions used rather than directly calling
on a provider’s method and passing service contexts?
There are two basic answers to this. First, passing
exertions helps to aid with the network-centric messa-
ging. A service requestor can send an exertion out onto
the network – Exertion.exert() – and any service
provider can pick it up. The provider can then look at
the interface and operation requested within the exer-
tion, and if it does not implement the desired interface or
provide the desired method, it can continue forwarding
it to another service provider who can service it. Second,
passing exertions helps with fault detection and recov-
ery. Each exertion has its own completion state
associated with it to specify if it has yet to run, has
already completed, or has failed. Since full exertions are
both passed and returned, the user can view the failed
exertion to see what method was being called as well as
what was used in the service context input nodes that
may have caused the problem. Since exertions provide
all the information needed to execute a task including its
control strategy, a user would be able to pause a job
between tasks, analyze it, and make needed updates. To
figure out where to resume a job, the jobber service
would simply have to look at the task’s completion
states and resume the first one that was not completed.

3.1 Turbine Aerodynamic Design Problem

Turbines are complex engineering systems that are
composed of multiple alternating rows of stationary and
rotating airfoils, which permit controlled expansion of
the hot gases from the combustor and generate power in
the process. Design of a turbine involves optimizing the
thermodynamic parameters of each row of airfoils, shape
of individual airfoils, and the system parameters that
model dependencies between the rows of airfoils. To
ensure its integrity, a turbine must be evaluated from
several different perspectives including, thermodynamics,
aerodynamics, structural analysis, and rotor dynamics.
The turbine aerodynamic design problem does not have a
closed form solution; rather, an analysis code can be used
to evaluate a specific configuration of the turbine. The
design process is thus an iterative process in which several
configurations of the turbine are evaluated and the confi-
guration with the best overall performance is selected.

As shown in Figure 2, the design proceeds in several
phases such that the computational complexity of the
analysis increases progressively as the design advances.
Initially a broad range of the search space is examined
and it gets progressively narrower as the design advances
and the analysis gets more computationally expensive.
The design process starts (Cycle) with the thermodynamic
cycle analysis of the aircraft engine to determine the flow
conditions at the interfaces between the different

Mapping Engineering Design Processes 143

components (compressor, combustor, turbine, etc.). Step
0 indicates the 0-D (0-dimensional) fidelity of the
analysis. The complete engine is modeled as a thermo-
dynamic cycle and the performance of the engine is
evaluated at different points in the flight regime of the
aircraft engine. The different flight points, also called as
cycle points, can be ground idle, take-off, cruise, landing,
etc. The turbine is usually designed for maximum or best
performance at a particular cycle point, called the design
cycle point and is required to meet the minimum
performance criteria at all other cycle points, which are
typically referred to as off-design points. Step 1 is the
preliminary design in which a one-dimensional (1-D)
analysis code based on empirical data is used to analyze
all the turbine stages simultaneously in order to predict
the turbine performance. This phase plays a crucial role
in narrowing down the search space and reducing the
computational burden in the downstream phases. During
the preliminary design the macro parameters of the
turbine, such as the number of airfoils in each row,
geometry and configuration of the airfoils, as well as the
basic shape of the turbine flowpath are determined. In
later phases, the focus shifts to the design of individual
airfoils where 2-D/3-D computational fluid dynamics
codes are used to optimize the airfoil geometry by
minimizing friction and leakage losses. The focus of this
work is on turbine preliminary design where a 1-D code is
used in the analysis.

3.2. Turbine Preliminary Design

Turbine preliminary design involves optimization of
the shape of the gas path as well as the configuration
of each blade row in the turbine. The turbine consists of
rows of alternating blades and vanes, thus, the
parameterization of the turbine is typically done based
on each stage. The parametric representation of the
turbine consists of the blade solidity, reaction, work

extraction, inner and outer diameter, and axial width of
the blade row. This parametric representation is
evaluated using a 1-D analysis code that is based on
an empirical model and validated using turbine test
data. This code models the performance of each of the
blade rows and the interactions between adjacent blade
rows. The performance of the turbine is evaluated at
multiple thermodynamic cycle points. The goal is to map
the performance of the turbine over the entire design
space and identify the critical areas of the design wherein
the turbine meets all the design criteria and maximizes
performance.

Figure 3 shows a typical velocity triangle based
calculation that is performed during a 1-D aerodynamic
analysis. In this particular application, a GE proprietary
code is used to perform the 1-D analysis. The 1-D code
is wrapped as a service and whenever it gets published to
the network, it is available for service requestors to be
able to execute the specific tasks in a particular job.
Each service provider is identified by a unique interface
and a unique provider name, and the service requestor
can select individual service providers based on these
attributes. In addition to this, each provider can perform
more than one service and depending on the type and
number of inputs specified, the provider can intelligently
determine the specific service that is requested.

Thermodynamic
cycle section

Cycle point
studies

Pitchline
performance

prediction

Parametric
desgin

Smooth walls

Generate
boundary
conditions

Circumferential
average flow

analysis

Airfoil initial
design

Evaluate airfoil
stack

Evaluate airfoil
sections

Computational
fluid dynamics

Parametric
geometry

Generate planar
sections

Greate mesh for
finite element

analysis

Analysis mesh
(ANSYS)

Figure 2. Turbine aerodynamic design process.

Nozzle
Cz1

RU
RU2 Rz

Cz

Cu2

Cz2

U

U

Rotor

TTCU

C1

R1

β1

β2

α1

Figure 3. Turbine flowpath calculations.

144 S. GOEL ET AL.

4. Results

A specific aspect of the turbine aerodynamic pre-
liminary design process is defined as a job and executed
using the FIPER framework. The 1-D aerodynamic
code is exposed as a FIPER service. The specific
example that is chosen requires evaluating the turbine
1-D performance over 20 different thermodynamic cycle
points so that the designer can then narrow down the
design space to a region that maximizes performance
while meeting all the other design constraints. Figure 4
shows the turbine performance map for the 20 thermo-
dynamic cycle points. The Case IDs are plotted on the
X-axis and the performance parameter is plotted along
the Y-axis. Actual names of performance parameters
have been substituted by numbers to protect the
proprietary information at general electric.

To obtain these results, the 1-D analysis code has to
be executed 20 times and the output from the analysis
has to be post-processed to extract the necessary
performance parameter. For a typical turbine design,
hundreds of such analyses are executed in order to
accurately map the entire design. The process is typically
performed sequentially, resulting in a very time con-
suming process. The strength of a distributed environ-
ment is in its ability to perform such operations in a
parallel environment. The 20 analyses were defined as 20
individual jobs and were spawned to different number of
service providers. The data was collected on the time it
takes for all 20 jobs to complete.

Figure 5 shows the data collected when the 20 jobs are
all run on 1, 5, 10, 15, and 20 service providers. The
actual execution time is plotted as red-colored points and
a trend line is also plotted to indicate the trend. In the
case where more than one job is sent to a particular
service provider, the first job has to execute before the
next job can be executed. The execution time for the
different cases is normalized with the execution time for
the case with one 1-D service provider. One can observe

the liner trend in the execution time going from 1 to 20
providers. There is a 90% reduction in the time it takes to
execute 20 jobs using a single service provider as comp-
ared to using 20 service providers. The slight degradation
in performance is caused due to the network traffic at the
time of execution and due to network latency during the
process of provider lookup and discovery.

5. Conclusions

Use of a distributed service based environment
reduces the throughput of the design process via parallel
execution of analyses over the network. This study
demonstrates the use of this architecture for optimiza-
tion of a turbine where multiple services are executed in
parallel. The process scales almost linearly as more and
more services are added to the network. Since the
architecture uses a dynamic service discovery mechan-
ism allowing new services to enter the network and
disabled services to leave the network with need for
reconfiguration. This allows the process to be distrib-
uted without sacrificing the robustness of the process.
This architecture also improves the utilization of the
network resources by distributing the execution load
over multiple nodes of the network. The process shows
resilience to service failures on the network as alternate
services can seamlessly replace disabled services such
that continuity of operations is not disrupted. Such
architecture can provide robustness to computing
environments that face ever increasing threats from
viruses, worms, hacking, and failures.

References

1. Federated Intelligent Product EnviRonment (1999).
Technical Proposal, Ohio Aerospace Institute, General
Electric Company, BFGoodrich, Parker Hannifin,
Engineous Software, Ohio University, April 1999.

2. Engineous Software Incorporated. http://www.engineous.com/
index.htm

1

10

100

1000

10000

100000

120 122 124 126 128 130 132 134 136 138 140

Case ID

P
er

fo
rm

an
ce

1 2 3
4 5 6

Legend

Figure 4. Turbine performance map.

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
0 5 10

Number of providers

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

15 20

Figure 5. Execution time for different number of service providers.

Mapping Engineering Design Processes 145

3. Goel, S., Cherry, D. and Gregory, B. (1993). Knowledge-
Based System for Preliminary Aerodynamic Design of
Aircraft Engine Turbines, Applications of Artificial
Intelligence XI: Knowledge-Based Systems in Aerospace
and Industry, Florida: Orlando.

4. Kolb, M.A. and Bailey, M.W. (1993). FRODO:
Constraint-Based Object-Modeling for Preliminary
Design, Advances in Design Automation, pp. 307–318.

5. Takefusa, A., Matsuoka, S., Ogawa, H., Nakada, H.,
Takagi, H., Sato, M., Sekiguchi, S. and Nagashima, U.
(1997). Multi-client Performance Analysis of High-
Performance Global Computing, Proc. 1997 ACM/IEEE
Supercomputing Conference.

6. Takefusa, A., Matsuoka, S., Ogawa, H., Nakada, H.,
Takagi, H., Sato, M., Sekiguchi, S. and Nagashima, U.
(1997). Multi-client Performance Analysis of High-
Performance Global Computing, Proc. ACM/IEEE
Supercomputing Conference.

7. Anderson, D., Cobb, J., Korpela, E., Lebofsky, M. and
Werthimer, D. (2002). SETI@home: An Experiment in
Public-Resource Computing, U.C. Berkeley: Space Sciences
Laboratory.

8. DeFanti, T., Foster, I., Papka, M., Stevens, R. and
Kuhfuss, T. (1996). Overview of the I-Way: Wide Area
Visual Supercomputing, International Journal of
Supercomputing Applications and High Performance
Computing, 10(2): 123–131.

9. Johnston, W., Gannon, D. and Nitzberg, B. (1999). Grids
as Production Computing Environments: The Engineering
Aspects of NASA’s Information Power Grid, Proc. Eighth
IEEE International Symposium on High Performance
Distributed Computing.

10. Ingram, D. (1999). Soft Real Time Scheduling for General
Purpose Client-Server Systems, Proc. 7th Workshop on Hot
Topics in Operating Systems.

11. Aida, K., Takefusa, A., Nakada, H., Matsuoka, S.,
Sekiguchi, S. and Nagashima, U. (2000). Performance
Evaluation Model for Scheduling in a Global Computing
System, The International Journal of High Performance
Computing Applications, 14(3).

12. Foster, I. and Kesselman, C. (1997). Globus:
A Metacomputing Infrastructure Toolkit, The
International Journal of Supercomputer Applications and
High Performance Computing, 11(2): 115–128.

13. Natrajan, M.A., Humphrey and Grimshaw, A.S. (2001).
Grids: Harnessing Geographically-Separated Resources in a
Multi-organizational Context, 15th Annual International
Symposium on High Performance Computing Systems and
Applications.

14. Casanova, H. (2001). Simgrid: A Toolkit for the
Simulation of Application Scheduling, Proc.1st IEEE/
ACM International Symposium on Cluster Computing and
the Grid, Brisbane, Australia.

15. Van Steen, M., Homburg, P. and Tanenbaum, A. (1999).
Globe: A Wide-area Distributed System,
IEEE Concurrency, 7(1): 70–78. http://www.cs.vu.nl/
steen/globe/

16. Vadhiyar, S. and Dongarra, J. (2003). GrADSolve –
A Grid-based RPC System for Remote Invocation of
Parallel Software, Journal of Parallel and Distributed
Computing, 63(11): 1082–1104.

17. Casanova, H. and Dongarra, J. (1997). NetSolve:
A Network-enabled Server for Solving Computational
Science Problems, The International Journal of

Supercomputer Applications and High Performance
Computing, 11(3): 212–223.

18. Edwards, W.K. (2000). Core Jini, 2nd edn, New Jersey:
Upper Saddle River, Prentice Hall.

19. Jini Architecture Specification. Available at URL: http://
www.sun.com/jini/specs/jini1_1.pdf

20. Freeman, E., Hopfer, S. and Arnold, K. (1999).
JavaspacesTM Principles, Patterns, and Practice,
Massachusetts: Reading, Addison-Wesley.

21. Sobolewski (2002). Federated P2P Services in CE
Environments, Advances in Concurrent Engineering, A.A.
Balkema Publishers, pp. 13–22.

22. Zhao, S. and Sobolewski, M. (2001). Context Model
Sharing in the FIPER Environment, Proc. 8th Int.
Conference on Concurrent Engineering: Research and
Applications, Anaheim, CA.

Dr. Sanjay Goel

Sanjay Goel is an
Associate Professor in the
school of business at the
University at Albany,
SUNY. He is also the direc-
tor of research at the
New York State Center for
Information Forensics and
Assurance at the University.
Before joining the
University, he worked at
the General Electric Global

Research Center. Dr. Goel received is PhD in
mechanical engineering in 1999 from Rensselaer
Polytechnic Institute. His current research interests
include investigation of computer crimes including
botnets and virus/worm propagation, security risk
analysis and security policy creation. He also works
in the development of autonomous computer
security systems based on biological paradigms of
immune systems, epidemiology, and genetics. His
portfolio of research includes distributed service-based
computing, network resilience, and active networks. He
also uses machine-learning algorithms to develop self-
learning adaptive optimization strategies for solving
engineering optimization problems. In addition, he is
working on developing algorithms for self-organization
of nanosensors for remote sensing in harsh environ-
ments. Dr. Goel teaches several classes including
computer networking and security, information security
risk analysis, security policies, enterprise application
development, database development and Java language
programming. In 2006, he was awarded the SUNY
Chancellor’s Award for Excellence in Teaching, the
University at Albany Excellence in Teaching Award,
and the Graduate Student Organization Award for
Faculty Mentoring.

146 S. GOEL ET AL.

Dr. M. Sobolewski

Dr M. Sobolewski
joined, as a Professor, the
Computer Science
Department, Texas Tech
University in September
2002. He is the
Principal Investigator and
Director of the SORCER
laboratory focused on
research in network, ser-
vice, and distributed
object-centric program-

ming, and metaprogramming. While at GE Global
Research Center he was the chief architect of
the Federated Intelligent Product EnviRonment
(FIPER) project, and developed other seventeen
successful distributed systems for various GE
business components. Prior to coming to U.S.,
during 18-year career with the Polish Academy of
Sciences, Warsaw, Poland, he was the head of
the Picture Recognition and Processing Department,
the head of the Expert Systems Laboratory, and was
doing research in the area of knowledge representa-
tion, knowledge-based systems, pattern recognition,
image processing, neural networks, and graphical
interfaces. He has served as visiting professor,
lecturer and consultant in Sweden, Finland, Italy,
Switzerland, Germany, Hungary, Czechoslovakia,
Poland, Russia, and USA. He has over thirty years
of experience in the development of large scale
computing systems.

Dr. Talya

Dr Talya currently works
as a Technical Leader in the
Products Engineering group
at GE Energy-Gasification.
He joined GE Gasification in
2006. He currently leads a
global team of 25 and is
responsible for product deve-
lopment for Gasification/
IGCC related to Gasifier
Design and Feed Injectors.
Prior to this, Dr. Talya

worked as a Project Leader at GE Global Research
Center, Niskayuna, NY. He joined GE Global Research
in 2000. He was involved with research and development
in the area of structural design and multidisciplinary
design optimization of Aircraft Engines and land-based
gas turbines. His areas of expertise include Structural &
Hydraulic Design of Mechanical Equipment, Design
Automation Technologies and System Modeling &
Analysis. He has worked with numerous GE Businesses
including GE Aviation, GE Energy & GE Healthcare.
Dr Talya obtained his Ph.D. in Mechanical Engineering
from Arizona State University in Spring 2000. The
primary focus of his Ph.D. was on Multidisciplinary
Design Optimization of Cooled Gas Turbine blades for
improved thermal and aerodynamic performance and
Design Sensitivity Analysis of aerospace structures. He
obtained his B.Tech. (BS) in Mechanical Engineering
from Indian Institute of Technology, Chennai, India in
1996. Dr Talya is a Member of AIAA & ASME.

Mapping Engineering Design Processes 147

