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Abstract: This study proposes a new set-based design approach for preliminary engineering design that intrinsically contains various sources

of uncertainties. The goal is to achieve design flexibility and robustness while capturing designer’s preference. The proposed design approach

includes three computational methods: (1) set representation method to specify the varying degree of desirability of a ranged set of design

solutions and performance requirements, thereby enabling the manipulation of uncertain design solutions and requirements based on

designer’s preference structure; (2) set propagation method to obtain performance possibilities achievable by uncertain design solutions, thus

exploring a broader design possibilities; (3) set narrowing method to generate a ranged set of feasible solutions (i.e., robust and flexible solution

set) instead of single point solution that satisfies changing sets of performance requirements by eliminating infeasible and inferior subsets of

solutions, thus allowing designs to be readily adapted to changing conditions. Finally, the proposed design approach is illustrated with a

successful implementation of real industrial design problem (i.e., vehicle side-door structure design) in the simulation-based design

environment.
Key Words: set-based design, robust and flexible design, preference, uncertainty, multiobjective design optimization.
1. Introduction

traditional design practice often regards the
ering design as the iterative process. That is, it
y develops a ‘single solution’, critiques it based on
bjective criteria, and then iteratively moves to
ther points until it reaches a satisfactory solution
[1]. It often uses single values to represent
ties (i.e., design solutions and requirements)
ing engineering systems. For example, it usually
designers to pick precise numbers to specify

mance requirements, such as the use of the
um level of a performance, in which only a
design solution is sought [2]. However, the precise
assignments do not include information about
ainty, and a single-point solution provides limited
ation about the full range of possible designs
consideration [3]. At the early phase, a large

design space needs to be explored to get a set of feasible
design solutions instead of a single-point solution for the
later detailed design stages [4]. Developing a set of
design solutions also provides design flexibility by
allowing designs to be readily adapted to changing
conditions [2].

In the engineering design field, there have been
rigorous research efforts for handling uncertainties or
incorporating set-based (not single point) engineering
quantities. Wood and Antonsson [5] propose a fuzzy
set-based approach, called method of imprecision (MoI),
for the manipulation of imprecise design information
through the specification of preferences on design and
performance variables. MoI uses preference functions to
represent the designer’s desire to use particular values
for design parameters, and employs the fuzzy weighted
average (FWA) algorithm [6] to propagate uncertainties
through engineering equations. Using a preference
function is more expressive than using intervals alone
in that they can represent a combination of preference
and possibility in calculations. Although the FWA
algorithm solves the well-known overestimation pro-
blem of conventional decomposed fuzzy mappings [7]
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using the combinatorial interval analysis, it also causes
another kind of overestimation problem, due to the use
of conventional interval arithmetic that does not
consider the causal relationships among variables [8,9].
As a result, MoI produces a wider solution than it
should be.
Finch and Ward [8,9] proposes an interval set-based

approach that solves the overestimation problem of
conventional interval arithmetic by developing the
Quantified Relations (QRs) and interval propagation
theorem (IPT). However, it cannot explicitly express the
degree of desirability (i.e., preference) of designer, and
thus generate only bounds on the membership of
feasible sets of design variations.
Probability distributions are often used to describe

variations resulting from stochastic processes. Chen and
Yuan [2] propose a probabilistic-based approach for
achieving design flexibility. Here, the design flexibility is
provided by allowing designers to specify a ranged set of
design solutions and requirements, and developing a
range of design solutions (not single-point solution) that
meets those design requirements. However, it is not
allowed to specify the varying degree of preference of a
ranged set of design solutions. In addition, as in most
probabilistic-based approaches, its probabilistic repre-
sentation for design solutions is limited to normal curve,
and thus cannot incorporate various shapes of pre-
ference.
In addition to individual problems of aforementioned

approaches, there is a common problem in evaluating
uncertainties. Even though they differ in the types of
uncertainties under consideration, and their representa-
tion and propagation, a common feature is the use of the
variations (i.e., range or set) of design solutions and
performance requirements, with (or without) expressing
different degrees of designer’s preference. When the
deviations of design solutions are considered, the
resulting performance will correspondingly vary within
a range. Therefore, a design metric is required to
measure the goodness of the resulting performance
variations with respect to a ranged set of performance
requirements.
Based on these observations, this study proposes a

new set-based design approach for preliminary engineer-
ing design problems with uncertain parameters. This
approach incorporates designer’s preference (i.e., design
intent) in describing designs, and achieves design
flexibility and robustness under various sources of
uncertainties. This approach makes it possible to
represent uncertain design solutions and uncertain
performance requirements by allowing designers to
specify the varying degree of desirability (or satisfaction)
of both a ranged set of design solutions and a ranged set
of performance requirements, based on their prefer-
ences. For achieving design flexibility, this approach
also develops a ranged set of feasible solutions that

satisfy changing sets of performance requirements,
through set propagation from design variables to
performance variables and set narrowing to eliminate
infeasible or inferior subsets of solutions. Then, a new
design metric is developed to measure the level of design
preference and robustness simultaneously.

The rest of the article is organized as follows.
Section 2 overviews the proposed design approach.
In Section 3, the proposed design approach is illustra-
ted with the successful implementation of a real indus-
trial problem (i.e., vehicle side-door structure design).
Section 4 concludes the article.

2. The Proposed Design Approach

2.1 Set Representation Method (SRM)

For the set-valued assignments to design or perfor-
mance variables, two types of assignments can in general
be considered: continuous set and discrete set. Although
an intuitive and qualitative method has been proposed
to represent the designer’s preference structure on the
discrete set [10], this study confines the scope of the
discussion to the continuous set.

To incorporate the designer’s preference structure into
design solutions or performance requirements, a new
engineering quantity, called ‘quantified preference
number’ (QPN) is proposed. The QPNs for design
solutions and performance requirements are here called
the design QPN and performance QPN, respectively. As
shown in Figure 1(a) and (b), consider an interval set-
valued design variable Xi, i¼ 1, 2, . . . ,m, defined on the
real line R, and denote an element of Xi by x. Then, the
design QPN ~Xi is defined by:

~Xi ¼ Q �Xi, ð1Þ

where

Q 2 f8, 9g, and ð2Þ

�Xi ¼ fðx, piðxÞÞjx 2 Xi, piðxÞ : x ! ½0, 1�g: ð3Þ

Instead of using pure intervals, the design QPN uses an
interval set and a preference function ( pi(x)) on the
interval set. Any shapes of preference function are
allowed to express the designer’s preference structure.
By employing the concept of QRs [8,9], the design QPN
is further quantified by preceding it with a logic
quantifier (Q). Therefore, the design QPN is a more
expressive representation for specifying individual
design solutions. For example, designers may require
that the full variety of interval sets assigned into some
design variables should be taken into account because

54 Y.-E. NAHM ET AL.



those variables cannot be directly controlled by them.
In this case, the design QPN is universally quantified.
On the contrary, interval sets controlled by designers
may be expected to be adjusted to some desired
performances within their lower and upper bounds.
Then, the design QPN is existentially quantified.

As shown in Figure 1(c) and (d), the performance
QPN for specifying the performance requirement of a
performance variable Yj, j¼ 1, 2, . . . , n, by denoting
its element by y can be also defined by a similar form
to the design QPN:

~Yj ¼ QYj, ð4Þ

where

Yj ¼ fðy, pjðyÞÞjy 2 Yj, pjðyÞ : y ! ½0, 1�g: ð5Þ

Like the design QPN, any shapes of preference function
( pj(y)) are allowed to express the designer’s preference

structure, as well as the traditional specifications, such
as the-larger-the-better, the center-the-better, and the-
smaller-the-better. The performance QPN is also useful
to represent both design constraint and goal. The
interval set at the preference level of 0 can be the hard
constraint which must be met in order for the designs to
be feasible, while the interval set at the preference level
of 1 is the soft goal that designers would like to meet.

In this manner, the set representation method (SRM)
captures the designer’s preference and provides the
design flexibility by allowing the designer to specify a
ranged set (i.e., interval) and its controllability of both
design solutions and performance requirements with a
varying degree of desirability (i.e., preference function).

2.2 Set Propagation Method (SPM)

As shown in Figure 1, once (input) design QPNs and
(output) performance QPNs are specified, the set
propagation method (SPM) is used to obtain possibilis-
tic distributions of performances achievable by design
QPNs through input–output relationships (e.g., F1 and
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Figure 1. Overview of the proposed design approach.
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F2 in Figure 1). The proposed SPM is similar to the
FWA algorithm [6] of decomposing a fuzzy number into
a number of �-cuts, � 2 ½0, 1�, for which arithmetical
operations can be defined using the interval arithmetic.
However, the major differences of proposed SPM are its
capabilities to handle the causal relationship among
design and performance variables, and to remove
overestimation effects of conventional fuzzy arithmetic
by employing IPT [8,9]. The underlying idea of IPT is
that the designer must assume worst-case values for
uncontrollable variables and best-case values for con-
trollable variables. For example, in the worst
case scenario that all design QPNs are universally
quantified, it is assumed that all variations of system
performance may occur simultaneously in the
worst possible combinations of design variables. A
more detailed description on IPT is given in [8,9], and
is not repeated here.
Consider design QPNs ~X1, ~X2, . . . , ~Xm as design

solutions (i.e., alternatives) assigned into design vari-
ables X1,X2, . . . ,Xm, and performance QPNs
~Y1, ~Y2, . . . , ~Yn as performance requirements defined on
performance variables Y1,Y2, . . . ,Yn, respectively.
Suppose design variables X1,X2, . . . ,Xm are related to
a performance variable Yj by the mapping
Yj¼Fj(X1,X2, . . . ,Xm). Then, the SPM solution to
possibilistic distribution ~Y0

j achievable by design QPNs
can be obtained by the following steps:

1. Decompose the range of the ordinate (i.e., pi(x)-axis)
[0, 1] into a finite number of l segments, equally
spaced by �pi¼max( pi(x))/l (see Figure 1(a)).

2. For each preference level pki (k ¼ 0, 1, . . . , l,
pki ¼ pk�1

i þ�pi, and p0i ¼ 0), find the corresponding
intervals for design QPNs ~Xi, denoted by X

k

i ¼

½xkL, x
k
U�. Here, the subscripts L and U indicate the

lower and upper bounds of the interval.
3. Apply IPT to obtain the correct (not overestimated)

output interval Y
k

j of possibilistic distribution ~Y0
j at

the preference level pkj . Owing to the IPT, instead of
evaluating the function Fj by giving 2m combinations
for the 2m bounding values of X

k

i , the SPM needs
only two combinations according to the logic
quantifier of performance QPN ~Yj, thus significantly
reducing computation.

4. Repeat the above step for other preference levels to
obtain additional intervals of ~Y0

j.
5. Recompose the intervals obtained from the above

step.

Finally, denoting an element of ~Y0
j by y and its

possibilistic function by qj(y), the possibilistic distribu-
tion ~Y0

j can be defined by:

~Y0
j ¼ fðy, qjðyÞÞjy 2 Yj, qjðyÞ : y ! ½0, 1�g: ð6Þ

2.3 Set Narrowing Method (SNM)

By using the SPM, the designer can obtain output
possibilistic distributions of performances achievable by
input design QPNs. On the one hand, input QPNs may
sometimes produce undesirable output performances so
that they do not have intersections with one or more
performance QPNs. As shown in Figure 1(d), the
possibilistic distribution of performance variable Y2 is
outside the performance QPN. Then, initial design
QPNs need to be modified to make all possibilistic
distributions have overlapping regions with all perfor-
mance QPNs.

On the other hand, when all possibilistic distributions
have overlapping regions with all performance QPNs
(e.g., Figure 1(c)), the designer knows that there exist
feasible solutions within initial design QPNs. However,
if the possibilistic distribution is not the subset of
performance QPN, there also exist infeasible solutions
that produce performances outside the performance
QPN. That is, a fraction of possibilistic distribution
exists outside the performance QPN. Then, the set
narrowing method (SNM) is used to narrow initial
design QPNs by eliminating infeasible or inferior design
solutions.

2.3.1 GENERATION OF COMBINATIONS OF
DESIGN SUBSETS

The SNM first generates combinations of subsets of
design QPNs by employing design of experiment (DoE)
techniques. While in most researches DoE techniques
are used to sample different design points, the SNM
samples different design sets. As shown in Figure 1(b),
all design QPNs are partitioned into two or more levels,
where each has the same width of interval at the
preference level of 0. Figure 1(b) shows the example of
subsets (i.e., sub-regions 1� and 2�) of design QPN
partitioned into two levels. After generating combina-
tions of those subsets of all design QPNs by selecting a
DoE technique (e.g., full factorial design, fractional
factorial design, central composite design, space filling
design, orthogonal arrays, etc. [11]), the SNM calculates
possibilistic distribution by each combination using the
SPM.

2 . 3 . 2 DES IGN METR I C FOR DES IGN
PREFERENCE AND ROBUSTNESS
EVALUATION

Then, combinations of which possibilistic distribu-
tions have overlapping regions with all performance
QPNs are only regarded as feasible designs, which will
be used for further consideration. However, if two or
more feasible combinations still remain, a design metric
is required to select a more optimal one than others.
For this purpose, the SNM employs the design
preference index (DPI) to measure the goodness of
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performances [2]. Mathematically, the DPI is defined
as the expected preference function value of design
performance within the range of possibilistic distribu-
tion with the following form:

DPIð ~Y0
jÞ ¼ E½pjðyÞ� ¼

Z y0
U

y0
L

pjðyÞqjðyÞdy: ð7Þ

Although the DPI is a good design metric to evaluate the
performance expressed by the form of distribution (i.e.,
possibilistic distribution) with respect to the varying
degree of preference (i.e., performance QPN), it often
makes incorrect measures due to the incapability of
measuring design robustness. As shown in Figure 2,
suppose a performance QPN, ~Y1, as the performance
requirement, and two possibilistic distributions, ~Y10

1 and
~Y20

1 , achievable by two combinations of subsets of design
QPNs. Then, the DPI provides similar results between
two designs, because ~Y10

1 and ~Y20

1 have similar over-
lapping regions with ~Y1. However, from the viewpoint
of design robustness (i.e., minimizing variations in
response caused by variations in noise or control
factors), ~Y10

1 is more robust than ~Y20

1 , because ~Y10

1

contains the smaller variation.
Therefore, a new measure of uncertainty, called

precision and stability index (PSI), is developed to
evaluate the design robustness. To date, a number of
measures of fuzziness have been proposed, including
Shannon’s entropy measure [12], �-levelmeasure [5], and
so on. However, it is found that those measures of
uncertainty often fail to make correct measures accord-
ing to the shape and height of membership function
[10,13]. On the contrary, the proposed PSI consistently
produces reasonable measures, regardless of the height
and shape of membership function (i.e., preference
function in this study). The complete comparison
between the proposed PSI and other measures is given
in [10]. The PSI is defined by modifying the Shannon’s
entropy measure as:

PSIð ~XiÞ ¼ C
XjX0

i j

x

PSðpiðxÞÞ, ð8Þ

where

C ¼
jX

0

i j

area ð ~XiÞ
; and ð9Þ

PSðpiðxÞÞ ¼

piðxÞ lnðpiðxÞÞ

þð1�piðxÞÞ lnð1�piðxÞÞ

� lnð0:5Þ;

if 0< piðxÞ< 0:5 or

0:5< piðxÞ< 1

� lnð0:5Þ if piðxÞ ¼ 0 or piðxÞ ¼ 1

0 if piðxÞ ¼ 0:5:

8>>>>>>><
>>>>>>>:

ð10Þ

Here, C is a correction factor to make correct
measures about the subnormal fuzzy numbers [13].
jX

0

i j is the width of interval at the preference level
of 0 (i.e., the length of support) and area ð ~XiÞ is the
area of QPN. The PSI is an inverse type of
Shannon’s entropy function with the correction
factor. While the Shannon’s entropy measure and �-
level measure evaluate how much of membership
function is close to 0.5 (i.e., the ‘steepness’ of the
bounding curves for the membership function) and
1.0 (i.e., the ‘spread’ of the membership function),
respectively, the PSI measures the values centered on
both pi¼ 0.0 and pi¼ 1.0, indicating the spreads of
preference function (near 0.0 and 1.0). That is, the
more values of preference function close to 0.0 and
1.0, the larger the PSI values. Therefore, the smaller
the PSI value, the less the uncertainty.

Finally, a new design metric, called ‘preference and
robustness index’ (PRI), is developed to simultaneously
measure design preference and robustness, by combining
the DPI with the PSI:

PRIð ~Yr
j
0
Þ ¼ DPIð ~Yr

j
0
Þ= max

c¼1, ...r..., s
ðDPIð ~Y0

jc ÞÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NDPI

� min
c¼1, ...r..., s

ðPSIð ~Y0
jc ÞÞ=PSIð

~Y0
jr Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NPSI

:

ð11Þ

where the NDPI and NPSI indicate the normalized DPI
and normalized PSI, respectively. To provide the relative
goodness among possibilistic distributions ~Y0

jc

(c¼ 1, . . . , r, . . . , s) resulting from all combinations
with respect to a performance variable Yj, the DPI and
PSI of the possibilistic distribution ~Yr

j
0 by the rth

combination are first normalized with respect to the
maximum of all DPI values and the minimum of all PSI
values, respectively. In particular, since the smaller PSI
value implies the better robustness, the PSI is normal-
ized to allow the smaller PSI value to contribute more
to the PRI value.
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Figure 2. Measuring the goodness of designs.
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Next, since the designer generally considers more than
one performance variable, the PRIs for multiple
performances need to be aggregated, what is called
‘aggregated PRI’ (APRI), to provide the goodness of
each design with respect to all performances. For this
purpose, the SNM uses a family of parameterized
aggregation functions for multi-objective decision
making problem, based on the weighted root-mean-
power [14]:

APRIqððPRI1,!1Þ, . . . , ðPRIn,!nÞÞ

¼
!1ðPRI1Þ

q
þ � � � þ !nðPRInÞ

q

!1 þ � � � þ !n

� �
:

ð12Þ

When varying the parameter q by �1, �1, 0, 1, 2, and
þ1, the Expression (12) respectively corresponds to the
following well-known weighted averaging operations:
min, harmonic mean, geometric mean, arithmetic mean,
quadratic mean, and max. These averaging operators
accommodate all cases of compensation, from non-
compensating (min) to super-compensating (max) with
different degrees of compensation.
Finally, the SNM selects a combination of sub-QPNs

that has the highest APRI value (i.e., the most preferred
and robust combination). The set narrowing process
repeats until all possibilistic distributions obtained by
the selected combination of sub-QPNs fall within all
performance QPNs (i.e., subsets of performance QPNs).
In this manner, the SNM selects a feasible and optimal
combination of subsets of design QPNs from the design
preference and robustness viewpoint.

3. Application to Vehicle Side-Door
Structure Design

3.1 Design Problem

In this study, a preliminary design of vehicle side-door
structure is chosen to illustrate the quick screening of
broad design possibilities using the proposed design
approach. A schematic picture of the side-door structure
is shown in Figure 3. This design example is confined to
the parametric design of main components. For
illustrative convenience, five design variables related to
thickness are considered including outer panel (X1),
inner-front panel (X2), inner-rear panel (X3), frame (X4),
and safety beam (X5). Three stiffness-related perfor-
mance variables are considered: residual displacement
after the indentation of 0.245 kN on the center of outer
panel (Y1); displacement after longitudinal loading of
0.049 kN on the center of outer panel (Y2); and
displacement after transverse loading of 0.200 kN on
the upper part of frame (Y3). That is, Y1, Y2, and Y3 are
performance variables related to the dent resistance,
tensional stiffness and torsional stiffness, respectively.
In addition, since the side-door structure is subject to
extensive loads and high deformation during the crash,
it should be designed to be able to absorb more strain
energy. Therefore, the energy absorption rate (Y4) is also
considered. In addition to those technical performances,
the cost-effective, lightweight, and environment-
conscious vehicle design is a very important issue in
the automotive industry. Therefore, four non-technical
performances are also taken into account, including

Figure 3. Preliminary parametric design of vehicle side-door structure: (a) outer panel, (b) inner-front panel, (c) inner-rear panel, (d) frame,
and (e) safety beam.
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manufacturing and assembly cost (Y5), mass (Y6),
energy consumption rate (Y7), and CO2 emission
rate (Y8).

3.2 Construction of Surrogate Models

The computer-based simulation tools such as finite
element and computational fluid dynamic analyses are
currently used overwhelmingly to simulate the perfor-
mance of automotive designs. In such a simulation-
based design environment, the search for a feasible
design space that satisfies the given performance
requirements usually involves numerous iterations
among several simulation tools. They are computation-
ally expensive and extremely time-consuming, thus
limiting the exploration of broad design space and its
optimization [4,11]. In addition, these simulation tools
are usually used by specialists in individual disciplines
and in the later design stages. The fidelity of design
analysis is thus low in the early stages [15].

Therefore, metamodeling techniques are becoming
widely used in today’s engineering design to build
approximations, often called surrogate model or meta-
model, of expensive computer analysis tools [4,11,15].
For this design problem, the space filling design is used
to sample a set of design points, because it is the most
suitable DoE technique for sampling deterministic
computer experiments [11]. For those sample points,
the FEM analysis is performed to calculate the technical
performances (Y1–Y4) using the ABAQUS/Standard
and ABAQUS/Explicit (ABAQUS, Inc.), and the
DFMA software (Boothroyd Dewhurst, Inc.) and
LCA software (Japan Automobile Manufacturers
Association, Inc.) are also used for the calculation of
non-technical performances (Y5–Y8). Then, the response
surface methodology (RSM) is adopted to build a
surrogate model of actual computer simulations, since it
is the most well-established metamodeling technique,
probably the easiest to use and provides closed-form
equations as the approximation model. Table 1 lists
simple surrogate models used in this design problem.
Therefore, the variance of performance can be predicted

rapidly by using these surrogate models instead of
running complex computer simulation tools to all
iterations of the solutions.

3.3 Design Example Using the Proposed
Design Approach

In this work, the proposed design approach is
implemented by developing an add-in program of MS
Excel. Using the implemented software, the designer
first specifies design and performance QPNs, by directly
using MS Excel interface (Figure 4(a)) or initiating a
special QPN composer (Figure 4(b)). The relationships
between design variables and performance variables
(i.e., surrogate models) are also defined. In this example,
all design and performance QPNs have linear preference
functions, but any shapes of preference function can be
specified. Table 2 summarizes the interval sets of design
and performance QPNs at the preference levels of 0
and 1. In addition, all design QPNs are now universally
quantified, considering the worst case scenario that all
variations of design performance may occur simulta-
neously in the worst possible combinations of design
variables.

Second, possibilistic distributions achievable by
design QPNs are calculated by the SPM and the result
is automatically displayed in a new sheet. Then, the
designer checks whether initial design QPNs are feasible
by investigating common regions between performance
QPNs and possibilistic distributions. In this example,
there exist overlapping regions in all performance
variables, and thus the designer can predict that there
are feasible solutions within initial design QPNs.

Last, a sequence of set narrowing processes is
performed to eliminate infeasible and inferior subsets
from initial design QPNs, thus resulting in an optimal
ranged set of design solutions of which all possible
distributions fall within all performance QPNs. The set
narrowing process repeats three times in this example. In
the set narrowing process, the designer can also specify
different weighting factors of performance variables. As
listed in Table 3, the narrowing process produces two

Table 1. Surrogate models constructed for vehicle side-door structure design.

Yj¼ a0þ a1 * X1þ a2 *X2þ a3 * X3þ a4 * X4þ a5 * X5 ( j¼ 1, . . . , 8)

Performance variable a0 a1 a2 a3 a4 a5

Y1 0.5557 �0.3963 �0.0035 �0.0092 �0.0026 �0.0184
Y2 8.1334 �6.0522 �0.0653 �0.0630 �0.0438 �0.0827
Y3 49.5977 �1.8881 �2.7523 �15.9911 �2.6830 �1.9747
Y4 �105.1489 436.6362 101.1238 589.4437 �21.5433 281.8669
Y5 2706.3000 771.6000 248.2000 799.8000 364.4000 172.5000
Y6 2.0442 6.0813 1.9083 5.5313 1.6063 0.4625
Y7 438.4167 1309.3750 410.8333 1191.2500 345.6250 100.0000
Y8 28.8750 89.0625 28.1250 80.9375 23.5938 6.8750
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different design solutions, when technical performances
(Y1�Y4) are more highly weighted, and vice versa,
during the calculation of APRI. In addition, it is
worthwhile to note that the design QPNs with different
shapes of preference functions generate different design
solutions. That is, the proposed design approach can
capture the designers’ preferences and reflect their
design intents in their design solutions.

4. Conclusions and Future Work

This study presents a new set-based design approach
for a multi-objective design problem in the early phase
of design. This approach enables design flexibility,
robustness, and preference under uncertainty. In order
to capture the designer’s preference and encode uncer-
tain design solutions and performance requirements, this
approach allows the designer to specify the varying
degree of desirability (i.e., preference function) of both a
ranged set of design solutions (not single-point solution)
and a ranged set of performance requirements (not crisp
specification). This approach also provides design
flexibility by developing ranged sets of robust and
preferred solutions (instead of single-point solution) that
satisfy uncertain performance requirements based on the
new design metric, PRI, thus allowing designs to be
readily adapted to changing conditions.

However, there are still several issues to be studied
further. First, the present approach assumes linear
functions between design and performance variables.

Figure 4. Specification of design and performance QPNs.

Table 2. Specified design and performance QPNs.

Interval set

QPN p¼ 0 p¼1 Unit

~X1 [0.4, 1.2] [0.6, 1.0] mm
~X2 [1.6, 2.8] [2.0, 2.4] mm
~X3 [0.4, 1.2] [0.6, 1.0] mm
~X4 [1.6, 3.2] [2.0, 2.8] mm
~X5 [3.0, 3.4] [3.05, 3.35] mm
~Y1 [0, 0.396] [0, 0.211] mm
~Y2 [0, 1.106] [0, 0.590] mm
~Y3 [0, 18.743] [0, 9.996] mm
~Y4 [699, 2400] [1677.6, 2400] Nm
~Y5 [1000, 8818.011] [1000, 4702.939] Yen
~Y6 [4, 30.105] [4, 16.056] kg
~Y7 [1000, 6459] [1000, 3444.8] MJ
~Y8 [100, 439.5] [100, 234.4] kg
– – – –

Table 3. Final ranged sets of design solutions at pi¼0
(a) when technical performances (Y1–Y4) are more
highly weighted and (b) when non-technical perfor-
mances (Y5–Y8) are more highly weighted.

Design solution

Design variable (a) (b)

X1 [1.10, 1.20] [1.10, 1.20]
X2 [1.75, 1.90] [2.35, 2.50]
X3 [1.00, 1.10] [0.60, 0.70]
X4 [2.80, 3.00] [1.80, 2.00]
X5 [3.05, 3.10] [3.30, 3.35]
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If there is a nonlinear function, the present approach
linearizes the nonlinear function by splitting the design
variable space in the process of making the metamodels,
resulting in a set of linear functions. This shortcoming is
caused by the use of IPT. The constraint programming
techniques [16] can be considered as an alternative
propagation and resolution mechanism of intervals.
Second, the metamodeling technique itself is out of
scope of the present study. However, the metamodel
with fidelity is very important for practical use of the
proposed design approach. Therefore, a more suitable
metamodeling technique is required, since the RSM
is often criticized by its randomness assumption [11].
A good tradeoff of DoE/Metamodel combination
should also be made to find the compromise between
the metamodel fidelity and the resulting precision of
computation [16].
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