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Knowledge Network Driven Coordination and Robust Optimization to
Support Concurrent and Collaborative Parameter Design

Jie Hu,"* Yinghong Peng' and Guangleng Xiong?
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Shanghai Jiao Tong University, Shanghai, 200240, PR China
2State CIMS Engineering Research Center, Department of Automation
Tsinghua University, Beijing, 700080, PR China

Abstract: This study presents a parameter coordination and robust optimization approach based on knowledge network modeling.
The method allows multidisciplinary designer to synthetically coordinate and optimize parameter considering multidisciplinary knowledge.
First, a knowledge network model is established, including design knowledge from assembly, manufacture, performance, and simulation.
Second, the parameter coordination method is presented to solve the knowledge network model, monitor the potential conflicts due to
engineering changes, and obtain the consistency solution space corresponding to the given knowledge. Finally, the robust parameter
optimization model is established, and genetic arithmetic is used to obtain the robust optimization parameter. A design instance is introduced

to show the validity of this method.

Key Words: knowledge network, parameter coordination, robust design, multidisciplinary, concurrent and collaborative design.

1. Introduction

The overall performance of a complex product
generally depends on a number of specifications
distributed in multi-teams from different disciplines,
such as mechanics, cybernetics, dynamics, and so forth.
Many researchers paid attention to multidisciplinary
collaborative design optimization approaches. Fonseca
and Fleming [1] and Coello [2] provided comprehensive
reviews of GA-based multiobjective optimization
approaches. Fonseca and Fleming [3] developed the
multi-objective genetic algorithm (MOGA) approach.
Narayanan and Azarm [4] proposed MOGA-NA that is
an extension of the original MOGA by Fonseca and
Fleming [3] and made some improvements over the
original MOGA. Both MOGA and MOGA-NA are able
to produce a set of pareto solutions in one GA run
without converting the multiple objectives to a single
objective and, therefore, they show the great potential in
obtaining the Pareto solutions in an efficient way.
Narayana and Azarm [4] and Kurapati et al. [5]
presented a penalty method to handle constraint in a
MOGA. Besides the penalty methods, there exist many
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other approaches to handle constraints. Some of the
approaches are the fuzzy logic approach by Le [6], and
the immune system approach by Hajela and Lee [7].
A comprehensive survey of these constraint-handling
techniques can be found in Coello [8] and Michalewicz
[9]. Bloebaum et al. [10] and Renaud and Tappeta [11]
presented the concurrent subspace optimization
approach. Kroo et al. [12] and Braun et al. [13] presented
the collaborative optimization approach. Kroo [14]
provided a complete review of the multidisciplinary
design optimization architectures.

However, the essence of a multidisciplinary collabora-
tive design process is how to coordinate all the
constraints distributed in various disciplines to maintain
the consistency between product specifications and
design variables. Serrano and Gossard [15] developed a
graphical theory approach to evaluate the approxima-
tion degree of a set of constraints. Kannapan and
Marshek [16] introduced a design diagram to represent
parametric design problems and game theory to solve
conflicts when constraints were violated. Kusiak and
Wang [17] proposed a reduction algorithm for qualita-
tive constraint networks that can describe the effect of
perturbances from one variable on the other variables.
Chen and Lewis [18] used robust design theory to deal
with the coupling relationships among subsystems, and
a model based on game theory took effect when the
subsystem constraints conflicted. Lottaz and Robert [19]
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put forward a concept of solution space consistency,
which replaced a single solution by solution space in the
design process. Chang et al. [20] used Taguchi’s
parameter design concept to support teams commu-
nicating about sets of possibilities and to make decisions
that are robust against variations in the designs carried
out by other team members.

The first problem with these researchers is that they
focused on the coordination and optimization in
multidisciplinary collaborative design. However, the
most important problem for multidisciplinary colla-
borative design is how to obtain the design knowledge
from a multidisciplinary domain. The second problem
with these researchers is that few papers have
addressed the coordination and optimization simulta-
neously.

A knowledge network modeling, coordination, and
robust optimization method inherited from concurrent
and collaborative design theories are introduced in this
study. It collects the design knowledge to construct a
formulated model based on knowledge networks; uses
interval boxes to describe the parameters’ uncertainties
to enhance the design robustness; and a parameter
coordination algorithm framework is put forward to
refine the design parameter intervals. With the help
of this method, designers can detect the potential
conflicts due to engineering changes, obtain the
consistent solution space corresponding to the given
specifications, and determine design variables within the
solution space using multiobjective design optimization
finally.

2. Knowledge Network Modeling

Figure 1 shows the ‘time dimension’ concurrence and
‘space dimension’ collaboration in the development
process of a complex product. From the point of view
of concurrent engineering, the process of manufacture
and assembly directly affects product cost and perfor-
mance. From the point of view of collaborative
design, product design substantively is a multidisciplin-
ary design including mechanics, cybernetics, dynamics,
and so on.

21 Knowledge Network Modeling for
Concurrent Design

2.1.1 DESIGN KNOWLEDGE FROM ASSEMBLY

Design knowledge from assembly includes parameter
constraints, variation functions, and tolerance
constraints.

e Parameter constraints

Other domain

;|4 >

| Mechanical domain

A

A
A Time dimension:
= concurrent design Design knowledge
[9]
QE, ( Product ) from simulation
[
g Part Design knowledge knowlzl):ji%nfrom
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Xy based on knowledge network

Figure 1. The knowledge network model for coordination and
optimization to support concurrent and collaborative design.

Definition 1. Loop circuit — LC. Loop circuit is a
looped subgraph with features as nodes and geometric
constraints as arcs. That is

LC = G(V; E) (1

such that StartNode(LC) = EndNode(LC)
where V is the set of features and E is the set of
geometric constraints.

In a loop circuit, the relation between nominal features
is expressed as parameter constraints. For example, as in
the assembly in Figure 2(a). There are two loop circuits in
Figure 2(b), the parameter constraints are

{gl:Yl_(X2—X4):0 @)

=Y—-(-Xi— X, - X3+ X5)=0.

e Variation functions

Definition 2. Screw parameter. In 3D space, geometric
variation includes six degrees of freedom (DOF): three
independent translations (7, T}, T-) and three indepen-
dent rotations (R, R,, R.). In the system of coordinates
{0}, geometric variation is mathematically expressed by
the six screw parameters: differential translations u;, v;,
w; along x, y, z axes, and differential rotation angles «;,
B, vi about x, y, z axes.

Definition 3. Variation functions. The variation
functions aim to establish the relation between all
the variations in a loop circuit and assembly function
requirement (AFR), and can be expressed as:

Jie = Cak - i+ cp - Bi Cyr - Vi F Cur - U
+ ok - Vi F Gk - Wi

€)
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(a) The assembly (b) The loop circuit

Figure 2. An illustration of loop circuit.

where «;, By, Vi, i vi, wi (i=1, ..., n) are screw parameters
of variation in loop circuit, &g, Bo, Y0, Uo, Vo, Wo are SCrew
parameters of assembly function requirement, and cy,
Cpies Cyies Cuk> Cvik» Coic are coefficients.

The variation functions in a loop circuit include the
rotational functions and the translational functions, and
can be expressed as:

up— ZViYi-I-Z,BiZi)
: &

1 i=1 =

fima—Ya f4=uo—<
=1

n

'

n n n n
fa=Bo—2Bi{ fs=v— (ZviJrZVin—Zafo)
=1 i=1 i=1 i=1

=

f:%:Vo—z;Vi f():wo—<2w[— ﬂiXi—i-ZaiYi)
i= i=1 i=1 i=1
4)

where u;, v;, w;, o, Bi, y; are screw parameters of the ith
variation in loop circuit (LC), and uq, vy, wo, @o, Bo, Yo
are screw parameters of variation corresponding to
assembly function requirement in loop circuit (LC).

e Tolerance constraints

Definition 4. Tolerance constraints. The tolerance
constraints aim to establish the relation between the
tolerances zone (given tolerance ¢;) and the specified
screw parameters («;, B;, Vi Ui, Vi, W;) of corresponding
variation, and can be expressed as:

hilai, Bis Vis iy vi,wis ;) <0, i=0,1,...,n. (5)

Figure 3. An illustration of tolerance constraints.

Figure 3 shows an example to illustrate how to specify
tolerance constraints. For example perpendicularity,
the tolerance zone is cylindrical, and the tolerance
value is ;. The corresponding screw parameter of
variation is («y, B1), and then tolerance constraint can
be represented as:

2 2 2
h(er, Bi: 1) = [(L - ay) +(L-;81)]—<5> <0. (6

2.1.2 DESIGN KNOWLEDGE FROM
MANUFACTURE

In design phase, a variation factor in a manufacture
process should be considered, which is expressed as the
manufacturing cost — parameter and tolerance function,
which describes the relationship between the parameter
and tolerance values and manufacturing cost.

Definition 5. Relative manufacturing cost. The
manufacturing cost of casting processes with very
loose tolerance (>0.5mm) is used as the reference and
assigned a value of 1. The manufacturing cost increase
value (%) is often called relative manufacturing cost.

Based on the empirical cost — parameter and tolerance
data frequently used in manufacturing processes,
the relative manufacturing cost — parameter and
tolerance functions are established, such as

e Manufacturing cost function for cylindrical (shaft)
feature and cylindricity tolerance:

filtidi 1) = 84.708 —277.022 - £;+0.0938 - d; — 0.00396 -
+163.566 - 17 +0.00135 - 7 4 0.000507 - /7
+0.0262 - £;- d+0.0208 - 1; - [;40.000245 - d; - ;
+110.645-1; —5.874-d; +3.726 - I}

—0.000586 - 1; - d; - 1. (7)
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e Manufacturing cost function for cylindrical feature
and position tolerance:

folti di, I;) = 20.349 — 88.842 - 1; + 0.0441 - d; + 0.00821 - /;
+ 135.762 - 12 — 0.000218 - d7 4 0.000941 - /2
—0.0237 - ;- d; — 0.00449 - 1, - [,
—3.0117 -d; - [; — 59.925 - £ + 5.354 - d3
—6.617-L+8911-t;,-d; -, (®)

where ¢; is tolerance, f;(e) is the manufacturing cost —
parameter and tolerance function for model j, and 4 and
[ are the diameter and length of cylindrical feature.

2.2 Knowledge Network Modeling for
Collaborative Design

2.2.1 DESIGN KNOWLEDGE FROM
PERFORMANCE

The overall performance of a complex product
generally depends on a number of specifications
distributed in various disciplines, such as mechanics,
cybernetics, dynamics, and so forth. Design knowledge
from performance in various disciplines can be divided
into two classes: specification constraints and relation
constraints. The former is design goals, including the
requirements and limitations of product performance,
shape size, and so forth, which are determined by
user requirements before starting design process.
The latter is relationships between specifications and
design variables, which can be obtained from design
principles in each discipline. In traditional design, the
information in specification constraints are not made for
full use, but only treated as evaluated criteria.

2.2.2 DESIGN KNOWLEDGE FROM SIMULATION

As the core of knowledge discovery from simulation,
an efficient and appropriate data mining (DM)
algorithm plays an important role in a successful
knowledge discovery in a database (KDD) process. It
is very difficult that one object identified by a real value
attribute is exactly equal to another in the decision table.
So the equivalence relation in basic rough-set theory
(RST) is too strict for a quantitative data such as FEA
simulation data. In this study, a fuzzy indiscernibility
relation is introduced to replace the equivalence relation
in basic RST.

For a decision table S = (U, A U {d}), if the value set
V, is composed of quantitative value, the value on
attribute a € 4 can be catalogued into several fuzzy sets
described by natural language as ‘low’, ‘normal’, or
‘high’, etc. Assume that the set L, of linguistic terms of
attribute a is equal to {/{, 5, ..., [f; }. Object x belongs
to the /th fuzzy set of attribute a with fuzzy function f7,.

For any two objects x and y in U, if there exists
linguistic term / of attribute « satisfying /7, > 0 and
7. >0, it is said that there are fuzzy indiscernibility
relations on single attribute a between objects x and y.
The indiscernibility degree between them on the ling-
uistic term / can be measured by u, = min(f%, f7).
Similarly, if the same linguistic terms of an attribute
subset B exist in both object x and y with membership
values larger than zero, x and y are said to have a
fuzzy indiscernibility relation on attribute subset B
with the membership value equal to
wp = min({min(f. £3) 1 € Ly.a € BY)

IND'(B) = {((x, ), 18) : Vaen(fo > 0, [y > 0).  (9)

According to the above fuzzy similarity relation, the
universe U can be partitioned by attribute subset B.
[xlinpis) denotes the fuzzy equivalence class of
IND'(B) defined by x. Thus fuzzy lower approximation
and fuzzy upper approximation of subset X in U
are defined as:

B(X)= {([x]lND’(B)al‘LB(x)) xeVl, [x]lND/(B) c X} (10)
B(X) = {([x]inpy ) 18(x)) : x € U, [xhinpsy N X # @} (11)

By computing B(Cy) and B(Cy) (1 <k < r(d)), certain
and possible rules can be induced respectively.

Based on the above theory, the detailed steps of
knowledge discovery from the simulation data are
summarized as:

Step 1. According to the domain knowledge, decide the
center point for fuzzy partition. Adopt a fuzzy member
function to transform the quantitative value into several
linguistic term descriptions.

Step 2. Compute the decision class Ci through decision
attribute subset d.

Step 3. For any condition attribute subset B € p(A4),
compute the fuzzy equivalence class IND'(B).

Step 4. For each decision class Ci, compute B(Cy) and
B(Cy) respectively, and insert them into a certain object
set and uncertain object set, respectively.

Step 5. Repeat Steps 3, 4 until all condition attribute
subsets and all decision classes have been calculated.

Step 6. The certain rules are induced from certain object
sets and the uncertain rules can be induced from an
uncertain object set. Calculate each rule’s support
degree, accuracy, and efficiency measurement.

Step 7. Reduce the rule sets, and then add rules into the
fuzzy rule knowledge base.
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2.3 Knowledge Network Modeling for Concurrent
and Collaborative Design

The knowledge network model includes: (1)
Constraints and functions from assembly, manufacture,
and performance; and (2) intervals, which are derived
from rule sets in the knowledge discovery from
simulation. The knowledge network model is used in
the following coordination and optimization.

Model I. (The model for coordination). The model for
collaboration based on knowledge network is formu-
lated as

X € [xL, xU]

gx)=0 g=I[g1,8, ....q]"
sty h(x) <0 h=T[h,hy ... 5"

(12)

xe [xLO’xUO]

where x € R" is an n-dimensional design variable vector;
g and h are constraint vectors of equations and
inequalities, respectively. [x"?, xY9] are initial conditions
of the original evaluated intervals of design variables.
It is derived from rule sets in the knowledge
discovery from simulation, [x",xY] are consistent
intervals filtered by the parameter coordination
algorithm which are corresponded to the given design
goals. If the domain of any variable in x vector is empty,
it means that there exists conflicts in the current design
project and some specifications cannot meet the
requirements.

After consistent intervals [x", x"] are filtered by
parameter coordination algorithm in the parameter
coordination process, an optimization process is imple-
mented based on the knowledge network model and the
result of parameter coordination.

Model II. (The model for robust optimization).
The model for robust optimization based on knowledge
network is formulated as:

Given p and the tolerance of x and p:t, . t,.t,.t,,.
find x

Y]

: 1 My Oy,
min ¢(x, p) = Z w,~|:aE —(l—« E]

i=1 i i

s.t. gilx,p)=0, i=1,...,1

n 8h
hj,new(x;p) = hj + —L Ix| - Ax
; 8xk
2| oh;
+Y | Ape<0, j=1....m
; opr
x € [xb, xY] (13)

where x = {x1, ..., x,} is a vector of design variables
and p={p;, ...,ps} is a vector of design parameters
whose values are fixed as a part of the problem
specifications. t.,t.,.t,,t, are tolerance of design
variables and design parameters, respectively.
y=y(x,p) is a vector of the system performance.
Wy, 0, are the mean value and the standard deviation
of y, respectively. u*, o* are the expected mean value
and the expected standard deviation. « is the weight
factor. gi(x,p) and hjnew(x,p) are constraints in the
robust optimization model, where Ax=t, —t,,
Ap=t, — 1.

3. Parameter Coordination

The algorithm utilized to solve the knowledge net-
work model can filter out the redundant region through
the initial domain of design variables and obtain the
consistency solution space corresponding to the given
knowledge.

A temporary vector @ is constructed for
inequality constraint vector h, 6 € R" and 0 > 0. With
the help of 6, inequalities can be transformed
into equalities:

h(x) < 0= h(x)+0 = 0. (14)

The relationship matrix for the coordination model is
defined as:

1, ficontains x;

F=U@}ﬂm={ (15)

0, f; does not contains x;

where 1 <i<l+m, 1 <j<n+m.
In addition, two secondary vectors, ¢, and d;, are
defined as:

¢ =[e(1), ¢(2), ..., cr(n+m)]

1, A=r
(X)) = r=12,....,n+m. (16)
0, A#r
dy = [dy(1),ds(2), ..., ds(I+m)]
I, A=s
dy(A) = s=12,....04+m.  (17)
0, A#s

The parameter coordination algorithm used to solve the
parameter coordination model is described as:
Algorithm A4: _
Procedure LabelResolve (In{C=[f’], x=0, y= [x"0,
x"}; Out{y})
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BEGIN
WHILE (y# x) DO
x=y
FOR j=1TO n+m
FOR i=1TO I4+m
IF (c;Fd;#0)
yi=/1(x)
ENDIF
IF y;=={null set}
Show conflict message
Exit
ENDIF
END FOR
END FOR
ENDWHILE
END
END Procedure

4. Robust Parameter Optimization

The penalty function method is adopted to modify
the robust optimization model (Equation (13)), and the
objective function f'is formulated as:

Hm

/
fix.p) = p(x.p) = Y Kib(gi(x.p)) — Y KO new(x.p))
i=1

j=It1
(18)

where K; and K; are penalty factors.
Robustness for the system performance function is
formulated as:

4 Wy o,
mw=2wp%ﬂum%]
py Hi o

(19)
yi=yilx,p), i=1,...,q.

Equation (19) is solved by Monte Carlo method. Let
design solution point 4 be x = xy, p = p,, and tolerance
of x, p be Ax and Ap. First, the stochastic points
x; and pfi=1,...,k) are sampled around
xe[x—Ax,x+ Ax] and p€[p— Ap,p+ Ap]. Then,
calculate y for all the stochastic points. Finally, calculate
the mean value p, and the standard deviation o, of y in
the x e [x — Ax,x+ Ax]and p € [p — Ap,p + Ap].

For input x = x¢, p = py, Ax and Ap, g; and 5 pey In
the model (Equation (18)) are calculated. Then, penalty
function @ (A, new(x, p)) and @(gi(x, p)) are redefined as:

h/’,new(xap) if hj,new(xap) >0

e(hj, new(xa P)) = . (20)
{ 0 lf hj,new(xsp) =< 0

D(gi(x,p)) = |gi(x.p)|. @21

Based on the above robustness analysis, the robust
optimization model can be solved by genetic algorithm.
Variables and constraints have been defined in the
parameter coordination model (Equation (12)). Search
space is the consistent intervals [x", x“], which are
filtered by the parameter coordination algorithm in the
parameter coordination process. So the parameter
coordination to obtain the consistent solution space in
Section 3 is the basis of robust design optimization in
this section. According to Equation (13), the parameter
coordination model (Equation (12)) is transferred to the
robust optimization model. The penalty function is
calculated by Equations (20) and (21). The objective
function is calculated by Equation (18), which is
expressed as fitness. Selection, crossover, and mutation
are implemented to obtain the optimization solutions.

5. Knowledge Network Driven Concurrent and
Collaborative Design System Architecture

An Internet based system architecture is proposed in
this study to support concurrent and collaborative
parameter design. The architecture is structured in a
three-layered framework: information, application, and
end user layer. In such a system, the end user layer is
situated in the user’s desktop and is connected to the
application Web server (application layer), which in turn
is connected to the information databases (information
layer).

5.1 Information layer

Coordination and optimization during parameter
design is difficult as decisions need to be taken in
collaboration with other teams that do not have access
to the knowledge of their distributed partners.
To overcome this issue, it is necessary to have a
distributed source of knowledge to support the
different activities. The knowledge network model
from assembly, manufacturing, performance, and simu-
lation addresses such requirement because it is an
information model that captures concurrent and colla-
borative processes. Its knowledge data integrity is
captured as a result of the way the model represents
the constraints, functions, and intervals.

5.2 Application layer

The application layer consists of two elements:
(1) parameter coordination and robust optimization
applications provides a range of key product life cycle
applications that need to be preformed in a
collaborative manner. This research is concerned with
the parameter design; hence the proposed applications
include  parameter  coordination and  robust
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optimization and (2) knowledge management applica-
tions control knowledge access, maintain the
knowledge, and manage the geographically distributed
collaborative team.

5.3 End user layer

The end user layer forms the front end of the system.
It consists mainly of a web browser, such as Internet
Explorer or Netscape, to view and use the different
decision support engineering applications and colla-
borative tools.

6. Design Example

The following is an example of a piston-connecting
mechanism of an automotive engine shown in Figure 4.
This example is to illustrate how to design the parameter
and tolerance with three performance targets: assembly
functional requirements, manufacturing cost require-
ments, and weight requirement. Designed parameters
are the outside diameter of piston x;, length of piston x»,

A Geometric model

Design knowledge
model from assembly

Design knowledge
model from
manufacturing cost

Knowledge network modeling

)
-

.
e

diameter of piston pin hole x3, diameter of piston pin x4,
length of piston pin x5, diameter of connecting rod small
end bearing x4, diameter of connecting rod big end
bearing x;, width of connecting rod xg, and center
distance of connecting rod small end bearing and
big end bearing xo. Designed tolerances are tolerance
of outside diameter of piston #;, tolerance of diameter of
piston pin hole 7,, tolerance of diameter of piston pin 73,
tolerance of diameter of connecting rod small
end bearing 74, tolerance of diameter of connecting rod
big end bearing 75, and tolerance of center distance
of connecting rod small end bearing and big end
bearing f.

6.1 Knowledge Network Modeling

Design knowledge from assembly.

Design knowledge from assembly includes parameter
constraints g, variation functions f, and tolerance
constraints & as follows.

{gl(x39x4):x4_x3 =0.01 22)

g2(x4, X6) = x6 — x4 = 0.03

FEA model

Design knowledge
model from
performance

Design knowledge
model from
simulation

i | B | e

bl | gym |Eve | Gt | =

Parameter collaboration
& robust optimization l Integration
> |1

Parameter coordination

Robust optimization

Figure 4. A design example of piston-connecting mechanism of automotive engine.
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Ss1(v2,v3, ¥2, ¥3, X5, Xg)
12
= {[v2+ (x5 — x3) - Y +[v3 + (x5 — x5) - 131}
Ssa(wa, w3, Ba, B3, X5, X3)

= {[w2 — (x5 — x3) - B2 + [w3 — (x5 — x5) - B3]

(23)
} 172

hi(uy, v, o, B, X2, 1)
= (1 +x2-B1)* + (v +x2-01)’ = (11/2)° <0

ha(v2, wa, B2, ¥2, X5, X3, 1)
=[v2+ (s — x3) - o] 24)
+wa+ (x5 —x5) - Bl — (12/2)* <0

he(ve, we, t6) = (v6)* + (ws)* — (t6/2)* < 0.

Design knowledge from manufacture.

Regression analysis is used to summarize a collection
of sampled data by fitting it to a model that will
accurately describe the data. Each regression model has
adjustable coefficients, which can be adjusted in order to
achieve close agreement between values of the regression
model and the sampled data. Regression analysis can
turn the sampled data points into a smooth continuous
function. Manufacturing cost functions in this example
are as follows:

fei(t, x1,x2) = 84.708 — 277.022 - 1, + 0.0938 - x,
—0.00396 - x5 + 163.566 - £; +0.00135 - x7
+0.000507 - x3 4 0.0262 - #; - x1 4 0.0208 - #; - x;
+0.000245 - x1 - x5 + 110.645 - £; — 5.874 - x}
43.726 - x3 — 0.000586 - 11 - x| - X3

fea(ta, X3, X5, x3) = 87.241 — 277.813 - 15 4+ 0.0167 - x3
4 0.0449 - (x5 — xg) + 166.482 - 13 4 0.00738 - x3
—0.000845 - (x5 — x3)> + 0.0498 - 15 - X3
+0.0266 - 15 - (x5 — x3) +0.000242 - x3 - (x5 — X3)
+106.362 - 3 — 8.238 - x3 + 1.417 - (x5 — xg)°
—0.00108 - £ - x3 - (x5 — x3)

(25

Design knowledge from performance.

Using the above regression analysis, we obtain design
knowledge from performance in this example, which is
a function for weight as follows:

Jo(x1, X2, X3, X4, X5, X6, X7, X3, X9)

=cotcr- X1+ X243 X3+ 40Xy (26)
+¢5- X5+ C6- X6+ C7- X7+ 8- Xg+ C9 - X9

where c¢q, ..., co are coefficients.

Design knowledge from simulation.

In this study, the commercial finite-element program
ANSYS is used for the analysis of the piston-connecting
mechanism. The simulation is carried out with different
parameters. Then the concerned FEA data are collected
into a decision table. According to the domain knowl-
edge, each of the parameters is discretized into three
levels. A Boolean Reasoning discretization method is
carried out to discretize other condition attributes into
several levels. The knowledge discovery method, which
is shown in Section 2.2.2, is adopted to acquire explicit
rules. It can deal with continuous data in simulation
results and does not depend much on prior knowledge.
Based on the acquired rules, the initial intervals
[x0, xU0] derived from rule sets in this example are as
follows:

x1 € [80,91], x2 € [88,97], x3 € [16,27], x4 € [16,27].

x5 € [82,92], x¢ € [14, 26],

x7 € [42, 58], x5 € [31,45], xo € [141, 166],

11 € [0.002,0.050], 1, € [0.002,0.012],

t € [0.001,0.012], 74 € [0.005, 0.080], #5 € [0.003, 0.050],
t6 € [0.003,0.600].

6.2 Parameter Coordination

Based on the above knowledge network, Model I for
collaboration is constituted by Equation (12). The
parameter coordination algorithm is utilized to solve
Model I to obtain the consistency intervals as follows:

x1 € [84,87], x> € [92,96], x5 € [18,21], x4 € [18,21],

x5 € [83,86], x6 € [18,21], x7 € [48, 52], x5 € [36, 40],

xo € [150, 154], 11 € [0.005,0.035],

1> € [0.004,0.009], 73 € [0.002,0.007], 4 < [0.010,0.030],
t5 € [0.005,0.030], 7 € [0.010,0.300].

6.3 Robust Optimization

Based on Model I and consistency intervals, Model 11
for robust optimization is established by Equation (13).
The genetic arithmetic is used to optimize Model II.
The final optimized parameters and tolerances are
shown as:

X1 = 85.9,XQ = 95.3,X3 = 19.99, X4 = 20.0, X5 = 84.2,
xe = 20.03,x7 = 50.9, x3 = 39.0, x9 = 152.0, #{ = 0.02,
1, =0.007,t3 = 0.005,74 = 0.017,¢5 = 0.015,26 = 0.1.
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6.4 Discussion on the Example

Sections 6.1-6.3 demonstrate a case study to corro-
borate the efficacy of the proposed method.
The knowledge network reduces the possibility of
iterative design. The input of Model I for collaboration
is design knowledge from assembly, manufacture,
performance, and simulation. The output is the
filtered design intervals, in which conflict parameters
have been removed. This design example is a typical
concurrent and collaborative design problem with
uncertainties. The robust optimization method based
on Model II achieves a robust solution for the
parameter uncertainties. The method described in this
study was used to develop a knowledge network
driven concurrent and collaborative design system,
which is now running in an automotive engine
design project.

7. Conclusions

This study has shown how to design parameters of
a complex product using knowledge network modeling,
coordination, and a robust optimization approach.
Knowledge network includes design knowledge from
assembly, manufacture, performance, and simulation.
As opposed to the traditional concurrent modeling
methodology, the proposed knowledge network method
can be used to model ‘time dimension’ concurrence and
‘space dimension’ collaboration in the development
process of a complex product. Based on Model I
for collaboration, a parameter coordination algorithm
was designed using interval arithmetic to refine the
intervals. The algorithm can be used to verify the design
process early in the process and to assist the
designers in determining design variables to reduce the
multidisciplinary  iterations in concurrent and
collaborative design. Based on Model II for robust
optimization, a robust optimization algorithm was
presented to obtain an optimized product solution.
The proposed method has addressed the parameter
coordination and robust optimization simultancously.
Further research will focus on system integration,
which is shown in Figure 4, including information and
knowledge integration.
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