
HAL Id: hal-00571186
https://hal.science/hal-00571186

Submitted on 1 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Design Process Coordination based on a
Service Event Notification Model

Jian Cao, Shensheng Zhang, Minglu Li, Jie Wang

To cite this version:
Jian Cao, Shensheng Zhang, Minglu Li, Jie Wang. Distributed Design Process Coordination based
on a Service Event Notification Model. Concurrent Engineering: Research and Applications, 2005, 13
(4), pp.301-310. �10.1177/1063293X05060134�. �hal-00571186�

https://hal.science/hal-00571186
https://hal.archives-ouvertes.fr

CONCURRENT ENGINEERING: Research and Applications

Distributed Design Process Coordination based
on a Service Event Notification Model

Jian Cao,1,* Shensheng Zhang,1 Minglu Li1 and Jie Wang2

1Department of Computer Science & Technology, School of Electronic, Information and Electrical Engineering,

Shanghai Jiaotong University, 200240, 800 Dongchuan Road, Min Hang, Shanghai, P.R. China
2Department of Civil and Environment Engineering, Stanford University, Stanford, CA 94305, USA

Abstract: Due to the complexity and uncertainties, the distributed design process requires dynamic collaborations among the

heterogeneous systems and human interactions. In order to coordinate different system applications and humans, an event notification

model is required. In this article, we propose a service event notification model based on grid service. The model takes advantage

of the grid infrastructure and reduces the need for ad hoc development of middleware for supporting process coordination. In this

model, an event notification server composed of a group of grid services can capture events from other grid services and generate

process events. When an event occurs, event notification server decides to whom it should send the event according to an awareness

model that keeps the states of the underlying coordination policies and business rules. The awareness model and the methodology for

building an event notification system, together with the infrastructure of the notification server are presented in the article. An example

in applying the model to a vehicle design project coordination scenario is presented to illustrate the potential application of the event

notification model.

Key Words: distributed design process, grid, awareness model, notification model.

1. Introduction

For distributed design projects such as product
development [1] and building design [2], multiple
participants residing in different locations often need
to work together throughout the lifecycle of the project.
The dynamic nature of project requirements and the
inevitable collaboration among multiple organizations
and participants pose many challenges from both
technological and management perspectives.

The first challenge is the diverse heterogeneous
software and hardware environments that are used in
the distributed design processes. A fully integrated
solution imposing on homogeneous software and hard-
ware platforms is not feasible. An alternative approach
is needed that can coordinate heterogeneous applica-
tions during the project lifecycle process.

Grid-based engineering service is a potentially
useful technology for process coordination. Grid con-
cepts and technologies were first developed to enable
resource sharing and to support far-flung scientific
collaborations [3]. The open grid services architecture
(OGSA) [4] integrates key grid technologies with web

services mechanisms [5] to create a distributed system
framework.

Another challenge is the coordination of the parti-
cipants in a distributed design project. Because design
process is often highly dynamic in nature, it is difficult
to lay out an exact plan detailing all the necessary tasks,
their interdependency and interactions.

To address these two challenges, a platform that
can support both system coordination and human
coordination is important. Current grid service techno-
logy itself does not support human coordination.
However, it does provide a notification mechanism to
publish the status of changes in events, which can be
forwarded to interested parties to support human
coordination. Thus, the authors propose a grid service
based event notification model to support distributed
design process.

This article is organized as follows. Section 2 defines
an awareness model for design process. Section 3
discusses how to capture and transform events based
on business requirements for a complex process.
Section 4 introduces the event notification mechanism.
In Section 5, the structure of an event notification
server supporting distributed design process coordina-
tion is proposed. In Section 6, an example in
product design is provided to demonstrate the
grid-based event notification approach described in
the article. Section 7 discusses related works and

*Author to whom correspondence should be addressed.
E-mail: cao-jian@cs.sjtu.edu.cn
Figures 4 and 5 appear in color online: http://cer.sagepub.com

Volume 13 Number 4 December 2005 301
1063-293X/05/04 0301–10 $10.00/0 DOI: 10.1177/1063293X05060134

� 2005 SAGE Publications

Section 8 concludes the research and points out some
future works.

2. An Awareness Model for Design Process

Dourish and Bellotti [6] define awareness as ‘an
understanding of the activities of others, which provides
a context for your own activity’. There are many types
of awareness information that can be provided to a
user about other users’ activities [7]. The authors focus
and categorize the awareness information of distributed
design process into two main types:

1. awareness information related to project artifact
sharing and

2. awareness information related to process logic.

The authors propose herein an awareness model
based on the technique of integrated cooperative process
modeling, which makes the implementation of process
logics and a rule based notification-awareness system for
process coordination.

2.1 Artifact Structure Model

A design process, designed to produce an artifact,
typically consists of several components and each
component may have many sub-parts. In other words,
an engineering artifact can be represented by a
hierarchical tree, called an artifact tree. An artifact
tree is a triple <C, r, R>, where C is a finite set of
components, r2C is the root component, R�C�C
such that (c1, c2)2R if c12 sub(c2), where sub denotes
the ‘sub-components of ’ relationship. The connections
between the components C form a tree. The end-product
is the root component r.
In a distributed design process, different participants

have interests in different parts of the artifact tree.
For example, a project manager may organize
several teams for the whole project and monitor the
progress according to the upper portion of the
artifact tree. The team leader assigns participants to
be responsible for specific components and monitors
the progress of sub-processes corresponding to a
certain portion of the artifact tree. In other words,
each project participant is only concerned with a partial
artifact tree.
An artifact type can be defined as <P, A>, where P

is a set of parameters that can characterize this artifact,
and A is a set of operations to manipulate this artifact.
The artifacts produced during a distributed design
process are not independent, and are often inter-
dependent. That is, if an artifact a depends on another
artifact b, whenever b is changed, a must at least be
checked to ensure consistency and if necessary, need to

be changed accordingly. Moreover, the dependency is
transitive: if a depends on b, and b depends on c, then,
a depends on c. In this case, we call a directly depends
on b and a indirectly depends on c.

The degrees of dependency among the artifacts
are different. They can be strongly dependent or
weakly dependent. If artifact a is produced based
on information of artifacts b1, b2, . . . , bm, then the
degree of dependency of a on bi is defined by wi

(1�wi>0), where wi is a normalized weighted measure.
A direct dependent relationship is denoted as
Direct_Depend (a, b, w), where a is directly dependent
on b with degree w. For example, if a direct depends
on b with weight w1 and b directly depends on c with
weight w2, then a is indirectly dependent on c with
weight w1 �w2.

To model an artifact structure, two relationship types
are defined among the components: they are the sub
relationship and, the depend relationship, as shown in
Figure 1.

2.2 Process Structure Model

To model a dynamic distributed design process,
we partition the process model into two layers. The
top layer is a project plan model and the bottom layer
represents a library of workflow models with a set of
tasks.

A project is denoted as P¼<Tp,Rp,SP,Rdp>, where
Tp is the anticipated time schedule of the project,
Rp is the organizational property that will be defined in
Section 2.3, SP is a set of activities, Rdp are ordering
relationships among activities which are defined accord-
ing to a general project model such as CPM (critical
path method).

An activity can be complex or simple. The definition
of a complex activity is similar to a project. A simple
activity is denoted as ap¼<Ta,Ra,TA>, where Ta is
the time scope defined for the activity, Ra is the
organizational property. TA¼ {tap1, tap2, . . . , tapi}, in
which tapi is a task of activity ap and ap is also called
the parent of tapi (denoted as ap¼"(tapi)). A task can
be expressed as ta¼<at, ct, I,O,Rt>, where at is an
operation (defined for artifact type of ct), ct is an

Sub relationship Direct dependency relationship

Figure 1. Artifact structure model.

302 J. CAO ET AL.

artifact, I is the input artifact set of this task, O is the
output set of this task and Rt is the organization
property of this task. There are no ordering relation-
ships defined among the tasks of an activity.

In an artifact structure model, for each operation
defined for an artifact type, the content should be
specified as:

1. applications or services that are possibly conducted
by a person,

2. invoking a service by the system automatically, or
3. workflow models that can fulfill the operation.

The process structure model is shown in Figure 2.
A project model consists of activities and their
relationships and it provides high level ordering
constraints for the entire design process. While at
the lower level description, tasks are fulfilled by
invoking applications and services by a person or by
a structured workflow. The time to invoke an applica-
tion or a service is not pre-determined. New tasks
can be added to an activity at runtime. To coordinate
these tasks, team members should be aware of each
other’s work.

2.3 Organizational Structure Model

A project, an activity, or a task is usually allocated to
an organizational unit for execution. Organizational
structure reflects the project process structure and
management structure.

Each participant can be assigned several roles based
on the roles’ hierarchies. If a participant plays a superior
role, it is assumed that this participant can do any task
requiring inferior roles.

Team te¼<TR,TM,TF> is defined as a triple,
in which TR represents a role set, TM is an actor set,

and TF�TR�TM represents the enabled roles of the
members TM in team te. At least, TR should include
the role ‘manager’. In the definition of a team, each role
does not need to be bound with an actor. Actors can be
assigned at run time. An activity or task can be assigned
to a specific participant, a role, or a team.

2.4 Resource Model

The resource managed by a notification server
includes applications and services. Application is a
program that has an interface that a user can interact
with. Service (in our example, service means grid service)
always runs in the background and it provides a
set of methods that can be invoked on the Internet.
Applications and services are registered in the notifi-
cation server. For a public service in a distributed
design process, its address and embedded methods
should be registered so that other applications can find
this service.

3. Event Capturing and Transforming

3.1 Service Event Capturing

Notification mechanism has been defined in OGSA
[4]. An important aspect of this notification model is
the tight integration with service data: a subscription
operation is a request for subsequent ‘push’ delivery of
service data. In addition to capturing the notification
of grid service, the context of the notification should
also be captured, i.e., project name, the operations, and
the artifact affected. A service can specify the context
information by adding a special service data type as
follows:

<complexType name ¼00 EventDataType00>

<sequence ><element name ¼00 ProjectName00

type ¼00 string00=>

<element name ¼00 ArtifactName00

type ¼00 string00=>

<element name ¼00 OperationName00

type ¼00 string00=><=sequence>

<=complexType>

When a method of this service is invoked, the values
of the related service data elements (EventData) should
be set and pushed to the notification sink. Thus, the
service event to be captured can be denoted as:

es ¼<ProjectName, ServiceName, ArtifactName,

OperationName, TimeStamp> :

Project model

Workflow model

Workflow
library

Task

Activity

Application Service Service

Figure 2. Process structure model.

Distributed Design Process Coordination 303

3.2 Process Events Capturing

Activities and tasks have different states, including
waiting (W), ready (R), executing (E), completed (C),
overtime (T), and aborted (A). When an activity changes
from one state to another, events will be triggered,
as illustrated in Figure 3. These events are generated
by a process engine and distributed by the notification
server. If the state of an activity or task is ‘waiting’,
then they become inactive. If their states are ‘ready’ or
‘executing’, then they are activated.
Project participants can access activity or task

information through personal workspace. When an
event indicating that a task’s status has been changed
from ‘waiting’ to ‘ready’ is received, the participants
can accept the task assigned. He can change the state
of the task by issuing a set of operations, which will in
turn generate new activity events.
The process engine will monitor the whole process

and change the state of the task and activity. Changing
states may bring a set of process events captured as
follows:

ea ¼<ProjectName, ActivityName ðor task nameÞ,

FromState, CurrentState, TimeStamp>

3.3 Event Transforming

The events captured can be transformed into other
events according to the business requirements. The
authors provide a transformation rule in the following
form:

On Event Expression If Condition Then RaiseEvent ðeÞ

An event expression is composed of a set of event
filters. Event filters are connected using the composition
operators, such as:

1. AND: e1 AND e2 means e1 and e2 both have
happened.

2. OR: e1 OR e2 means at least one of e1 and e2 has
happened.

A Condition is a conjunction of the constraints, which
define the relationships among parameters of different
event types. Action RaiseEvent will produce a new
event. For example, a new event type called operational
event type indicating that an artifact is changed by an
operation is denoted as:

ea ¼<ProjectName, ArtifactName,

OperationName, TimeStamp>

During a distributed design process, one may also
have service event that requires services from other
participants or systems. Since the authors have defined
the relationships of operations and service method, a
service event can be transformed into an operational
event. As an example, the artifact type ‘project plan’ may
have operations ‘build new plan’, ‘update plan’, which
are mapped into a method ‘check in’ of service
‘Plan Repository Service’. As an example, if an event is
captured: es¼<‘ATV Project’, ‘Plan Repository
Service’, ‘Project Plan’, ‘Check in’, ‘2005-3-15
15 : 30’>, this event can be transformed into:
eo¼<‘ATV Project’, ‘Project Plan’, ‘create’, ‘2005-3-15
15 : 30’>. This statement can be written as a transfor-
mation rule:

On es <OperationName ¼00 Check in00>

Then RaiseEventðeoðes:ProjectName,

es:ArtifactName, 00Create00,es:TimeStampÞ

If one receives another event: es¼<‘ATV Project’,
‘Plan Repository Service’, ‘Project Plan’, ‘Check in’,
‘2004-4-13 12 : 20’>, the event should be transformed
into: eo’¼<‘ATV Project’, ‘Project Plan’, ‘update’,
‘2004-4-13 12 : 20’>. The transformation rule can be
written as:

On es <OperationName ¼00 Check in00> AND

eoðOperationName ¼0 Create0Þ

If es:ProjectName ¼ eo:ProjectName &

es:ArtifactName ¼ eo:ArtifactName

Then RaiseEventðeoðes:ProjectName,

es:ArtifactName, 00Update00, es:TimeStampÞÞ

4. Event Notification

After an event has been captured, the concerned
individuals or applications should be notified to deal
with the event. One can assume that each event is related
to at least an artifact or an activity, i.e., in the definitions
of an event type, there is an attribute that indicates

R E C

T A

e1

W

e2 e3

e4
e5

e6

e7e8e9

Figure 3. State diagram of an activity or a task.

304 J. CAO ET AL.

at least an artifact or an activity to which this event
targets upon. Furthermore, when an event relates to a
composite artifact or complex activity, some dedicated
analysis tools can be provided to determine which part
is actually changed. For example, when the project
plan is changed, an analysis tool is provided to compare
the original plan and current plan to determine which
part has been modified.

If the event is related to an artifact c0, then we can find
other related artifacts through the dependency relation-
ships among them. Suppose they compose a set C, for
each ci2C, we can calculate the dependency weight
among c0 and ci. Since a task includes a set of application
services, activating a task also activates a set of applica-
tion services and their related artifacts. To receive the
necessary notifications for these application services,
they should be registered at the notification server
regarding the locations where these applications reside.
Events related to the artifact c0 will be broadcasted to
these applications if their related artifacts are in C.

In order to notify the individuals, who are the task
owners of particular tasks, when events related to
artifacts happen, one should find the tasks directly
related to these artifacts and notify the task owners.
Because the input for each task has been defined, it is
quite straightforward to find those tasks that are waiting
for the events. It should be emphasized that only the
activated tasks need to be notified.

All events will be stored as an event history.
When an event related to an artifact happens, notifica-
tions (with a dependency weight) to the tasks are
also recorded. Notification server will keep track on
the last time that applications or users are online. When

applications or users connect to the server, those events
whose timestamps are more recent than their last logon
timestamps will be sent to the connecting applications or
users. In order to prevent the events being sent to the
individuals not related, one can also define event filters
in the personal workspace. For example, for an event
related to an artifact, one can assign a threshold on the
dependency weight of the notification. Then the event
notification related to an artifact whose dependency
weight is less than the threshold value will not be sent
to the workspace.

5. System Structure of Notification Server

The system architecture based on grid service
platform for a notification server is shown in Figure 4.
A user joins an engineering cooperative process
through a personal workspace. In the personal work-
space, a user can invoke different applications. These
applications in turn can invoke services that are running
in different grid service containers. A notification server
consists of a set of grid services. An event receiver
service is running to gather events from distributed
services and it will store all the events gathered, record
the events into an event history and determine how
to dispatch events to the applications and humans.
Once an application starts running, it will create an
application broker within the notification server.
An application broker monitors the event history
and determines whether the server should notify the
application based on the awareness model. Similarly, a
personal broker is created by each personal workspace.

Service
container

Event
history

Integrated
model

Workflow
library

User

Event
receiver

Modeling
service

Project
instance

Container

Service
instance

Container

Service
instance

Personal workspace

Application

Personal workspace

ApplicationApplication
broker

Application
broker

Project
instance

Personal
broker

Personal
broker

User

Management
service

Figure 4. Notification server structure based on grid service platform.

Distributed Design Process Coordination 305

(a)

(b)

(c)

Figure 5. A case study.

306 J. CAO ET AL.

(d)

(e)

(f)

Distributed Design Process Coordination 307

A personal broker will also monitor the event history
and notify the personal workspace based on the
awareness model. As for each project, a project service
instance will be created. The project service instance
provides methods to be invoked by the personal
workspaces, generates the events, and coordinates the
tasks according to the process logics. The notification
server also provides a set of facility services. These
services include modeling service and management
service. A user can revise the project model, initiate a
project, and manage the project process through these
facility services.

6. A Case Study

The authors will introduce a demonstration to
illustrate the service notification model. This case
example demonstrates a grid based coordination
system for facilitating a vehicle design process.
The project manager can build a new project plan

through MS Project software, which is connected to
the notification server through an application broker.
The project plan can be checked into a repository
through a grid service (Figure 5(a)) and a corresponding
project instance is created in the notification server.
With the help of modeling service in the notification
server, we can add more information into the project
model, such as organization, resources, and artifact
sub-models (Figure 5(b) and (c)). Figure 5(c) shows a
product tree defined for this project and specific tasks
will be generated for those parts according to the pre-
defined workflow model. Each designer involved in this
project will be allocated some tasks through the personal
workspace. When he opens a task, some guidelines
are provided to help him finish this task. Figure 5(d)
shows a task of design part atv1250312, which should
be done in the ProE.
Due to the customer’s request, the project manager

decides to change the completion date of activity ‘Part
Design for Frame’ from ‘2005-05-02’ to ‘2005-04-27’.
When the new project plan is submitted, the repository
service generates an event, and then the event receiver
determines who should be notified. According to the
awareness model, all frame part designers should be
notified. Figure 5(f) shows the designer who is drawing
part atv1250312 in ProE is notified. This information
is sent from event receiver to the application broker of
the ProE.
The distributed coordination framework for this

example demonstration is developed based on Globus
Toolkit 3.0. Specific gateways are developed to
connect the software applications into a grid service.
For example, the authors developed gateway plug-ins
for MS Project and ProE using VB applications.

7. Related Works

There are many event notification servers [8].
Three representative examples are CASSIUS, Elvin,
and Siena [9]. CASSIUS was tailored to provide
awareness information for groups. Elvin was originally
developed to gather events for visualizing distributed
systems, but it evolved later into a multi-purpose
event notification system. Siena emphasized on event
notification scalability in distributed environments. The
authors notification server model aims to coordinate
and support distributed design process in which
an awareness model is designed with built-in
knowledge. Another characteristic of the model is
that the notification server is based on service
computing paradigm that is not investigated by other
approaches.

A product awareness model, Gossip, was intended
to support the development process [10]. Gossip
included a shared composite product model with rules
of awareness information. Product object and awareness
relation are registered in Gossip. The artifact model
is similar except our awareness model also includes
process sub-model, organizational sub-model, and
resource sub-model.

Recently, a white paper describing a method based
on a notification mechanism of a grid service has been
proposed [11]. By employing the notification mechanism
of a web-based grid service, the web service can be
composed of other web services, without the need
of prior knowledge of how these web services are
developed. The NotificationBroker in that model is
conceptually quite similar to the authors notification
server. A NotificationBroker is an intermediary, which,
among other things, allows publication of messages
from entities that are not themselves service providers.
It includes standard message exchanges to be imple-
mented by NotificationBroker service providers along
with operational requirements expected of the service
providers and requestors participating in the brokered
notifications. However, no detailed descriptions on
their model, nor any implementation guidelines, are
provided.

With the aim of reducing the development time,
design process coordination is one aspect of concurrent
engineering. Under the umbrella of concurrent
engineering, various philosophies or methods such as
integrated product development (IPD) and knowledge
based engineering (KBE) are proposed. So far,
many works are done to implement the IT environment
to support these new ideas [12]. Comparing with these
systems, we define a new infrastructure, which makes
use of up-to-date grid technologies to provide both
application and human coordination based on an
awareness model.

308 J. CAO ET AL.

8. Conclusions and Future Work

This article proposes a solution based on an
event notification model of grid services. Current
grid service technology only emphasizes on cooperative
computation. The proposed model extends the
grid service to support cooperative work of individual
human participants during a complex engineering
process. Based on the awareness model, a notification
server can not only broadcast events to the interested
parties to support cooperative work, but also
support process control that is important for an
engineering process. The future work of the authors
includes developing a notification server to support
more expressive event transformation rules in a dynamic
engineering process.

Acknowledgments

This work is partly supported by ‘SEC E-Institute:
Shanghai High Institutions Grid’, Chinese high technol-
ogy development plan (No. 2004AA104340), Chinese
Semantic Grid project and Chinese NSF projects
(No. 60503041, No. 60473092). This work was partially
conducted while the first author was visiting Stanford
University. The authors would like to thank Mr. Jim
Cheng and Prof. Kincho Law for their help.

References

1. Gorton, I. and Motwani, S. (1996). Issues in
Co-operative Software Engineering using Globally
Distributed Teams, Information and Software Technology,
38(10): 647–655.

2. Kalay, Y.E., Khemlani, L. and JinWon, C. (1998). An
Integrated Model to Support Distributed Collaborative
Design of Buildings, Automation in Construction, 7(2–3):
177–188.

3. Foster, I. and Kesselman, C. (1999). The Grid: Blueprint
for a New Computing Infrastructure, Morgan Kaufmann,
San Fransisco.

4. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002).
The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration, Globus
Project, http://www.globus.org/research/papers/ogsa.pdf

5. Graham, S., Simeonov, S., Boubez, T., Daniels, G.,
Davis, D., Nakamura, Y. and Neyama, R. (2001).
Building Web Services with Java: Making Sense of XML,
SOAP, WSDL, and UDDI, SAMS, Indiana.

6. Dourish, P. and Bellotti, V. (1992). Awareness and
Coordination in Shared Workspaces, In: Proceedings of
Conference on Computer Supported Cooperative Work,
Toronto, Ontario, Canada, pp. 107–114.

7. Steinfield, C., Jang, C.Y. and Pfaff, B. (1999). Supporting
Virtual Team Collaboration: The TeamSCOPE System, In:
Proceedings of GROUP Conference, Stockholm, Sweden,
pp. 81–90.

8. Cugola, G., Nitto, E. and Fuggetta, A. (2001). The JEDI
Event Based Infrastructure and Its Application to the
Development of the OPSS WFMS, IEEE Transactions on
Software Engineering, 27(9): 827–850.

9. Cleidson, R.B., Santhoshi, D.B. and David, F.R. (2002).
Supporting Global Software Development with Event
Notification Servers, In: Proceedings of the ICSE 2002,
http://citeseer.ist.psu.edu/desouza02 supporting.html.

10. Farshchia, B.A. (2000). Gossip: An Awareness Engine for
Increasing Product Awareness in Distributed Development
Projects, http://www.idi.ntnu.no/�ice/publications/caise
00.pdf.

11. IBM (2004). Publish-Subscribe Notification for Web
services, http://www-106.ibm.com/developerworks/library/
ws-pubsub/WS-PubSub.pdf.

12. Prasad, B. (1996). CE Fundamentals, Concurrent
Engineering Fundamentals, Volume II: Integrated
Product Development, New Jersey: Prentice Hall.

Jian Cao

Dr Cao is an Associate
Professor with the Department
of Computer Science and
Technology at Shanghai
Jiaotong University (SJTU),
China, and the deputy director
of the Grid Center of the
University. He received his
BSc and PhD in Automatic
Control Theory and Control
Engineering from Nanjing
University of Science and

Technology (P.R. China) in 1997 and 2000 respectively.
His research interests include Advanced Manufacturing
Theory and System, Collaborative Information
System, Grid and Service Computing, and Software
Engineering. His main areas of expertise are the
developments of software and models to support
coordination and cooperation among humans, systems,
and components. He has authored or co-authored over
80 journal and conference papers in the above areas.

Shensheng Zhang

Dr Zhang is a full Professor
with the Department of
Computer Science and Tech-
nology at Shanghai Jiaotong
University (SJTU), China, and
the Vice Dean of the
Electronics and Information
School in Shanghai Jiao Tong
University. Shensheng Zhang
graduated from Department of
Mechanical Engineering of
Shanxi Mining Institute in

1982. He holds MS and PhD degrees from the

Distributed Design Process Coordination 309

Mechanical Engineering Department of Stanford
University during the period of 1983–1988.
Dr Zhang’s current research interests include
information integration, pervasive computing and
distributed virtual reality. He has published more than
200 papers in journals and conferences.

Jie Wang

Dr Wang received his BS
from Shanghai Jiao Tong
University, his MS from both
the University of Miami and
Stanford University, and his
PhD in engineering and
informatics from Stanford
University. He conducts
researches in decision making
and knowledge management
for enterprise sustainable
development and global com-

petitiveness, engineering and environmental informatics,
E-commerce, and E-government; IT as a modern tool
for business competitive strategy, he currently directs a
research program on knowledge management and
environmental informatics at Stanford University and

an executive training program, Stanford-China
Leadership for sustainable development and global
competitiveness, between Stanford and Development
Research Center of The State Council in China.

Minglu Li

Dr Li graduated from
the School of Electronic
Technology at the University
of Information Engineering
in 1985. He received his
PhD in Computer Software
from Shanghai Jiao Tong
University (SJTU) in 1996.
Dr Minglu Li is a full
Professor at the Department
of Computer Science and
Technology of SJTU. Now,

he is the Vice Dean of the Department of Computer
Science and Technology and the Director of the Grid
Computing Center. Currently, his research interest
includes Web services, grid computing, and multimedia
computing. He has published over 100 papers
in important academic journals and international
conferences.

310 J. CAO ET AL.

