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ABSTRACT: In this article, we develop a closed-form solution for a crack in
a magnetoelectroelastic strip of finite width, subjected to anti-plane mechanical and
in-plane electric and magnetic fields. Explicit expressions for the stresses, electric
and magnetic fields, together with their intensity factors are obtained for the two
extreme cases of an impermeable crack and a permeable crack. Solutions for some
special cases, such as a center crack, an edge crack, a semi-infinite medium, and
an infinite medium, are also obtained in closed-forms. The problem of two
symmetric and collinear cracks is also discussed. It is found that the electrically and
magnetically permeable conditions on the crack profile are important in obtaining
the correct crack tip electromagnetic filed intensity factors. The stress intensity
factor, however, does not depend on the crack electromagnetic boundary condition
assumptions.
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INTRODUCTION

L MATERIALS SUFFER damages when subjected to external loading
onditions (Aglan and Fateh, 2006; Alam and Jenkins, 2005; Bielski
, 2006; Lin et al., 2005; Lu et al., 2005; Voyadjis and Abu Al-Rub, 2006;
et al., 2006; Ye et al., 2006). This is also true for magnetoelectroelastic
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materials where the application of either a magnetic field or an electrical
field induces an electrical polarization as well as magnetization. That is, an
electric field can be induced by a magnetic field and vice versa.
Magnetoelectroelastic material has both theoretical and practical signifi-
cance in solid-state physics, biomechanical engineering, and smart materials
and devices. Defects are often unavoidable in such materials because of
their brittle property. Thus, in recent years, the study of magnetoelectro-
elastic materials with defects has received considerable interest. For
examples, two-dimensional (2D) Green functions for a magnetoelectro-
elastic anisotropic medium with an elliptical cavity or rigid inclusion
(Chung and Ting, 1995), Green’s functions for an elliptical cavity by taking
into account the electric–magnetic fields inside the cavity (Liu et al., 2001),
general solution of three-dimensional (3D) problems in magnetoelectro-
elastic media (Wang and Shen, 2002), the single and collinear permeable
crack problems using an elliptical-cavity-based approach and a crack-based
method (Gao et al., 2003a, b), closed-form expressions for the energy release
rate of an impermeable or permeable crack in a piezomagnetic/piezoelectric
solid (Wang and Mai, 2003, 2004), macrocrack–microcrack interaction
problem (Tian and Gabbert, 2005a), interface crack problem (Tian and
Gabbert, 2005b), moving crack problem (Hu and Li, 2005). Recently,
Gao et al. (2004) developed a Stroh-type formalism for the mode III
fracture mechanics of an elliptical cavity in an infinite magnetoelectroelastic
solid.

In many cases, solutions in closed-form are desired for accurate analysis
and design. Closed-form solutions for the crack tip fields are essential for
material scientists and engineers for the damage evaluation of the electro-
magnetoelastic materials. Owing to the mathematical complexity, certain
practical problems are only solved with recourse to numerical schemes, and
it is difficult to obtain their analytical solutions in closed-form. In this
article, a closed-form solution for a through mode-III crack in a magneto-
electroelastic strip is presented as follows: the ‘Description of the Problem’,
section gives basic governing equations for a linear magnetoelectroelastic
solid and the solution for anti-plane deformation. This solution is expressed
in Fourier transform form with some unknown variables. These unknown
variables are determined in the ‘Closed-form Solution’ section. The next
four sections give solutions, respectively, for electrically impermeable and
magnetically impermeable crack, electrically permeable and magnetically
impermeable crack, electrically impermeable and magnetically permeable
crack, electrically permeable and magnetically permeable crack. The ‘Some
Special Cases’ section provides solutions for some special cases, including
a center crack problem, edge crack problem and semi-infinite medium.
Finally, some conclusions are drawn in the last section.
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DESCRIPTION OF THE PROBLEM

Consider a magnetoelectroelastic strip occupying 0� x� h, �1<y<1,
�1<z<1, with a through Griffith crack of length 2a located at the
y¼ 0 plane, as shown in Figure 1. Here Cartesian coordinates x, y, z are
the principal axes of the material symmetry while the z-axis is oriented in
the poling direction of the magnetoelectroelastic layer. From the viewpoint
of applications, anti-plane crack problems often provide a useful analog
to the more interesting in-plane fracture problems. In this study, we
consider the following anti-plane mechanical and in plane electromagnetic
loads:

�yz x,�1ð Þ ¼ �0, Dy x,�1ð Þ ¼ D0, By x,�1ð Þ ¼ B0, ð1Þ

in which the subscript 0 represents the prescribed values. The governing
equations for the magnetoelectroelastic medium whose poling direction is
perpendicular to the x–y plane are (Wang and Mai, 2004):

c

x

y

r 
θ

τ0, D0, B0

τ0, D0, B0

h

d

Figure 1. Geometry and coordinate of a crack vertical to the boundary of a magneto-
electroelastic strip (crack length 2a¼d� c; for center crack problem, c¼h�d; for edge
crack problem, d¼h, c>0; for semi-infinite medium, h ! 1 and c and d are finite).
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. Constitutive equations:
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and

. equilibrium equations (in the absence of body forces, distributed electric
charges, and distributed magnetic source):

c44r
2wþ e15r

2�þ h15r
2’ ¼ 0, ð3aÞ

e15r
2w� �11r

2�� �11r
2’ ¼ 0, ð3bÞ

h15r
2w� �11r

2�� �11r
2’ ¼ 0: ð3cÞ

In Equations (2) and (3), w is the anti-plane mechanical deformation;
� and ’ are the electric potential and magnetic potential, respectively;
�ij, Di, and Bi are components of stress, electrical displacement,
and magnetic induction, respectively; c44, e15, h15 and �11 are elastic,
piezoelectric, piezomagnetic, and electromagnetic constants, respectively;
and �11 and �11 are dielectric permeability and magnetic permeability,
respectively.

Due to symmetry of the problem, there are additional elastic, electric, and
magnetic continuity conditions along the crack line:

w x, 0ð Þ ¼ 0, � x, 0ð Þ ¼ 0, ’ x, 0ð Þ ¼ 0, x =2 ðc, d Þ, ð4Þ

In solving the crack problem, the crack surfaces are usually stress
free. However, since the medium inside the crack (usually air or vacuum)
allows some penetration of the electric and magnetic fields, the electric
and magnetic field inside the crack may not be zero. Suppose the
normal components of electric displacement and magnetic induction
inside the crack are d0 and b0, respectively, then on the crack surface
we have:

�yz x, 0ð Þ ¼ 0, Dy x, 0ð Þ ¼ d0, By x, 0ð Þ ¼ b0, x 2 ðc, d Þ: ð5Þ

The quantities d0 and b0 are unknown and will be determined later.
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Due to symmetry, it suffices to analyze the upper-half portion of the strip,
i.e., 0� x� h, y� 0. The magnetoelectroelastic field in the lower portion
of the strip can be directly obtained by symmetry consideration. Analogous
to the solution for elastic materials (Li, 2003), it is can be shown that
an appropriate solution of Equation (3), in connection with Equation (2),
can be expressed as the following series:

wðx,yÞ
�ðx,yÞ
’ðx,yÞ

8<
:

9=
;¼

X1
n¼1

expð�2nbyÞ cosð2nbxÞ
An

Bn

Cn

8<
:

9=
;þ

w0

�0

’0

8<
:

9=
;y, 0� x� h, y� 0,

ð6Þ

where b¼�/2h and (An,Bn,Cn) are unknown functions to be determined
from the prescribed conditions Equations (4) and (5) on the cracked plane.
The quantities w0, �0, and ’0 are determined from the far-field conditions in
Equation (1):

w0

�0

’0

8<
:

9=
; ¼

c44 e15 h15
e15 ��11 ��11

h15 ��11 ��11

2
4

3
5 �0

D0

B0

8<
:

9=
;, ð7Þ

where

c44 e15 h15
e15 ��11 ��11

h15 ��11 ��11

2
4

3
5 ¼

c44 e15 h15
e15 ��11 ��11
h15 ��11 ��11

2
4

3
5

�1

: ð8Þ

Equation (6) satisfies the free boundary conditions on the x¼ 0 and x¼ h
planes, that is �xz(0, y)¼ 0, Dx(0, y)¼ 0, Bx(0, y)¼ 0, �xz(h, y)¼ 0,
Dx(h, y)¼ 0, Bx(h, y)¼ 0.

From the constitutive Equations (2), the stresses, electric displacements,
and magnetic inductions can be expressed in terms of An, Bn, and Cn.
For example, we have

�yzðx, yÞ

Dyðx, yÞ

Byðx, yÞ

8><
>:
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8><
>:
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>;� 2b
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2
64

3
75
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>:
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>;, ð9Þ
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In which the unknowns An, Bn, and Cn will be determined from the mixed
mode boundary conditions on the cracked plane in the following section.

CLOSED-FORM SOLUTION

In view of Equations (6) and (9), using the boundary conditions,
Equations (4) and (5) yield simultaneous triple series equations for An, Bn,
and Cn,

X1
n¼1

cosð2nbxÞ

An

Bn

Cn

8><
>:

9>=
>;¼ 0, x=2ðc,d Þ, ð10Þ

X1
n¼1

ncosð2nbxÞ

An

Bn

Cn

8><
>:

9>=
>;¼

1

2b

c44 e15 h15
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2
64

3
75

�0

D0 � d0
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>:

9>=
>;, x 2 ðc,d Þ: ð11Þ

If we define the generalized screw dislocation density factions w(x), �ðxÞ,
and ’(x):

wðxÞ ¼
@wðx, 0Þ

@x
, �ðxÞ ¼

@�ðx, 0Þ

@x
, ’ðxÞ ¼

@’ðx, 0Þ

@x
, ð12Þ

then An, Bn, and Cn can be expressed as:
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:
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; ¼ �
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nbh

Z d

c

sinð2nbsÞ
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:
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Substituting Equation (13) into Equation (11), a system of singular integral
equations for w(x), �ðxÞ, and ’(x) is obtained as

1

h

Z d

c

sinð2bsÞ

cosð2bsÞ � cosð2bxÞ

wðsÞ

�ðsÞ

’ðsÞ
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>:
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>;,

x 2 ðc, d Þ ð14Þ

In obtaining Equation (14), the following identity has been used:

X1
n¼1

2

n
cosðn#Þ cosðn�Þ ¼ � ln 2 cosð#Þ � cosð�Þ

�� ��� �
: ð15Þ
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In what follows, we define the symbols:

s1 ¼ cosð2bsÞ, x1 ¼ cosð2bxÞ, c1 ¼ cosð2bcÞ, d1 ¼ cosð2bd Þ: ð16Þ

Using Equation (16), Equation (14) can be rewritten as:

1

�

Z c1

d1

1

s1 � x1

w1ðs1Þ

�1ðs1Þ

’1ðs1Þ

8>><
>>:

9>>=
>>;ds1 ¼

c44 e15 h15

e15 ��11 ��11

h15 ��11 ��11

2
664

3
775

�0

D0 � d0

B0 � b0

8>><
>>:

9>>=
>>;, x12ðd1, c1Þ,

ð17Þ

in which the notations w1ðs1Þ ¼ wðsÞ, �1ðs1Þ ¼ �ðsÞ, ’1ðs1Þ ¼ ’ðsÞ have been
adopted. Equation (17) is a system of singular integral equations with
Cauchy kernel. By using the techniques described in Muskhelisvili (1953),
the solution of Equation (17) is found to be:

w1ðs1Þ
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2
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s
�
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p fCg,
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where {C} is a constant column of three elements, which can be determined
for the problem under consideration by requiring that

Z d

c

wðsÞ

�ðsÞ

’ðsÞ

8>><
>>:

9>>=
>>; ds ¼ 0: ð19Þ

Following the methods of Li (2003) and after some manipulations, we get
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with

	 ¼
�ð
, kÞ

KðkÞ
, ð21Þ

where K(k) and �(
, k) are the complete elliptical integrals of the first and
third kinds, respectively, viz

KðkÞ ¼

Z �=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2ð�Þ

q d�,

�ð
, kÞ ¼

Z �=2

0

1

½1þ 
 sin2ð�Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2ð�Þ

q d�,

ð22Þ

with

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ðbd Þ � tan2ðbcÞ

p
tanðbd Þ

, 
 ¼
tan2ðbcÞ � tan2ðbd Þ

sec2ðbd Þ
: ð23Þ

Now substituting Equation (20) into Equation (13), then into
Equation (9), we obtain the explicit expressions for the anti-plane shear
stress, in-plane electric displacement, and magnetic induction along the
crack line in terms of the original variables. The results are very complicated
functions of x. Near the crack tips these quantities are:

�yzðx,0Þ

Dyðx,0Þ

Byðx,0Þ

8>><
>>:
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>>;¼

�0

D0�d0
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p cosðbdÞ
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,

ð24aÞ

for x ! c� 0, and

�yzðx,0Þ

Dyðx,0Þ

Byðx,0Þ

8>><
>>:

9>>=
>>;¼

�0

D0�d0

B0�b0

8>><
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	 sec2ðbxÞ� sec2ðbdÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½tan2ðbxÞ� tan2ðbcÞ�½tan2ðbxÞ� tan2ðbcÞ�

p cosðbdÞ

cosðbdÞ
,

ð24bÞ

for x! dþ 0. As expected, these quantities exhibit the usual square-root
singularity near the crack tip.
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The displacement w(x, 0), electric potential �(x, 0), and magnetic potential
’(x, 0) on the upper surface of the crack can be obtained in closed form as
well. With the solution of Equation (20), integrating according to the original
variables between the limits c and d (c� x� d ) yields the following:

wðx, 0Þ

�ðx, 0Þ

’ðx, 0Þ

8>><
>>:

9>>=
>>; ¼

2h

�

c44 e15 h15

e15 ��11 ��11

h15 ��11 ��11

2
664

3
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�0
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>>:
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>>;

�
cosðbd Þ

tanðbd Þ cosðbcÞ
½	Fð$, kÞ ��ð$, 
, kÞ�, ð25Þ

where Fð$, kÞ and �ð$, 
, kÞ are the incomplete elliptical integrals of the
first and the third kinds, respectively, with

$ ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ðbd Þ � tan2ðbxÞ

tan2ðbd Þ � tan2ðbcÞ

s0
@

1
A, ð26Þ

and k and 
 being given in Equation (23).
Of particular interest is the crack tip field from the viewpoint of the

fracture mechanics. It is desirable to determine the intensity factors of
the magnetoelectroelastic field at the crack tip. From the definitions of the
mode-III stress intensity factor KIII, the electric displacement intensity
factor KD, and the magnetic induction intensity factor KB:

KIIIðcÞ

KDðcÞ

KBðcÞ

8><
>:
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p
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>:
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>;
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2�ðx� d Þ

p
ð27Þ

we arrive at

KIIIðxÞ

KDðxÞ

KBðxÞ

8<
:

9=
; ¼

�0

D0 � d0

B0 � b0

8<
:

9=
;fx, x ¼ c or d, ð28Þ
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in which the functions fc and fd are solely determined from the geometry of
the medium:

fcðc, d, hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h tan

�c

2h

� �r
cos2 �c=2hð Þ � 	 cos2 �d=2hð Þ

sin �c=2hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 �c=2hð Þ � cos2 �d=2hð Þ

p , ð29aÞ

fdðc, d, hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h cot

�d

2h

� �s
cos �d=2hð Þ½	� 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 �c=2hð Þ � cos2 �d=2hð Þ
p : ð29bÞ

The angular distributions of the stresses, electric displacements and
magnetic inductions near the crack tip are related to the field intensity
factors through (Wang and Mai, 2004):

�xz ¼ �
KIIIffiffiffiffiffiffiffiffi
2�r

p sin
�

2
, �yz ¼

KIIIffiffiffiffiffiffiffiffi
2�r

p cos
�

2
, ð30aÞ

Dx ¼ �
KDffiffiffiffiffiffiffiffi
2�r

p sin
�

2
, Dy ¼

KDffiffiffiffiffiffiffiffi
2�r

p cos
�

2
, ð30bÞ

Bx ¼ �
KBffiffiffiffiffiffiffiffi
2�r

p sin
�

2
, By ¼

KBffiffiffiffiffiffiffiffi
2�r

p cos
�

2
, ð30cÞ

in which r and � are shown in Figure 1. The energy release rate can be
obtained from the virtual crack closure integral (Wang and Mai, 2004):

G ¼ lim
�!0

1

�

Z �

0

�yzðxþ a, 0Þwðxþ a� �, 0Þ
	
þDyðxþ a, 0Þ�ðxþ a� �, 0Þ

þ Byðxþ a, 0Þ’ðxþ a� �, 0Þ


dx: ð31Þ

From Equations (25) and (29), an expression relating G to (KIII,KD,KB) can
be obtained:

G ¼
1

2
ðKIII,KD,KBÞ

c44 e15 h15
e15 ��11 ��11

h15 ��11 ��11

0
@

1
A

�1
KIII

KD

KB

8<
:

9=
;: ð32Þ

It can be seen from Equation (28) that the stress intensity factor KIII

does not depend on the material properties and is the same as the elastic
materials given by Li (2003). KIII is solely determined by the geometry of the
problem.
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Now, the crack tip field intensity factors, the angular distributions of
the stresses, electric displacements and magnetic inductions, as well as the
energy release rate, have been obtained analytically in terms of the applied
(�0,D0,B0) at the far-field and (d0, b0) on the crack faces. Since (d0, b0)
remains unknown, additional assumptions are needed to obtain the full
solution. It is well known that in piezoelectric fracture, the electrically
impermeable and permeable crack assumptions are usually adopted.
Analogously, the crack can be assumed to be magnetically impermeable
or permeable in magnetoelectroelastic fracture. In the next four sections,
the electrically impermeable and magnetically impermeable crack, the
electrically permeable and magnetically impermeable crack, the electrically
impermeable and magnetically permeable crack, the electrically permeable
and magnetically permeable crack assumptions will be investigated
separately. In these sections, the crack is assumed to be a very thin notch
of infinitesimal height.

THE ELECTRICALLY IMPERMEABLE AND

MAGNETICALLY IMPERMEABLE CRACK ASSUMPTION

(FULLY IMPERMEABLE CRACK)

For such an assumption, the crack is absolutely insulated to electric and
magnetic fields. Hence, the normal components of the electric displacement
vector and the magnetic induction vector vanish everywhere inside the
crack, that is, d0¼ 0 and b0¼ 0. Then the field intensity factors can be
obtained directly from Equation (28) as follows:

KIIIðcÞ

KDðcÞ

KBðcÞ

8><
>:

9>=
>; ¼

�0

D0

B0

8><
>:

9>=
>;fc,

KIIIðd Þ

KDðd Þ

KBðd Þ

8><
>:

9>=
>; ¼

�0

D0

B0

8><
>:

9>=
>;fd: ð33Þ

Solutions near the crack tip and the energy release rate are obtained from
Equations (30) and (32) with the substitution of Equation (33). It is clear
that for an electrically and magnetically impermeable crack, the material
properties do not enter into the field intensity factors.

THE ELECTRICALLY PERMEABLE AND MAGNETICALLY

IMPERMEABLE CRACK ASSUMPTION

For such an assumption, the upper and lower surfaces of the crack are
electrically contacted but magnetically insulated. Hence, the electric
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potential �(x, 0) and the normal component of the magnetic induction
vector b0 vanish everywhere inside the crack, i.e., �(x)¼ 0 and b0¼ 0.
Therefore, the electric displacement inside the crack d0 can be obtained from
Equation (25) giving:

d0 ¼ D0 �
e15
�11

�0 þ
�11

�11
B0: ð34Þ

Substituting Equation (34) into Equation (28) yields the field intensity
factors:

KIIIðcÞ

KBðcÞ

( )
¼

�0

B0

( )
fc,

KIIIðd Þ

KBðd Þ

( )
¼

�0

B0

( )
fd, ð35Þ

KD ¼
e15
�11

KIII �
�11

�11
KB

� �

¼
e15�11 � �11h15

c44�11 þ h215
KIII þ

c44�11 þ e15h15

c44�11 þ h215
KB: ð36Þ

Solutions near the crack tip and the energy release rate are obtained from
Equations (30) and (32) with the substitution of Equations (35) and (36).
From Equation (36) we known that the electric displacement intensity factor
and the energy release rate for the electrically permeable and magnetically
impermeable crack can be expressed in terms of the applied stress and
magnetic induction intensity factors.

THE ELECTRICALLY IMPERMEABLE AND MAGNETICALLY

PERMEABLE CRACK ASSUMPTION

For such an assumption, the upper and lower surfaces of the crack are
magnetically contacted but electrically insulated. Hence, the magnetic
potential ’(x, 0) and the normal component of the electric displacement
vector d0 vanish everywhere inside the crack, i.e., ’(x)¼ 0 and d0¼ 0.
Therefore, the magnetic induction inside the crack b0 can be obtained from
Equation (25) giving:

b0 ¼ B0 �
h15
�11

�0 þ
�11
�11

D0: ð37Þ
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Substitution of Equation (37) into Equation (28) yields the field intensity
factors:

KIIIðcÞ

KDðcÞ

� �
¼

�0

D0

� �
fc,

KIIIðd Þ

KDðd Þ

� �
¼

�0

D0

� �
fd, ð38Þ

KB ¼
h15
�11

KIII �
�11
�11

KD

� �

¼
h15�11 � �11e15

c44�11 þ e215
KIII þ

c44�11 þ e15h15

c44�11 þ e215
KD: ð39Þ

Solutions near the crack tip and the energy release rate are obtained from
Equations (30) and (32) with the substitution of Equations (38) and (39).
It can be shown from Equation (39) that the magnetic induction intensity
factor and the energy release rate for the electrically impermeable and
magnetically permeable crack can be expressed in terms of the applied stress
and electric displacement intensity factors.

THE ELECTRICALLY PERMEABLE AND

MAGNETICALLY PERMEABLE CRACK ASSUMPTION

(FULLY PERMEABLE CRACK)

For such an assumption, the upper and lower surfaces of the crack are
electrically and magnetically contacted. Hence, the electric potential �(x, 0)
and the magnetic potential ’(x, 0) vanish everywhere on the crack faces,
i.e., �(x)¼ 0 and ’(x)¼ 0. Therefore, the electric displacement and the
magnetic induction inside the crack d0 and b0 can be obtained from
Equation (25). As a result, we obtain

d0 ¼ D0 �
e15
c44

�0, b0 ¼ B0 �
h15
c44

�0, ð40Þ

It then follows from Equation (28) that

KIIIðcÞ ¼ �0 fc, KIIIðd Þ ¼ �0 fd, ð41Þ

KD ¼
e15
c44

KIII, KB ¼
h15
c44

KIII: ð42Þ

Solutions near the crack tip and the energy release rate are obtained from
Equations (30) and (32) with the substitution of Equations (41) and (42).
It is clear that for an electrically permeable and magnetically permeable
crack assumption, the crack tip field intensity factors and the energy release
rate are solely determined in terms of the applied stress intensity factor.
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SOME SPECIAL CASES

The closed-form expressions are given for a crack in a magnetoelectro-
elastic strip of finite width. It is possible to obtain the solutions for some
special cases. We discuss this below.

A Central Crack Normal to the Strip Boundaries

In this case, the constant c in the above expressions should be chosen
such that c¼ h� d, which gives 	¼ 1/[1-sin(�a/h)], where a¼ (h� 2c)/2 is
the half crack length. As a result, the functions fc and fd reduce to

fc ¼ fd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h tan

�a

h

� �r
: ð43Þ

Solutions for the crack tips (x¼ c and x¼ d ) are returned by replacing the
quantities fc and fd in the five previous sections with Equation (43).

One Crack Tip Approaches the Strip Boundary

For this case, we consider d! h, c>0. The function fc in this case
reduces to

fc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h cot

�c

2h

� �r
, ð44Þ

Solutions for the inner crack tip (x¼ c) are returned by replacing the
quantity fc in the previous five main sections with Equation (44). Note that
this solution is for d! h so that the crack tip at x¼ d is still closed
(connected). For the case of d¼ h the crack is edged and is discussed below.

An Edge Crack Normal to the Strip Boundaries

For an edge crack, we let d¼ h, and replace c with h�c>0 (Figure 2(a)).
From symmetry consideration, it is clear that the problem of an edge
crack of length c shown in Figure 2(a) is equivalent to the center crack of
half-length c shown in Figure 2(b). The function fc in this case can be
obtained from the solution in the ‘A Central Crack Normal to the Strip
Boundaries’ section. The result is

fc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h tan

�c

2h

� �r
: ð45Þ
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Therefore, solutions for the inner tip of the edge crack (x¼ c) shown in
Figure 2(a) are returned by replacing the quantity fc in the five previous
main sections with Equation (45). Different from in the case of the ‘One
Crack Tip Approaches the Strip Boundary’ section, the crack tip x¼ d (or
x¼ h) is disconnected for the present edge crack problem.

Semi-infinite Medium

A mode-III crack in a semi-infinite medium can be taken as the limiting
case of the present study as h ! 1. In fact, by employing relations among
the elliptical integrals of the first, the second, and the third kind, and setting
h ! 1, a direct evaluation from Equations (29) leads to:

fcðc, d, hÞ ¼
ffiffiffiffiffi
�c

p �� ðc=d Þ2

ðc=d Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=d Þ2

q , ð46aÞ

fdðc, d, hÞ ¼
ffiffiffiffiffiffi
�d

p 1� �

ðc=d Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=d Þ2

q , ð46bÞ

Figure 2. Equivalence of the edge crack problem (a) and the center crack problem (b).
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where

� ¼

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=d Þ2

q� �

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=d Þ2

q� � , ð47Þ

in which E and K are the complete elliptical integrals of the first, and the
second kind, respectively.

CONCLUSIONS

Exact and fundamental solution has been obtained in closed-form for
a crack in a magnetoelectroelastic strip of finite width. Expressions for the
crack tip field intensity factors, the electromagnetic fields inside the crack
are given. The electrically and magnetically impermeable and permeable
crack assumptions are investigated. This article is an extension of the work
by Li (2003), which considered the pure elasticity materials. The work
of Gao et al. (2004) also gave the solution to the magnetoelectroelastic effect
but only the solution for infinite media are obtained.

It is found that applications of electric and magnetic fields do not change
the stress intensity factors. The values of the stress intensity factor are
identical for any kind of crack electric and magnetic boundary condition
assumptions (i.e., the crack face electric and magnetic boundary conditions
have no effect on the stress intensity factor). The result of the stress intensity
factor for magnetoelectroelastic materials is the same as the solution for the
elastic materials given by Li (2003).

Although the analysis is restricted to the single crack problem, the
solution for two symmetric collinear cracks (Figure 3) can be obtained
directly from symmetry consideration. Obviously, the x� 0 part of Figure 3
has the same solution as that of Figure 1. Further closed-form expressions
for two collinear cracks whose outer tips approach the boundaries of the
magnetoelectroelastic strip are the same as those for the single crack
problem given in the ‘One Crack Tip Approaches the Strip Boundary’
section, closed-form expressions for two collinear edge mode-III cracks
of equal length h–c and separated each other by a distance 2c in a
magnetoelectroelastic strip are the same as those for the single edge crack in
a strip given in the ‘An Edge Crack Normal to the Strip Boundaries’ section.
Closed-form expressions for two collinear mode-III cracks of equal length
d–c and separated from each other by a distance 2c in an infinite
magnetoelectroelastic medium are the same as those for the single crack in
the semi-infinite medium given in the ‘Semi-Infinite Medium’ section.
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Figure 3. Two collinear cracks symmetrically located in a magnetoelectroelastic strip (crack
length 2a¼d� c; for two collinear edge cracks, d¼ h, c>0; for infinite medium with two
collinear cracks, h ! 1 and c and d are finite. Because of symmetry, the solution for two
collinear cracks for d ! h and for d¼ h are the same as that for d ! h and for d¼h for one
single edge crack in Figure 1, and the solution for two collinear cracks in the infinite medium
is the same as one single crack in a semi-infinite medium (in Figure 1 for h ! 1).

Exact and Fundamental Solution for an Anti-plane Crack 93
REFERENCES

Aglan, H.A. and Fateh, M. (2006). Fatigue Damage Tolerance of Bainitic and Pearlitic Rail
Steels, International Journal of Damage Mechanics, 15(4): 393–410.

Alam, M.S. and Jenkins, C.H. (2005). Damage Tolerance in Naturally Compliant Structures,
International Journal of Damage Mechanics, 14(4): 365–384.



94 B. L. WANG AND Y.-W. MAI
Bielski, J., Skrzypek, J.J. and Kuna-Ciskal, H. (2006). Implementation of a Model of Coupled
Elastic-plastic Unilateral Damage Material to Finite Element Code, International Journal
of Damage Mechanics, 15(1): 5–39.

Chung, M.Y. and Ting, T.C.T. (1995). The Green Function for a Piezoelectric Piezomagnetic
Anisotropic Elastic Medium with an Elliptic Hole or Rigid Inclusion, Philos. Mag. Let.,
72(6): 405–410.

Hu, K.Q. and Li, G.Q. (2005). Constant Moving Crack in a Magnetoelectroelastic Material
under Anti-plane Shear Loading, International Journal of Solids and Structures, 42(9–10):
2823–2835.

Gao, C.F., Kessler, H. and Balke, H. (2003a). Crack Problems in Magnetoelectroelastic Solids.
Part I: Exact Solution of a Crack, Inter. J. Eng. Sci., 41(9): 969–981.

Gao, C.F., Kessler, H. and Balke, H. (2003b). Crack Problems in Magnetoelectroelastic Solids.
Part II: General Solution of Collinear Cracks, Int. J. Eng. Sci., 41(9): 983–994.

Gao, C.F., Tong, P. and Zhang, T.Y. (2004). Fracture Mechanics for a Mode III Crack
in a Magnetoelectroelastic Solid, International Journal of Solids and Structures, 41(24–25):
6613–6629.

Li, X.F. (2003). Closed-form Solution for Two Collinear Mode-III Cracks in an Orthotropic
Elastic Strip of Finite Width, Mechanics Research Communications, 30(4): 365–370.

Lin, J., Liu, Y. and Dean T.A. (2005). A Review on Damage Mechanisms, Models and
Calibration Methods under Various Deformation Conditions, International Journal of
Damage Mechanics, 14(4): 299–319.

Liu, J.X., Liu, X.L. and Zhao, Y.B. (2001). Green’s Functions for Anisotropic Magnetoelectro-
elastic Solids with an Elliptical Cavity or a Crack, Inter. J. Eng. Sci., 39(12): 1405–1418.

Lu, J., Zhang, X. and Mai, Y.W. (2005). A Preliminary Study on Damage Wave in Elastic-
Brittle Materials, International Journal of Damage Mechanics, 14(2): 127–147.

Muskhelisvili, N.I. (1953). Singular Integral Equations, Noordhoff, Groningen.

Tian, W.Y. and Gabbert, U. (2005a). Macrocrack-microcrack Interaction Problem in
Magnetoelectroelastic Solids, Mechanics of Materials, 37(5): 565–592.

Tian, W.Y. and Gabbert, U. (2005b). Parallel Crack Near the Interface of
Magnetoelectroelastic Bimaterials, Computational Materials Science, 32(3–4): 562–567.

Voyadjis, G.Z. and Abu Al-Rub, R.K. (2006). A Finite Strain Plastic-damage Model for High
Velocity Impacts using Combined Viscosity and Gradient Localization Limiters: Part II -
Numerical Aspects and Simulations, International Journal of Damage Mechanics, 15(4):
335–373.

Wang, B.L. and Mai, Y.W. (2003). Crack Tip. eld in Piezoelectric/Piezomagnetic Media, Euro.
J. Mech. A/Solids, 22(4): 591–602.

Wang, B.L. and Mai, Y.W. (2004). Fracture of Piezoelectromagnetic Materials, Mechanics
Research Communications, 31(1): 65–73.

Wang, X. and Shen, Y.P. (2002). The General Solution of Three-dimensional Problems in
Magnetoelectroelastic Media, Inter. J. Eng. Sci., 40(10): 1069–1080.

Wei, Y., Chow, C.L., Vianco, P., et al. (2006). Isothermal Fatigue Damage Model for Lead-free
Solder, International Journal of Damage Mechanics, 15(2): 109–119.

Ye, H., Basaran, C. and Hopkins, D.C. (2006). Experimental Damage Mechanics of Micro/
power Electronics Solder Joints under Electric Current Stresses, International Journal of
Damage Mechanics, 15(1): 41–67.


