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ABSTRACT: The statistical damage model presented by the authors in the previous
article of this series is used to formulate analytical constitutive relations for the
hardening and softening phases of two-dimensional lattices. An alternative approach
to the classical damage parameter approach is presented here. A semi-empirical
model based on extreme value theory (EVT) is offered.
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INTRODUCTION

Damage Tolerance Principles

M
ANY ENGINEERING SOLID materials, such as polycrystalline ceramics,
metals, and alloys have random microstructure. A microstructure

containing many randomly distributed microcracks is initially statistically
homogeneous but becomes heterogeneous due to the propagation and
clustering of microcracks when a macrocrack forms close to failure. In
(Krajcinovic and Rinaldi, 2005a; Rinaldi, et al. 2005), the authors propose
constitutive relations obtained from a simple discrete statistical model
and discuss the homogeneous to heterogeneous phase transition using
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the analytical tools of statistical mechanics, thermodynamics, and fractal
geometry. The threshold of failure depends on the size of the structure and
the transformations of the microstructure. The limit states design is driven
by crack growth but also by the changes in the microstructure in the
heterogeneous phase. The base of structural design and maintenance
principles in Boeing Commercial Airplane Group, USA, is the ‘damage
tolerance principles’ (Goranson, 1993), which is focused on two structural
design objectives: damage tolerance and durability. The former is the ‘ability
of the structure to sustain anticipated loads in the presence of fatigue,
corrosion or accidental damage until such damage is detected through
inspections or malfunctions and repaired’ (Goranson, 1993). The latter is the
‘ability of the structure to sustain degradation from such sources as fatigue,
accidental damage, and environmental deterioration to the extent that they
can be controlled by economically acceptable maintenance and inspection
programs’ (Goranson, 1993).

Damage tolerance is comprised of three elements of importance for
achieving the desired level of safety. The first element is the determination
of the residual strength or maximum allowable damage (including multiple
secondary cracks) that the structure can sustain under regulatory fail-safe
load conditions. The second element is the crack growth, defined as the
interval of damage progression from lengths with negligible probability of
failure to an allowable size determined by the residual strength. Finally,
a damage detection strategy (inspection program) must be adopted. The
sequence of inspections in a fleet of airplanes requires methods and intervals
selected to achieve timely damage detection.

Figure 1 (adopted from (Goranson, 1993)), shows typical experimental
data from both full-scale crack growth testing (600 tests on two different
wing-panels of width 200 and 2300mm) and linear elastic fracture mechanics
(LEFM). The crack length is normalized to the LEFM limit Ly, and the
strengths are normalized to the maximum strength of a pristine undamaged
panel. The maximum allowable damage (i.e., the minimum normalized
strength) and the corresponding maximum defect length are assigned on
such graphs in compliance with a ‘fail-safe’ strategy. Nevertheless, the choice
of the tolerable damage is largely based on experience and on the probability
of detection (POD) from visual inspections. Full-scale tests are necessary
to assess the effect of the structural size on the damage tolerance, but
Goranson (1993) recognizes the ‘impossibility’ of conducting full-size
fracture and fatigue tests to obtain the data in Figure 1 for all
components: ‘The emphasis on residual strength verification has gradually
shifted in recent years from wing structures to fuselage pressure shells’
because ‘the extended use of jet transport structures raised concerns about
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multiple site damage in fuselage structures’ (Goranson, 1993), which lead to
expensive full-scale tests (of the order of millions of dollars) with large
pressure test fixtures. Unfortunately, LEFM is not always applied to
multiple-site cracking and diffuse damage, which is nowadays still managed
in a purely empirical manner. In conclusion, there is an urge to formulate
more reliable multiscale analytical models that account for the structural
size effect and that can be used for data extrapolation. The capability of
estimating the POD a priori from such models is likely to have a deep impact
on the fail-safe strategy.

Goranson’s ‘damage tolerance principles’ expresses concern about the
‘lack of interest’ in the scientific community to characterize and quantify the
probability of detection. The uniaxial tensile response of two-dimensional
disordered spring networks (lattices) is analyzed here. The time-independent
damage model (Kachanov, 1958) �� ¼ �E 0ð1� �DÞ �", relating the macrostress ��
and the macrostrain �" through the damage parameter �D, was formulated in
(Krajcinovic and Rinaldi, 2005a; Rinaldi, et al., 2005). As an alternative
to such a constitutive relation based on the damage parameter, this article
proposes a semi-empirical constitutive model extracted from numerical data

Figure 1. Sample data of crack growth experiments on wing panels used at Boeing Co.
(Rinaldi et al., 2005).
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on the basis of the extreme value theory (EVT). This approach allows
scaling the relevant statistics across different lattice sizes.

LATTICE SIMULATIONS AND NUMERICAL DATA

On the microscale, a polycrystalline material in two-dimensional space
is similar to a random Voronoi/Delaunay graph (Krajcinovic and Rinaldi,
2005a, b). A Voronoi polygon represents a grain whereas one bond in the
Delaunay lattices is representative of a grain boundary. Damage evolution is
a stochastic process dependent on the disorder of the microstructure. The
lattice is geometrically disordered since the equilibrium distances between
particles are normally distributed within the range �l �� � � � ð2� �lÞ �� with
�l ¼ 0:1 (if �l ¼ 1, all grains are perfect hexagons). Damage is introduced in
the network by the rupturing of the links, which represent intergranular
microcrack formation. The links are linear elastic springs with finite random
tensile strength and have the same stiffness k. If the critical tensile strain "cr
is reached, permanent rupture occurs and the spring turns into a contact
element. The tensile stiffness becomes zero and the link cannot any longer
carry tensile forces. Broken springs remain active in compression if load
reversal occurs in the course of deformation to account for crack closure.
The values "cr are randomly sampled from a uniform distribution starting at
zero. This lattice model considers intergranular microcracks only, which is a
reasonable approximation for many ceramics (Davidge, 1979). Since the
resolution length of the model is equal to the grain facet, the rupture, i.e., the
growth of a microcrack from the initial length to the length of the grain
boundary facet, is assumed to be instantaneous.

Quasi-static uniaxial tensile tests are simulated in displacement-controlled
conditions on different lattice sizes (Figure 2(a)). The molecular dynamics
solver based on the Verlet’s algorithm (Krajcinovic and Rinaldi, 2005b;
Mastilovic and Krajcinovic, 1999) was adopted. Each simulation is
carried incrementally up to the threshold of failure by applying small
displacement steps and by computing the equilibrium configuration at
each step. The damage process is tracked during the deformation by
recording the number of broken bonds, n. The macroscopic data scatter of
the �F versus �u and n versus �u curves (within size variability) indicates that
�Fð �u, LÞ is a random variable at any given �u in the softening phase (Figure
2(c) and (d)). The average �F versus �u and n versus �u curves from the 10
replicates per size N¼ (24, 48, 96, 192) were used for the scaling procedure in
(Krajcinovic and Rinaldi, 2005a), with N being the number of grains per
lattice side. The original dataset is expanded here to enhance the accuracy,
robustness, and precision of the regression analysis. Intermediate lattice sizes
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N¼ (72, 120) are added and more than 10 runs are collected for smaller
lattices. The simulation data are summarized in Table 1, for a total of more
than 200 simulations.

Figure 2(b) shows the damage evolution and demonstrates that damage
localization and reduced rupturing rate characterize the (homogeneous–
heterogeneous) transition, i.e., the transition from damage nucleation to
damage propagation. Figure 3 shows the damage distribution in a lattice
with N¼ 192 at the threshold of failure. Diffuse uncorrelated damage from
damage nucleation and macrocrack from damage localization are both
evident. The evolution of the macrocrack can provide the ‘crack growth’
defined as ‘the interval of damage progression from the length below in
which there is negligible POD to an allowable size determined by residual
strength requirements’ (Goranson, 1993). The large variety of macrocrack
patterns observed after damage localization are responsible for the broad
data scatter in the softening phase (Figure 2(c) and (d)). The macrocrack
that forms at the threshold of failure is the minimum growth resistance
pattern and is random. The crack(s) tends to be more or less straight and
orthogonal to the tensile direction, depending on the presence of local

Figure 3. Damage distribution with macrocrack at the threshold of failure for N¼ 192.

Table 1. Number of runs per lattice size from MD simulations.

Size N 24 48 72 96 120 192

Replicates 100 34 30 25 20 13
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energy ‘barriers,’ e.g., high-strength links close the propagating tips or
shielding effects. Some failure patterns are shown in Figure 4.

PROBABILISTIC APPROACH: EXTREME VALUE THEORY

In the remaining part of the article an alternative empirical model is
developed based on EVT, which deals with the application of the statistics
of extremes. Gumbel (Gumbel, 1985) established EVT as a powerful
mathematical tool used in engineering areas, such as structural engineering,
ocean engineering, pollution and environmental engineering, highway
design, electrical engineering, and strength of materials (Castillo, 1988).
Extreme value theory (EVT) is a part of the more general theory of the
‘order statistics’.

By assuming x to be a random variable from a given population, f(x) and
F(x) are the associated probability density function ( pdf ) and the
cumulative distribution function (cdf ), respectively. Also, assume that
(X1,X2, . . . ,Xn) is a random sample of size n from such a population and
rearrange the observations in increasing order (X1 : n,X2 : n, . . . ,Xn : n), with
X1 : n�X2 : n� � � � �Xn : n. The r-th order statistic is defined as the member
Xr : n of the ordered collection of size n. Depending on the application, one or
more order statistics can critically affect functionality, performances, or
integrity of a complex system, and the statistical properties of Xr : n drive
design and maintenance activities. For example, if k waves of a height
greater than a threshold h lead to failure of a breakwater barrier, the
distribution of the (n� kþ 1)-th order statistic in a series of n waves
observed at a given time period at a desired coastal location is a crucial
design parameter to insure the reliability and durability of such barriers.
Order statistics as a discipline can be used in this respect to determine the
individual, joint, conditional probability of one or more order statistics from
the parent functions f(x) and F(x) of the population to which the sample
belongs. Only the case of independent and identically distributed (IID)
random samples is considered here. If m(r) is the number of elements in

Figure 4. Failure patterns for lattice sizes N¼ 24, 48, 96 from the left.
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(X1 : n,X2 : n, . . . ,Xn : n), such that Xi : n� x (i¼ 1, . . . , r), then the event
(Xr : n� x) has pdf and cdf probability functions

fxr:n ðxÞ ¼ Fr�1ðxÞ � 1� FðxÞ½ �
n�r fðxÞ

B r, n� rþ 1ð Þ
, ð1aÞ

FXr:n
ðxÞ ¼

Xn
k¼r

n

k

� �
FkðxÞ � 1� FðxÞ½ �

n�k
¼ IF r, n� rþ 1ð Þ, ð1bÞ

where IF(a, b) and B(a, b) are the incomplete beta function and the beta
function, respectively. The underlying idea for these results is that each Xi is
a Bernoulli trial with only two possible outcomes: either Xi� x (success) or
Xi� x (failure). In lieu of the IID hypothesis, the series of n trials follow a
binomial distribution with success rate, p¼F(x). The probabilityFXr : n

ðxÞ,
associated to Xr : n� x is readily computed as the exceedance of at least r
trials being successful, whereas the fXr : n

ðxÞ in (1a) follows from (1b) by
derivation with respect to x. Distribution-independent results, such as
Equation (1) constitute the power of the theory of order statistics.

Distributions of Minima of Weibull Random IID Samples

Extreme value theory (EVT) has a more limited scope and is concerned
with two order statistics only: the maximum and the minimum order
statistics, i.e., the extremes defined as X1 : n¼min(X1,X2, . . . ,Xn) and
Xn : n¼max(X1,X2, . . . ,Xn). In many applications, such as our failure
problem, the statistics of either one of the two extremes is what matters.
Weibull’s theory is one of the first examples of EVT applied to structural
engineering and allows inferring the strength of a full-size component or
structure from the experimental data obtained in a laboratory with smaller
specimens of the material. In this study, it is shown that EVT can be used to
estimate the probability of failure of lattices at any scale once the properties
are known at a smaller scale.

In a first-order approximation, the distribution of the first-order statistics
(the minimum) is assumed to control the strength of the lattice. The
distribution of random minima is obtained from Equations (1a) and (1b) by
setting r¼ 1, which leads to the following pdf and cdf

fX1 : n
ðxÞ ¼ 1� 1� FðxÞ½ �

n; ð2aÞ

FX1 : n
ðxÞ ¼ n 1� FðxÞ½ �

n�1fðxÞ: ð2bÞ

The threshold of failure x, the sample size n (n is not the number of broken
links anymore), and the parent pdf and cdf need to be specified. Simulation
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data in Figure 5(a) show that the softening phase and failure are strongly
dependent on lattice size. The problem consists of first determining the
statistical properties of the data for the smallest lattice size N¼ 24 and then
inferring the same properties for larger size N. Figure 5(b) displays the
macrostress responses of all 100 random replicates of size N¼ 24. The
statistical properties at each location ð ��0, �"0Þ of the softening phase could be
investigated by collecting the intersection points between the �� � �" curves
and either the plane �" ¼ �"0 or the plane �� ¼ ��0. The choice of the section

(a)

(b)

Figure 5. (a) Mean �� � �" curves and location of two orthogonal cross sections where the
statistical properties are examined; (b) lattice responses of 100 samples for N¼ 24.
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plane depends on whether one is interested in the probability of a material to
survive to a strain level �"0 or to a stress level ��0. Both cases are considered
here. As shown in Figure 5, the sections are (arbitrarily) taken at �"0 ¼ 0.004
and ��0 ¼ 0.04. The frequency histograms for the two diagrams are shown
in Figure 6(a) and 6(b) for the "-section and the �-section respectively.

The identification of the statistical distribution that fits the 100
observations in each sample is not a trivial task i.e., to determine what
form of f(x) and F(x) to use in Equations (2a) and (2b). MINITAB 14� is
used to screen out a set of continuous distributions, such as the normal, the
lognormal, the Weibull, the gamma, the exponential, and others (MINITAB
14�). It is opportune to revise the formalism of statistical ‘hypothesis
testing’ and the statistical techniques used for this analysis. The candidate
distributions are fitted with the maximum likelihood (ML) method and the
goodness-of-fit is assessed according to the Anderson-Darling (AD) test
(MINITAB 14�, NIST/SEMATECH). Such a test is particularly well suited
to compare the fit of competing distributions. The fit improves as the value

Figure 6. Histogram along with pdf and cdf from Weibull’s fit for both "-section: (a) and the
��-section (b) for N¼ 24.
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of the AD statistics reported on the probability plots (Figures 7 and 8)
reduces. The AD statistical test is defined in (NIST/SEMATECH) as:

H0: the data follow the specified distribution,
H1: the data do not follow the specified distribution.

The ‘null hypothesis’ (H0) is rejected (a candidate distribution is rejected)
if the AD statistics is greater than a threshold value that depends on the
distribution itself. In this case (H1 is true), the test is customarily called
significant. MINITAB does not report such a threshold value for AD but
conveniently provides the corresponding P-value. Because of the way the
AD test is formulated, the higher the P-value, the better the fit is. The
P-value represents the lowest level of significance that leads to rejection of
H0. The ‘significance’ � corresponds to the probability (chosen by the
analyst) to reject H0 when H0 is true and, hence, commit an error (�-error).
If P-value<�, then H0 is rejected in favor of H1. The choice of � depends on
what hypothesis the analyst is interested in and on the criticality of the
decision. A significance level of 20% (�¼ 0.2) is conservative enough here to
reject poor fitting. Figures 7 and 8 show the probability plots with 95%
confidence limits of four candidate distributions, namely the Gaussian,
the 3-parameters lognormal, and the 2 and 3-parameters Weibull. In all
cases, the quality of fit is acceptable with P-value>0.2, as summarized in

Figure 7. Identification of the statistical distribution for �"0 ¼ 0.004.
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Table 2. The minimal scatter of the data points around the straight lines
provides the visual confirmation.

The choice is not obvious but the 3-parameters Weibull distribution
(3-parameters to be omitted from now on) is finally selected for convenience.
Such distribution offers great flexibility for the large variety of shapes that
is capable to assume and, therefore, is one of the most widely used in
failure analysis. Furthermore, the Weibull distribution exhibited superior
performances in fitting the simulation data from the other lattice sizes.
The theoretical justification underlying the Weibull distribution and
related to the weak-link type of failure is also an appealing aspect. At
last, the Weibull distribution is well suited for the EVT and leads to nice

Figure 8. Identification of the statistical distribution for ��0 ¼ 0.04.

Table 2. Goodness of fit statistics for the four distributions in Figures 7 and 8.

�e-section �r-section

P-value AD-value P-value AD-value

Normal 0.661 0.273 0.364 0.396
Weibull >0.250 0.416 >0.250 0.348
3-parameters Weibull 0.372 0.367 >0.500 0.218
Lognormal >0.661 0.268 >0.250 0.304
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analytical expressions. The pdf and cdf probability density function of the
3-parameters Weibull is,

fðxÞ ¼
�

x� �

x� �

�

� ��

e� ðx��Þ=�ð Þ
�

ð3aÞ

FðxÞ ¼ 1� e� ðx��Þ=�ð Þ
�

; ð3bÞ

where � is the shape parameter, � the characteristic life, and � the shift or
waiting time.

The pdf functions f(x) for the "-section and the �-section are plotted on
top of the histograms in Figure 6 (top). The cdf functions F(x) are also
shown in Figure 6 (bottom) together with the empirical cdf from simulation
data. The estimates of the parameters from ML are �"¼ 3.929, �"¼ 0.0064,
and �"¼ 0.0087 for the "-section (Figure 6(a)), and ��¼ 2.3178, ��¼ 0.0058,
and ��¼ 0.0024 for the �-section (Figure 6(b)).

The above technique may provide a very detailed statistical description
of the lattice properties but requires a large sample to identify the right
distribution accurately. This approach yields ambiguous results when there
are about 10 observations, as for N¼ 192, and is impossible when there is no
sample at all, as in the case of a full-size structure. Instead, the knowledge of
the properties for N¼ 24, can be combined with the EVT. By allowing the
larger lattices of size N¼ (48, 96, 192), to be subdivided into an integer
number ‘q’ of lattices of size N¼ 24, the relation

qi ¼
L2
i

L2
24

> 1 ð4Þ

is the ratio between the areas of the i-th large lattice and the N¼ 24, lattice
i¼ (48, 96, 192). The vector q¼ (4, 16, 64) is obtained from (4) in
correspondence to N¼ (48, 96, 192), through the approximation
L2
i =L

2
24 ’ N2

i =N
2
24, where L ¼ ðN� 1Þ‘ and ‘ is the average link length.

The qi sub-lattices can be regarded as a random IID sample of size qi. As
depicted in Figure 2(b), damage nucleation is a random process independent
of lattice size and affects the lattice area uniformly. The lattice is statistically
homogeneous and each sub-domain constitutes a ‘representative volume
element’ (Krajcinovic), where the damage evolves independently of the
neighboring sub-domains. The interactions amongst sub-lattices become
significant only in the vicinity of the force peak of the lattice response. The
damage localization takes place when and where the ‘weakest’ sub-domain
reaches the transition point. Afterwards, the surviving sub-domains in the
vicinity of the damage localization are either shielded or subjected to a stress
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level much higher than the net stress due to the stress concentration effect.
Depending on the two cases, the neighboring sub-domains either become
passive (shielding) or fail rapidly (stress concentration), without being able
to contribute to the resistance of the overall lattice. Thus, the properties of a
large lattice are expected to be entirely described by the statistics of minima
of a sample size qi. For the Weibull distribution, the cdf (Equation 1(b)) of
the minima for n¼ qi can be rewritten as,

F1 :nðxÞ ¼ 1� e�n ðx��Þ=�ð Þ
�

, ð5Þ

by using Equations (3a) and (3b) as parent functions f(x) and F(x). The plots
of F1 : n(x) for n¼ (4, 9, 16, 25, 64), i.e., N¼ (48, 72, 96, 120, 192), are shown
in Figures 9 and 10, together with experimental cdf from simulation data for
comparison.

Accuracy of Results and Convergence

From the analysis of the data in Figures 9 and 10, the agreement between
EVT and the numerical cdf is satisfactory for N¼ (48, 72, 96, 120). Both
‘shape’ and ‘location’ of the theoretical cdf (Equation (5)) usually
approximate well the numerical data. Mild deviations should be considered
acceptable bearing in mind that most of the experimental cdf come from
small samples of the order of 10 data points. Some concerns arise for the
case N¼ 192 since there is a visible difference between predicted and
numerical data for both �"-section (Figure 9) and ��-section (Figure 10).
While the shapes look similar, the mismatch in ‘location’ is very evident
especially for the �"-section data in Figure 9. This problem is likely related to
the convergence of the numerical data in the softening data, which might be
an issue for this type of analysis.

The �� � �" response was generated by a molecular dynamic solver, which is
an iterative explicit integration scheme. For large lattices, such as N¼ 192,
the convergence to the quasi-static response becomes very slow in the
softening regime. For the same tolerance level (expressed in total residual
kinetic energy of the nodes), the convergence might not even occur after
50,000 iterations in the softening regime, while 5000 iterations are usually
enough in the hardening phase. The choice of tolerance level is always
a trade-off between feasibility (simulation time) and accuracy. A residual
dynamic component is always to be expected to produce deviation of the
�� � �" response from the ‘true’ quasi-static trajectory. The reduced
compliance in the softening phase makes the lattice less responsive towards
applied stimuli and the deviations of the dynamic perturbation are much
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more pronounced than in hardening. This is particularly true for the fast
descendent portion of the force response beyond the peak. The lack of
accuracy introduces ‘bias’ into the experimental cdf, which explains the
‘location’ mismatch for N¼ 192. These considerations hold for the other
lattice sizes as well, but the bias becomes a problem for the largest
microstructure.

In support of this justification, another sample of 10 random replicates
was collected for N¼ 96 by using a stricter tolerance level on the residual
kinetic energy, about two orders of magnitude smaller than in the original
simulations. Figure 11 plots the experimental cdf of both old (a) and new (b)
samples. The new numerical data is more accurate and Table 3 reports the
comparison between statistics.

The means and standard deviations tend to increase in the new
simulations but the variation is sometimes minimal. However, in terms of

Figure 9. Predicted cdf of minima from EVT vs empirical cdf ( �"-section).
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Figure 10. Predicted cdf of minima from EVT vs empirical cdf ( ��-section).

Figure 11. (a) Convergence issue for N¼ 96. (b) higher convergence in improves the theory
accuracy (only ��-section shown).
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cdf, the new sample matches much better the theoretical predictions from
EVT. More research is currently being conducted to further validate this
argument and reach definitive conclusions.

Remarks and Applications

The results and previous discussion in support of the probabilistic
model (5) mainly foster two conclusions for this section:

(1) the EVT appears to work effectively in predicting the statistical property
of the softening phase;

(2) the bias (lack of accuracy) in the simulation data due to limited
convergence can be misleading or fatal by a statistical analysis stand-
point, even if the differences in the �� � �" response are small.

The results of the EVT are extremely sensitive to the choice of the parent
distributions and both form and fit of f(x) must be correct (Gumbel, 1985).
In this article, Equation (3) appeared appropriate.

The results have important applications. By repeating the analysis
over the entire range of softening of N¼ 24 and assuming that the
same form of the distribution of the pdf is appropriate for such a
range, one can obtain an empirical fit for the parameters {�,�,�} in
terms of the parameter �"0 or ��0 of the associated sectioning. Thus, if the
�"-section is of interest, it is straightforward to derive the parametric
expressions

f ��; �"0ð Þ ¼
� �"0ð Þ

�� � � �"0ð Þ

�� � � �"0ð Þ

� �"0ð Þ

� �� �"0ð Þ

e� ð ���� �"0ð ÞÞ=ð� �"0ð ÞÞð Þ
� �"0ð Þ

, ð6aÞ

F ��; �"0ð Þ ¼ 1� e� ð ���� �"0ð ÞÞ=ð� �"0ð ÞÞð Þ
� �"0ð Þ

, ð6bÞ

from f�ð �"0Þ,�ð �"0Þ,�ð �"0Þg. Expressions (6) contain the full description of
the softening regime for any lattice size. By inverting Equation (6b),

Table 3. Comparison between the original (old) sample and the more
accurate one (new) for N¼96.

Variation Old std. New std. Variation
Old mean New mean % dev. dev. %

�"-section 0.0340 0.0348 �þ2.5 0.0092 0.0102 �þ11
��-section 0.00348 0.00373 �þ7 0.00068 0.00070 �þ3
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the expected value of the stress response �̂�ð �"0,NÞ for a desired percentile
F1 : nð �̂�, �"0Þ ¼ F̂ is

�̂� �"0,Nð Þ ¼ 1� e� ð �̂�ð �"0Þ��ð �"0ÞÞ=ð� �"0Þð Þð Þ
� �"0ð Þ

� ��1

¼ � �"0ð Þ þ �
N24

N

ln 1� F̂
� �
� �"0ð Þ

2
4

3
5

1=� �"0ð Þ

,

ð7Þ

which renders the softening an intrinsic property of the material. Similarly
for the ��-section,

�̂" ��0,Nð Þ ¼ 1� e� ð �̂"ð ��0Þ��ð ��0ÞÞ=ð� ��0ð ÞÞð Þ
� ��0ð Þ

� ��1

¼ � ��0ð Þ þ �
N24

N

ln 1� F̂
� �
� ��0ð Þ

2
4

3
5

1=� ��0ð Þ

,

ð8Þ

where f�ð ��0Þ,�ð ��0Þ,�ð ��0Þg are required. The technical implication is that
Equations (7) or (8) would allow a design with a desired level of
survivability. The residual strength (allowable damage) �̂� for a failure life
�"0 is readily available from Equation (7) and can be extrapolated for a large-
size structure. For example, Figure 12 indicates that at �"0 ¼ 0.004, the
probability of failure for a stress level �̂� ¼ 0:03 is less than 5% for N¼ 24
and more than 50% for N¼ 192. Depending on the situation, either
Equation (7) or (8) can be used as constitutive relations for the damage
problem. The empirical approach is a powerful alternative to the
mechanistic model, such as (Krajcinovic and Rinaldi, 2005a), based on
the damage parameter.

CONCLUSIONS

This article is committed to constitutive modeling, failure, damage
tolerance, and durability of structures, issues largely neglected in engineering
practice and research (Goranson, 1993). The results offered in this article
display the effectiveness of the statistical damage model reproducing data
scatter in the softening regime and at failure. The numerical data produced
with this approach could not be generated by classical continuum damage
mechanics. Analytical semi-empirical models based on extreme value
theory (EVT), i.e., Equations (7) and (8), can be derived in principle for
the entire damage process and are viable design tools. Probabilistic models
are not as rigorous as the analytical model but offer a more complete
description of the statistical properties of the lattice response. This article
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outlines the importance of statistical methods, such as ordinary least
squares, maximum likelihood, and testing hypothesis, for the selection of
model parameters. These techniques are the basis for data-driven reasoning
and decision-making in damage tolerance.
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Figure 12. Predicted cdf at �"0 ¼ 0.004 for N¼ (24, 48, 96, 192) and comparison between
probability of failure at �̂ ¼ 0:03 for N¼ 24 and N¼ 192.
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