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ABSTRACT: Thermodynamics with internal variables provides a framework for
constitutive modeling of elasto-plastic deformations. Within the scope of the theory,
constitutive and evolution equations for ductile, elasto-plastic materials with mixed
(isotropic and kinematic) hardening and anisotropic damage have been developed.
Postulates within continuum damage mechanics were used in order to incorporate
damage as an internal variable. Owing to this, and to a simplified definition of
the inverted damage effect tensor, a general expression for degradation of the elastic
properties in materials has been obtained. The corresponding numerical algorithm
for integration of the constitutive equations is based on an elastic predictor – plastic/
damage corrector procedure. The plastic/damage corrector is uncoupled, which
further simplifies and expedites the corrector procedure.

KEY WORDS: constitutive modeling, anisotropic damage, small strain elasticity,
large strain plasticity, mixed hardening, numerical integration.
INTRODUCTION

HERE HAS BEEN much discussion about modeling the progressive
material stiffness degradation (which the material damage essentially is)
*Author to whom correspondence should be addressed. E-mail: eomerspa@volvocars.com
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that leads to the initiation of a macroscopic crack. From the pioneering
work of Kachanov (1958), through the early works on creep damage by
Rabotnov (1968) and Odqvist and Hult (1961), until today, damage
modeling has been extended to different application fields.

In order to describe ductile failure in metals, a number of damage models
have been developed; most of them being based on an isotropic damage
variable, specifying the same damage value in all directions. As the isotropic
damage considers microcracks or microdefects with a uniform orientation,
which is not always the case, the concept of anisotropic damage was
developed. The work of Cardebois and Sidoroff (1982) was pioneering in
modeling a ductile anisotropic damage. Their concept is based on elastic
energy equivalence.

Anisotropic damage is presented in the theory of damage mechanics
through the damage effect tensor, ~M, introduced by means of the concept
of the effective stress, relating the so-called effective stress to the area
that efficiently resists the load. Chow and Wang (1987a, b) introduced
a generalized description of this tensor and the corresponding material
model in the principal damage directions. Zhu and Cescotto (1995) used
this anisotropic concept and the energy equivalence stated by Cardebois
and Sidoroff (1982) to develop a damage model at finite strains for
ductile fracture. Their model takes into account three major anisotropies
(elasticity, plasticity, and damage) and proposes a specific damage
characteristic tensor, J (due to damage anisotropy). A micro-crack opening
and closing mechanism is considered as well, taking into consideration
different effects of tensile and compressive states. Further concepts of the
damage effect tensor have been developed and discussed in more detail by
Betten (1983, 2001a, b, 2005), Chow and Lu (1992), Skrzypek and
Ganczarski (1999, 2003), Zheng and Betten (1996), among others.

The anisotropic aspect of the material damage was exploited in the
irreversible thermodynamic theory of Hayakawa et al. (1998). They derived
the elastic law from an isotropic scalar function, expressed as the
combination of ten basic invariants of two symmetric tensors of rank two.
In this article, in comparison to the work of Zhu and Cescotto, the
formulation of plasticity and damage i.e, the way the damage tensor was
included in definition (reduction) of the plastic and damage yield surface,
is somewhat simpler. Hayakawa et al. incorporated Chaboche’s model
(1993) of the crack closure effects under compressive stresses.

The model considered in the present study is partly based on the above-
mentioned works, and is an extension of the previous work on rate-
dependent viscoplastic ‘orthotropic’ damage (Omerspahic and Mattiasson,
2003), where only normal damage components influenced the damage
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effect tensor (therefore the name orthotropic). In this concept, strain-rate
dependency of damage was observed through the viscoplastic response,
as damage components depend on the elastic strain components.

Chow and Wang’s (1987a, b) model formulation in the principal damage
directions has been used with the intention to construct a simple anisotropic
damage model. Because the application field for the material model is cause
for the damage development in sheets made of moderate ductile materials,
simplifications concerning small elastic deformations and corotational
formulations (the coordinate system is attached to and rotates together
with shell elements), are possible. No micro-crack opening and closing
mechanism is considered. The proposed model possesses a generalized
derivation of the damage effect tensor. Owing to this, a simplified expression
for the elastic stiffness degradation is obtained.

To sum up, the object of the study has been to construct an ‘oriented’
damage model, which can predict crack initiation in ductile sheets. In order
to highlight this purpose, the methodology has been divided into five
sections. The section on ‘Integration of anisotropic damage’ presents the
incorporation of the damage variable into the expression for material
stiffness. In the section ‘Thermodynamic framework of elasto-plasticity’,
damage is discussed, followed by the ‘Derivation of the constitutive and
evolution equations’ section. Finite deformation elasto-plastic laws pro-
posed by Haupt (2000), Tsakmakis (1996), and Diegele et al. (2000), have
been simplified by assuming small elastic deformations. These constitutive
laws exhibit nonlinear kinematic and isotropic hardening. Numerical
features of the resulting material model are presented in the section
‘Numerical features of the constitutive model’, and finally, an example
involving a thin metal sheet with a central circular hole in the
‘Computational results’ section, which concludes the methodology part.

INTEGRATION OF ANISOTROPIC DAMAGE

In order to incorporate damage as an internal variable into constitutive
models, the concept of effective stress, stated by Rabotnov (1968), and
the energy equivalence hypothesis, proposed by Cordebois and Sidoroff
(1982), have been used. Essentially, the basic idea is the introduction of a
fictitious material state (in a manner of small deformations), where damage
effects are compensated through the effective Cauchy stress tensor ~s
(Figure 1). This material state is equivalent to a (real) material state, where
damage is seen through the stiffness degradation. Figure 1 shows two
equivalent material states that are mapped by means of the two mentioned
concepts.
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The concept of effective stress relates an effective stress state to the area
that effectively resists the load. This is achieved by using the damage effect
tensor, ~M. In general, the effective stress tensor is a function of the damage
effect tensor,

~s ¼ ~M : s: ð1Þ

The simplest way of introducing the damage effect tensor is in the stress
tensor principal directions with a second-order tensor. Such a description is,
however, unrealistic. For that reason, Chow and Wang (1987a, b) stated
development of a generalized form of the fourth-order damage effect tensor
in principal damage directions. In their formulation the damage effect tensor
is reduced to a scalar for a case when the principal damage components are
equal (isotropic damage). The inverse matrix form of the denoted tensor is
given through a diagonal matrix,

~M
h i�1

¼ diag 1�d11 1�d22 1�d33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�d22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�d33

ph
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�d11

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�d33

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�d11

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�d22

p i
:

ð2Þ

In order to define the anisotropic damage in an arbitrary coordinate
system, one has to propose the corresponding tensor expression. In finite
element implementations, second-order matrices are converted from fourth-
order tensors by means of the Voigt rule. To facilitate differentiation of the
constitutive and evolution equations, an approximation to the fourth-
order damage effect tensor, which converts to the second-order matrix

Figure 1. Mapping between a real damaged state (a), and a fictitious state with the effective
stresses (b).
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Equation (2), can be derived. Omerspahic (2002) defined the inverted
damage effect tensor, M ¼ ~M

�1
, as

M ¼
1

2
d ��dþ d�d
� �

�
1

2
d ��dþ d ��d
� �1

: ð3Þ

In addition, to obtain the equivalence between the two material states in
Figure 1, the energy equivalence hypothesis is used. It states that the elastic
energy for a damaged material is equal to the elastic energy for a fictitious
undamaged material, loaded by the effective stress. More details about this
hypothesis (and the strain equivalence) have been elaborated by Betten
(2001a), Chow and Lu (1992), Skrzypek and Ganczarski (1999, 2003),
Zheng and Betten (1996).

Assuming Hooke’s elasticity, this hypothesis leads to a relationship
between a damaged (C(d)) and an undamaged (C0) elastic stiffness
(fourth-order) tensor:

C dð Þ ¼ M : C0 : M
T: ð4Þ

Making use of the index notation, the multiplication in the equation
above is easy to perform. Furthermore, if second-order damage terms are
neglected in the performed multiplication, the following expression for
the stiffness tensor is obtained, Omerspahic (2002):

C dð Þ ¼ C0 � Cd,

C0 ¼ � d ��dþ d�d
� �

þ ld� d,

Cd ¼ � d ��dþ d ��dþ d�dþ d�d
� �

þ l d� dþ d� dð Þ,

ð5Þ

where � and � are Lamé constants. As a result, the damaged stiffness tensor
is symmetric. To sum up, the stiffness degradation in this model is obtained
through damage propagation (Figure 1(a)).

THERMODYNAMIC FRAMEWORK

OF ELASTO-PLASTICITY

Once damage is incorporated in the expression for elastic stiffness,
Equation (5), constitutive modeling can be performed. As intended in
the introductory section, the model has been derived with the object of
incorporating damage propagation in elasto-plastic materials, exhibiting

1The tensor notations and products are highlighted in the Appendix.
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kinematic and isotropic hardening. Finite deformation plasticity laws in
Haupt (2000), Tsakmakis (1996), and Diegele et al. (2000), are derived in the
fictitious, stress-free, intermediate configuration using the so-called multi-
plicative decomposition of the deformation gradient. This means that the
elasticity law is given as a relation between the Lagrangian elastic strain
tensor, and the second Piola-Kirchhoff stress tensor, both defined in the
intermediate configuration by the push-forward of the corresponding
tensors in the reference configuration,

�S2 ¼ f �E
e

� �
: ð6Þ

In this case, the total strain tensor has been additively decomposed in
its elastic part and its plastic part, �E

p
, which creates the kinematic basis for

a mathematical description of the plasticity.
In order to define a plastic deformation process, thermodynamics with

internal variables have been successfully used by Lemaitre and Chaboche
(1978), Lemaitre (1992) and Maugin (1999), among others. This theory
supplies us with a framework for the global derivation of constitutive
and evolution equations. In order to define the thermodynamic state of a
system, this theory introduces internal variables of state, in addition to
observable ones.

The internal variables in this model describe micro-structural changes
generated by a plastic deformation process and a damage process. These
changes are reflected through material hardening and damage propagation.
In the mathematical description of the plasticity, isotropic hardening
denotes an expansion of the yield surface, while kinematic hardening
implies a translation of the yield surface in the stress space. Additionally,
as mentioned in the ‘Integration of anisotropic damage’ section, the damage
propagation generates the stiffness degradation.

The Helmholtz free energy per unit mass is a thermodynamic potential
from which variables that characterize every thermodynamic property of
the system are derived. Consequently, in this case, it is a function of
observable variables, internal variables, and temperature. The Helmholtz
free energy per mass unit depends on the following set of internal state
variables: accumulated plastic strain, �, describing the isotropic hardening;
the backstrain tensor, �z, representing the kinematic hardening; the second-
order damage tensor, d, and the internal variable describing damage
hardening, �. Finally, by assuming an isothermal and adiabatic elasto-
plastic process with mixed hardening and damage (with damage hardening),
the energy potential function depends on five variables,

 ¼ � �E
e
, �z, �, d,�

� �
: ð7Þ
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Irreversibility of the isothermal and adiabatic thermodynamic process is
provided by the Clausius-Duhem inequality. Haupt (2000) defined this
inequality in the intermediate configuration as

��0 _ þ �S2 :
_�E
e

þ �P : �E
p

�

� 0, ð8Þ

where �P is the Mandel stress tensor in the intermediate configuration, and

�E
p

�

is the Oldroyd strain rate of the plastic strain tensor. The Mandel stress is
equivalent to the second Piola-Kirchhoff stress for the case of small elastic
deformations. This assumption implies as well that the intermediate and
deformed configurations coincide, i.e., �E

e
� «e. Consequently, the

Helmholtz energy potential is  ¼ � ð«e, �z, �, d,�Þ. Besides the assumption
of small elastic deformations the fact that the change of mass density can be
neglected, leads to �S2 � s: Hence, the inequality above can be simplified as

�� _ þ s : _«e þ �E
p

�
 !

� 0: ð9Þ

Rewriting this inequality in order to further simplify the differentiation of
the equations, gives the following:

� �
@ 

@«e
_«e þ

@ 

@d
_dþ

@ 

@�z
_�zþ

@ 

�
_�þ

@ 

�
_�

� �
þ s : _«e þ �E

p
�

 !

¼ s� �
@ 

@«e

� �
: _«e þ s : �E

p
�

��
@ 

@d
_d� �

@ 

@�z
_�z� �

@ 

�
_�� �

@ 

�
_�

¼ s : �E
p

�

� �Y : _d� �X : _�z� R _�� B _� � 0:

ð10Þ

However, the dissipation inequality is the sum of products of rate
variables and conjugated forces (dual variables to the set of internal and
observable variables). Obviously, the set of thermodynamic forces is derived
from the Helmholtz free energy: the Cauchy stress tensor ; the damage
energy release rate, �Y; the backstress tensor, �X; the isotropic strain
hardening scalar stress, R; and B, the conjugated force of �:

s ¼ �
@ 

@«e
, ð11Þ

�Y ¼ �
@ 

@d
, ð12Þ
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�X ¼ �
@ 

@�z
, ð13Þ

R ¼ �
@ 

@�
, ð14Þ

B ¼ �
@ 

@�
: ð15Þ

DERIVATION OF THE CONSTITUTIVE AND

EVOLUTION EQUATIONS

Constitutive Equations

In order to establish the Helmholtz free energy, the resumé in Chaboche
(1993) and Hayakawa et al. (1998) has been followed. Energies involved in
the elastic process, plastic flow, and damage process are uncoupled.
Consequently, the total free energy can be written as the sum of three
contributions:

 ¼  e þ  p þ  d: ð16Þ

Lemaitre (1992) indicated that the elastic strain energy (the free energy
involved in an elastic process) is affected by damage development. Assuming
Hooke’s elasticity, and having in mind Equation (5), this indication becomes
obvious. Hayakawa et al. (1998) elaborated that, as  p is usually
insignificant in comparison with  e, the damage effects on it would not
have to be taken into consideration. In other words, the damage propagates
only during the elastic state.

Hence, the free energy is decomposed in the following way,

 «e, d, �X, �,�
� �

¼ we «
e, dð Þ þ  p �z, �ð Þ þ  d �ð Þ: ð17Þ

As mentioned above, we is the elastic strain energy. By using Equation (5),
it becomes

we «
e, dð Þ ¼

1

2�
«e : C dð Þ : «e: ð18Þ

The potential  p, consists of two quantities: the free energy due to the
isotropic hardening, and the free energy due to the kinematic hardening,

 p �z, �ð Þ ¼
R1

�
�þ

1

�
e���

� �
þ

c

2�
�z : �z: ð19Þ
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where R1, �, and c are material parameters, usually determined by
conventional tension–compression uniaxial experiments.

Since the Armstrong-Frederick kinematic hardening is used in this study,
the equation that describes how the backstress tensor is updated is not given
as a constitutive law, but as a nonassociated evolution law.

The potential  d represents the free energy increase during damage
hardening. It is given as a function of the internal variable � and the material
parameter kd:

 d ¼
1

2�
kd�

2: ð20Þ

With the defined free energy potential, the constitutive equations become:

s ¼ C dð Þ : «e, ð21Þ

�Y ¼
1

2
«e :

@C

@d
: «e ¼ � 2� «e � «eð Þ þ l«etr «eð Þ½ �, ð22Þ

R ¼ R1 1� e���
� �

, ð23Þ

B ¼ kd�: ð24Þ

Evolution Equations

As discussed in the previous subsection ‘Constitutive equations’, the
evolution of the backstress tensor �X (Oldroyd rate) is given through a non-
associated Armstrong-Frederick law,

�X
r

¼ c �E
p

�

�b _� �X, ð25Þ

_� ¼
2

3
�E
p

�

: �E
p

�
" #1=2

, ð26Þ

where b in Equation (25) is another material parameter, determined by the
conventional tension–compression uniaxial experiments.

Furthermore, the remaining evolution equations for the material model
are derived from the potential of dissipation. This potential is a convex
function of the Lemaitre–Chaboche type (1978):

F ¼ �F s,Y, �X,R,B
� �

: ð27Þ
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In accordance with the statement about the uncoupled free energy
potential, the dissipation potential is uncoupled as well. It consists of a
plastic-dissipation potential and a damage-dissipation potential,

F ¼ Fp þ Fd: ð28Þ

Hence, from the plastic and damage dissipation potentials, the evolution
equations are separately derived:

�E
p

�

¼ _lp
@Fp

@s
, ð29Þ

_� ¼ �_lp
@Fp

@R
, ð30Þ

_d ¼ �_ld
@Fd

@ �Y
, ð31Þ

_� ¼ �_ld
@Fd

@B
: ð32Þ

The plastic and damage Lagrange multipliers, _lp and _ld, are the plastic
and the damage consistency parameters, respectively. For plastic and
damage loading/unloading conditions, they define the Kuhn–Tucker
relations

_lp � 0, Fp � 0, _lpFp ¼ 0, ð33Þ

_ld � 0, Fd � 0, _ldFd ¼ 0: ð34Þ

PLASTIC EVOLUTION
The von Mises yield condition defines a surface in the Cauchy stress space

that encloses an elastic region. Due to isotropic and kinematic hardening,
the yield surface expands and translates in the stress space. This give rise to
the following yield function:

Fp ¼ �eff � R� �y ¼
3

2
sD � �X

D
� �

: sD � �X
D

� �� 	1=2
� R1 1� e���

� �
� �y:

ð35Þ

where �y is the initial yield stress (material parameter), �eff is the effective
stress, and the deviatoric stress tensors are given by

sD ¼ s�
1

3
tr sð Þd, ð36Þ
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�X
D
¼ �X�

1

3
tr �X
� �

d: ð37Þ

Differentiation of the plastic potential with respect to the stress tensor and
isotropic stress scalar gives the following evolution equations:

�E
p

�

¼ Dp ¼ _lp

ffiffiffi
3

2

r
sD � �X

D

sD � �X
D




 


 , ð38Þ

_� ¼ _lp: ð39Þ

Here, ksD � �X
D
k denotes the Euclidean norm of the deviatoric part of the

expression, and Dp the plastic strain rate.
For strain-rate-independent plasticity, _lp is determined by the consistency

condition, i.e., by requiring that _Fp ¼ 0:

DAMAGE EVOLUTION
By following the argumentation for the plastic dissipation potential, it is

assumed that there is a surface, Fd¼ 0, in the space of the thermodynamic
damage-conjugated forces, which separates the damaged domain from the
undamaged one. The simple form of the dissipation potential below, was
proposed by Cordebois and Sidoroff (1982),

Fd ¼ Yekv � Y0 þ Bð Þ, ð40Þ

where Y0 is an energy barrier, a form of energy release rate threshold, which
must be overcome in order to accomplish damage propagation. Here, Yekv is
the equivalent damage energy release rate, defined as

Yekv ¼
1

2
�Y
T
: J : �Y

� 	1=2
, ð41Þ

where J is the damage characteristic tensor. Hayakawa et al. (1998) have
defined it as the fourth-order tensor, which describes damage-induced
change of the damage surface. By noting that the damage dissipation
potential is a symmetric function of each component of the damage-
conjugated forces, it is given as:

J ¼
1

2
d ��dþ d�d
� �

: ð42Þ
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Hence, damage evolution equations are finally obtained:

_d ¼ �_ld
1

2

J : �Y

Yekv
¼ _ld

1

2

J : Y

Yekv
, ð43Þ

_� ¼ _ld: ð44Þ

The differentiation of Equation (5) with respect to damage yields a
negative sign of �Y according to Equation (22). Further implementation of
�Y in Equation (43) yields positive damage propagation. For a strain rate-
independent damage, _ld is determined by requiring that _Fd ¼ 0.

NUMERICAL FEATURES OF THE

CONSTITUTIVE MODEL

The constitutive elasticity equation relates the Cauchy stress tensor, «,
to the infinitesimal elastic strain tensor, «e. Let us turn to the hypoelasticity
law relating the rate of the Cauchy stress to the elastic part of the rate of
deformation, ðD�DpÞ. In addition, the corotational formulation of shell
elements avoids the difficulty with the objectivity of the Cauchy stress rate
by embedding a coordinate system in the element. To sum up, the
constitutive model is obtained as:

_s ¼ C dð Þ : D�Dpð Þ,

Y ¼ 2� «e � «eð Þ þ l«etr «eð Þ,

R ¼ R1 1� e���
� �

,

B ¼ kd�,

_X ¼ cDp � b _�X,

Dp ¼ _lp

ffiffiffi
3

2

r
sD � XD

sD � XD


 

 ¼ _lp

ffiffiffi
3

2

r
N,

_� ¼ _lp,

_d ¼ _ld
J : Y

2Yekv
,

_� ¼ _ld:

ð45Þ

The numerical algorithm for integration of the system of equations was
developed with the objective of being implemented as a user material
subroutine in the explicit Finite Element program LS-DYNA. The problem
is a deformation controlled constitutive one. In the updating scheme,
stresses and other variables at the end of the increment are updated using
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its values at the beginning of the increment. As proposed by Simo and Ortiz
(1984), the operator splitting technology has been used, separating an elastic
predictor and a plastic/damage corrector. In the first phase of every
incremental step, an elastic material response is assumed (�«e ¼ �«), giving
the predictor or trial stress,

s ¼ s0 þ C0 � Cd0

� �
: �«:2 ð46Þ

Because damage propagates due to the elastic state (Equations (45)2,8), a
damage corrector step with an update of the stiffness takes place if there is no
plastic response. If the trial stress tensor is located outside both the plastic
yield and the damage surfaces, the plastic/damage corrector is initiated in
order to return the stress tensor to the updated surfaces (Figure 2). This
return-mapping algorithm has been used for the time integration purpose.
This method is based on a fully implicit backward Euler scheme.

Time discretization of the evolution equations gives the following set of
equations:

�s ¼ C : �«���

ffiffiffi
3

2

r
N

 !
,

�X ¼ c��

ffiffiffi
3

2

r
N� b��X,

�d ¼ ��
J : Y

2Yekv
:

ð47Þ

2Subscript ‘0’ indicates the specific quantity at the beginning of the time increment. Otherwise, all quantities
present values at the end of the time increment. Delta symbol ‘�’ represents increment in specific quantity.

(a) Elastic predictor (b) Plastic/damage corrector

sn
(0)

sn

f p
(n)

 = 0

f d
(n)

 = 0

sn
(0)

sn
(i+1) = sn+1

f d
(n+1)

 = 0

f p
(n+1)

 = 0

Figure 2. Elastic predictor–plastic/damage corrector numerical procedure.
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The plastic/damage correction involves iterations until convergence
to the updated yield surfaces is achieved. Although this procedure
is coupled, the integration treatment can be uncoupled, because as
soon as the plastic return has been carried out, all necessary unknowns
for the damage update are given as well. In other words, as the
damage increment and the update of the damage yield surface are
related to the elastic strain state, they are performed following every
iteration.

Consequently, the set of nonlinear algebraic equations to be iterated,
assures return to the plastic yield surface:

s ¼ s0 þ C : �«e ¼ s0 þ C0 � Cdð Þ : �«���

ffiffiffi
3

2

r
N

 !
,

X ¼
1

1þ b�s
X0 þ c��

ffiffiffi
3

2

r
N

 !
,

Fp ¼ seff � sy � R1 1� e�� �0þ��ð Þ
� �

,

ð48Þ

where �« is the given total strain increment.
Using the expression for trial stress from the elastic predictor phase,

strial ¼ s0 þ ðC0 � Cd0Þ : �«, and the discretized damage evolution
Equation, (47)3, the stress return is identified as

s ¼ s0 þ C0 � Cd0 � C�d

� �
: �«���

ffiffiffi
3

2

r
N

 !

¼ strial � C�d : �"���

ffiffiffi
3

2

r
C : N:

ð49Þ

Finally, residual equations referring to Equation (48) can be obtained:

R� ¼ s� strial þ C�d : �«þ

ffiffiffi
3

2

r
��C : N ¼ 0,

RX ¼ 1þ b��ð ÞX� X0 �

ffiffiffi
3

2

r
c��N ¼ 0, ð50Þ

RFp
¼ Fp ¼ �eff � �y � R1 1� e�� �0þ��ð Þ

� �
¼ 0:
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In compact matrix notation, the problem is the following:

R j
� �� �

¼ R� RX Rfp

� �T
¼ 0f g, j

� �
¼ s X ��
� �T

: ð51Þ

Hence, increments in the unknowns, f�jg, are obtained using Newton–
Raphson iterations, fRg ¼ �½J� � f�jg, followed by the subsequent update of
the unknowns, fjgðiþ1Þ ¼ fjgðiÞ þ f�jg. The Jacobian matrix, ½J� ¼ @fRg=@fjg,
and the details about its derivatives are highlighted in the Appendix.

COMPUTATIONAL RESULTS

In order to apply the described formulation, LS-DYNA simulations of a
problem involving a thin metal sheet with a central circular hole were
performed, as seen in Figure 3. The following prototype set of geometrical
and material parameters has been used (no damage threshold has been set,
which means that damage propagates during the entire loading time).

� ¼ 0:3, E ¼ 205GPa, �y ¼ 265MPa, kd ¼ 2, Y0 ¼ 0,

R1 ¼ 200MPa, � ¼ 2, b ¼ 400, c ¼ 2 � 104 MPa, L ¼ 250mm,

W ¼ 125mm, R ¼ 20:84mm,

ð52Þ

R

x1

x2

W

L

u

u

Figure 3. Geometry and loading for a metal sheet with a central circular hole and
corresponding FE-mesh. Due to the double symmetry, only one quarter is analyzed.
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The metal sheet is subjected to a prescribed end displacement in the
x2-direction. Due to the double symmetry, only one quarter of the sheet
is analyzed. The finite element discretization is shown in Figure 3. For the
loaded sheet, damage–displacement (damage in the most damaged element)
curves are plotted in Figure 4.

Figure 4(a) illustrates the damage in the loading (x2) direction of the
mentioned element, while the perpendicular normal damage component for
the same element (for the outlined set of constitutive and evolution
equations), is represented by the solid line in Figure 4(b). It is obvious
that the damage in the x2-direction is considerably higher than in the
x1-direction. This is explained by the following reasoning, where we
enlighten the constitutive Equation (45)2 and the evolution Equation (45)8.

The evolution of damage in the sheet (plane stress condition) is driven by
the damage-conjugated forces, Y, obtained in the normal directions as

Y11 ¼ 2� "e11
� �2

þ "e12
� �2h i

þ l"e11 "
e
11 þ "

e
22

� �
,

Y22 ¼ 2� "e22
� �2

þ "e12
� �2h i

þ l"e22 "
e
11 þ "

e
22

� �
:

ð53Þ

Consequently, the damage growth is directly proportional to the damage
energy release rate, since the damage characteristic tensor is the unity
tensor, i.e.,

�d11 ¼
��

2Yekv
Y11, �d22 ¼

��

2Yekv
Y22, ð54Þ

where �� is obtained from the damage yield condition:

Fd ¼ Yekv � Y0 þ B0 þ��kdð Þ ¼ 0: ð55Þ

Figure 4. Damage for the most damaged element vs upper end displacement of the metal
sheet: (a) in the x2-direction (loading direction) and (b) in the x1-direction, driven by two
constitutive equations.
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As a particular damage increment is strongly dependent on the
elastic strain component in its own direction, the second term in
Equation (53)1 is negative (because 11-direction is the compression
direction). As a result, it levels out the first term so that the
damage propagation in that direction is minor. In order to obtain a
higher damage amount in the compression direction, the following form
of constitutive law (45)2 is proposed – a sum of absolute values of
two terms:

Y ¼ 2� «e � «ej j þ l «etr «eð Þ
 : ð56Þ

This yields a considerable damage increase in the x1-direction, which is
illustrated by the dashed line in Figure 4(b). The above equation is in
accordance with the requirement that damage must be positive.

CONCLUSIONS

Constitutive and evolution equations for elasto-plastic damaged
materials, exhibiting both isotropic and kinematic hardening, have been
derived. The concept of small elastic and large plastic deformations
applied on shell elements, with a coordinate system embedded in the
element, is equivalent to the ‘whole’ small-deformation model. The
second-order damage tensor was shown to give rise to elastic stiffness
degradation.

Thermodynamics with internal variables were used to provide a frame-
work for the derivation of the equations. Within the scope of this theory, the
constitutive and evolution equations for the observable and internal
variables, like damage, damage hardening, and variables that characterize
isotropic and kinematic plastic hardening, and to them conjugated forces,
could be derived from two thermodynamic potentials: the Helmholtz free
energy and the uncoupled dissipation potential. The general expression for
the inverted damage effect tensor, followed by the simplified expression for
material stiffness degradation, facilitates the derivation of the equations.
The numerical algorithm for calculation of the system of constitutive
equations has been developed and implemented as a user material
subroutine in the explicit finite element program LS-DYNA. On the
whole, the model shows good convergence.

The elasticity law was derived assuming material isotropy, since no
damage is present at the initial undamaged state. Furthermore, the
development of damage, i.e., the damaged elastic response, introduces
certain orthotropy. A general orthotropic law depends on nine constant
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parameters, while in this case, three dynamic damage components (besides
Young’s modulus and Poisson’s ratio) enforces certain limitations on the
elastic response. Cordebois and Sidoroff (1982) remarked that the
importance of these limitations could only be evaluated by experiments.

Zhu and Cescotto (1995) defined the plastic yield surface in the space of
the effective stresses. In the definition of Hayakawa et al. (1998), increased
effects of stress due to damage were specified for the plastic yield surface
through a characteristic tensor containing the damage. On the contrary, the
model described in this article proposes the yield surface in the space of the
real stresses. However, damage is indirectly involved in the surface definition
as a result of the elastic law, since the constitutive equation describing the
real stress is a function of the degraded elastic stiffness caused by the
propagating damage.

Cyclic loading causes a micro-crack opening and closing phenomenon.
Since the main object of the present model is to predict cracks in ductile,
strain-rate independent metal sheets during impact, this phenomenon is not
considered. However, future work on identification of the material
parameters, which will combine experiments and simulations, will show
whether or not such a mechanism is of importance for the current
application.

APPENDIX

General Notations

Let ! and & be two fourth-order tensors, A and B two second-order
tensors (nonsymmetric in general) and feig the orthonormal basis in a
Cartesian coordinate system:

! ¼ �ijklei � ej � ek � el,

& ¼ �klmnek � el � em � en,

A ¼ Aklek � el,

B ¼ Bijei � ej:

ð57Þ

The following inner products are established:

! : & ¼ �ijkl�klmnei � ej � em � en,

! : A ¼ �ijklAklei � ej,

A � B ¼ AikBkjei � ej:

ð58Þ
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The trace and the Euclidean norm of a second tensor A are:

tr Að Þ ¼ Aii,

Ak k ¼
ffiffiffiffiffiffiffiffiffiffiffi
A : A

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
AijAji

p
:

ð59Þ

The identity tensors of second- and fourth-order’s are given as:

d ¼ �ijei � ej,

I ¼
1

2
ð�ik�jl þ �il�jkÞ ei � ej � ek � el,

ð60Þ

where

�ij ¼
1 if i ¼ j

0 if i 6¼ j

� �
is the Kronecker delta symbol.

Dyadic products �, ��, and � are read as:

A� Bð Þijkl ¼ Að Þij Bð Þkl,

A ��B
� �

ijkl
¼ Að Þik Bð Þjl,

A�B
� �

ijkl
¼ ðAÞilðBÞjk:

ð61Þ

Useful Notations and Derivatives

The stiffness degradation in Equations (46) and (49):

Cd0 ¼ � d0 ��dþ d ��d0 þ d0�dþ d�d0
� �

þ l d0 � dþ d� d0ð Þ,

C�d ¼
��

2Yekv
� Y ��dþ d ��Yþ Y�dþ d�Y
� �

þ l Y� dþ d� Yð Þ
� �

:
ð62Þ

The Jacobian matrix:

J½ � ¼

J�� J�X J��
JX� JXX JX�
J�� J�X J��

2
4

3
5: ð63Þ
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Specific statements are given as:

J�� ¼
@R�
@s

¼ Iþ

ffiffiffi
3

2

r
��C :

@N

@s
,

J�X ¼
@R�
@X

¼

ffiffiffi
3

2

r
��C :

@N

@X
,

J�� ¼
@R�
@��

¼

ffiffiffi
3

2

r
C : N,

JX� ¼
@RX

@�
¼ �

ffiffiffi
3

2

r
c��

@N

@s
,

JX� ¼
@RX

@X
¼ 1þ b��ð ÞI�

ffiffiffi
3

2

r
c��

@N

@X
,

JX� ¼
@RX

@��
¼ bX�

ffiffiffi
3

2

r
cN,

J�� ¼
@RFp

@s
¼

@

@s

3

2
sD � XD
� �

: sD � XD
� �� 	1=2

¼

ffiffiffi
3

2

r
Ndev,

J�� ¼
@RFp

@X
¼ �

ffiffiffi
3

2

r
Ndev,

J�� ¼
@RFp

@��
¼ �R1de�d �0þ��ð Þ,

ð64Þ

where

@N

@s
¼ �

@N

@X
¼

1

sD � XD


 

 Idev �N�Ndev

� �
,

Idev ¼
@ sD � XD
� �

@s
¼ �

@ sD � XD
� �

@X
,

Ndev ¼
@ sD � XD


 



@s
¼ �

@ sD � XD


 



@X
,

@

@s

1

sD � XD


 


" #

¼ �
@

@X

1

sD � XD


 


" #

¼ �
Ndev

sD � XD
� �

: sD � XD
� �� �3=2

¼ �
Ndev

sD � XD


 

3 :

ð65Þ
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