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Modeling of the Degradation of Elastic
Properties due to the Evolution

of Ductile Damage

MATHIAS WALLIN,* MATTIAS OLSSON AND MATTI RISTINMAA

Division of Solid Mechanics, Lund University, P.O. Box 118
SE-22100 Lund, Sweden

ABSTRACT: An elasto-plastic constitutive model for porous materials is formu-
lated within the thermodynamic framework. The formulation facilitates a natural
modeling of damage as well as growth and the shrinkage of voids. Metal plasticity is
used for demonstrating the possibilities of the formulation. The yield function
employed is assumed to depend upon the void-volume fraction, whereas the free
energy is dependent on a scalar damage field. To show the capabilities of the model
the algorithmic constitutive equations are derived and implemented into a finite
element program. It is shown that an extremely simple system involving only two
scalar equations needs to be solved in the constitutive driver. Two numerical
examples are considered: the necking of an axi-symmetric bar and localization in a
notched specimen.

KEY WORDS: ductile void growth, damage mechanics, thermodynamics.

INTRODUCTION

I
F A CONTINUOUSLY increasing load is applied to a structure, this obviously
leads to failure of the structure. In metals, the failure is to a high degree

governed by the growth and nucleation of voids or pores and by the
formation of microcracks. A large number of experimental studies of the
mechanisms governing the kinematics of pores in metals have
been published, e.g., Hancock and Mackenzie (1976) for an investigation
of structural steel. It has been found that pores can originate from
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second-phase inclusions in the material, such parameters as size, stiffness,
and orientation of the particles have been found to influence the nucleation
process. The coalescence of neighboring voids is another important
mechanism which plays an important role in the deformation process
in metals at moderate to large levels of void density.

The evolution of voids is usually modeled by introducing an additional
scalar field which represents the void-volume fraction. Two factors are
assumed to contribute to the evolution of the porosity, or of the void-
volume fraction, one of them accounting for the growth of existing voids
and the other being concerned with the nucleation of the voids. Void growth
is assumed to be driven by the hydrostatic pressure and it is usually
modeled by the evolution law proposed by Gurson (1977). The rate of
nucleation of voids is due to decohesion at the particle–matrix interface at
second phase material inclusions and is usually assumed to consist of one
part dependent upon the rate of change of the yield stress of the matrix
material and of another part dependent upon the hydrostatic pressure
(Needleman and Rice, 1978).

The frequently employed pressure-sensitive yield criterion proposed by
Gurson (1977) is micromechanical-based and it is obtained from an upper-
bound solution to the situation in which a void is present in an
incompressible rigid–plastic matrix. Gurson’s model was later modified by
Tvergaard (1988) to improve its predictive capabilities for low void-volume
fractions. Brown and Embury (1973), on the basis of experiments and of a
model for local necking showed that a significant degree of coalescence of
voids occurs at some threshold value of the void-volume fraction.
This phenomena was originally incorporated into the Gurson model by
Tvergaard and Needleman (1984). In the present study, an alternative yield
function is employed (Olsson, 2003). Both of the yield conditions
aforedescribed allow for growth and shrinkage of the voids. This is in
contrast to the phenomenological model proposed by Rousselier (1987),
which only allows increase in the void-volume fraction. Despite that
formulations for the anisotropic growth of voids exist (Benzerga et al., 2002;
Wang et al., 2004; Lassance et al., 2006), the present study is restricted, for
the sake of simplicity, to isotropic void growth.

In addition to the influence of the void-volume ratio authors consider
the degradation of the free energy within the classical damage framework
(Lemaitre and Chaboche, 1990; Kachanov, 1958). In general, when
considering anisotropic damage higher order tensors must be introduced
in the formulation (Menzel et al., 2005). Here, we will restrict ourself
to isotropic damage and consequently a scalar damage field is sufficient.
The scalar-valued damage field is introduced in Helmholtz’s free
energy which allows the elastic properties to naturally depend upon the
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damage accumulation. In the present formulation the evolution of damage
is governed by the void-volume evolution. In fact, the damage
accumulation is taken as the maximum void-volume fraction during the
loading process. This coupling effect (damage accumulation–void growth),
normally ignored in micromechanics-based formulations, is taken into
account for the present study.

In micromechanics based models of porous materials in which there is
isotropic hardening, the postulate of equivalent plastic power is commonly
adopted as the basis to form evolution law for isotropic hardening.
This contrasts with thermodynamically based plasticity theories, in which
common use is made of the postulate of maximum dissipation, which leads
to the so-called associated evolution laws (Ottosen and Ristinmaa, 2005).
In the present work, both the associated evolution laws for plastic flow and
the variables associated with isotropic hardening are adopted. It is shown
that the balance of plastic power at both a microscopic and a macroscopic
level is recovered as a special case.

The algorithmic development of constitutive models in which void growth
and damage evolution are included has been considered earlier by, e.g.,
Aravas (1987), Mahnken (1999), Mahnken (2002), Kojic et al. (2002), and
Mühlich and Brocks (2003). Usually an implicit backward Euler approx-
imation and/or an exponential update (Weber and Anand, 1990) is applied
to the constitutive equations, along with requiring that the yield criterion is
fulfilled at the end of the integration interval. This approach needs to be
used with care, however, since it has been shown (Wallin and Ristinmaa,
2001), that damage evolution is very sensitive to the step-size. In the present
study, the exponential update is applied to the evolution law for plastic flow,
whereas the backward Euler scheme is applied to the isotropic hardening
evolution law. The efficiency of the integration procedure is increased by
making use of the coaxiality of the elastic deformation and the gradient of
the yield function.

PRELIMINARIES

Let �0 � R
3 denote the body in the reference configuration and let

particles in the reference configuration be identified by their position
vector X. The motion of the particles is described by the nonlinear mapping
u : �0 � T ! � � R

3, where T denotes the time interval and � defines
the body in the deformed configuration. The linear mapping defined by the
deformation gradient F ¼ u� JX, describes the local deformation
of the body. The Jacobian is defined as J ¼ detF ¼ �0=� > 0, where
�0 and � are the densities in the reference and current configuration,
respectively.
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To introduce plasticity, the multiplicative split of the deformation
gradient is adopted,

F ¼ F eF p ð1Þ

where F e and F p define, respectively, the elastic and plastic contributions
of the total deformation gradient (Kröner, 1960; Lee, 1969). For metal
plasticity, F e describes the reversible distortion of the crystal lattice whereas
F p describes the irreversible deformation of it. J e and J p are defined, in a
similar manner to J as J e ¼ detF e and J p ¼ detF p, respectively. To
simplify the derivations it will be assumed that the intermediate configura-
tion is isoclinic. For later use, it is noted that the split of the deformation
gradient in Equation (1) provides the following kinematic relation

L ¼ _FF �1 ¼ l e þ F el pF e�1 ð2Þ

where L is the spatial velocity gradient and where both l e ¼ _F eF e�1

and l p ¼ _F pF p�1 are introduced. Moreover, for later purposes the
symmetric part of L is introduced as the rate of deformation tensor,
i.e., D¼ sym(L).

For metals, the concept of plasticity includes such irreversible phenomena
as generation and movements of dislocations as well as nucleation and the
growth of voids and microcracks. The generation and movement of
dislocations are traditionally modeled as an isochoric process whereas the
process of void-volume growth obviously involves a change of volume. The
present study is restricted to isotropic void-volume growth and nucleation,
the voids being assumed, to be spherical in shape and to be uniformly
distributed, allowing them to be described by a single scalar J v. The
variable, J v is defined as the volume change due to the voids present in a
matrix material. Formally, we introduce J v by considering a representative
volume element (RVE) and defining it as the ratio of the total volume � to
the RVE and the volume occupied by the matrix material �m, where the
volume of the RVE is decomposed into � ¼ �m þ �v, where �v is obviously
the volume occupied by the voids. It then follows that

J v ¼
�

�m
ð3Þ

The porosity f of the porous materials or the void-volume fraction, as is
usually employed in constitutive descriptions, is defined as

f ¼
�v
�

ð4Þ
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which can be related to J v as

f ¼ 1�
1

J v
ð5Þ

The evolution of voids is usually assumed to be a contribution of two
different mechanisms; namely, the growth of existing voids and the
nucleation of voids, or the formation of new voids from existing inclusions.
Thus, the evolution law of J v could be written formally as

_ln J v ¼ ð
_ln J vÞgrowth þ

_
ðln J vÞnucleation ð6Þ

where the first term on the right-hand side is due to growth and the second
term is present when the threshold for the nucleation of a new void has been
reached. To simplify the presentation, only the growth of existing voids will
be considered.

Taking advantage of the fact that the Jacobian J is defined as the fraction
of the volume in the deformed configuration and of the volume in the
reference configuration, i.e., J ¼ �=�0, where �0 is the total volume in the
reference configuration of the RVE, allows for a very useful interpretation
of the damage variable J v to be derived. Using the relationship J ¼ J eJ p,
which follows from Equation (1), and that J ¼ �=�0 it can be concluded that

_ln J ¼
_�

�
¼

_ln J e þ
_ln J p ð7Þ

However, from Equations (3) and (5) it follows that

_ln J v ¼ _J v=J v ¼
_�

�
�

_�m
�m

¼
_f

1� f
ð8Þ

which allows the important relation

_ln J v ¼
_ln J e þ

_ln J p �
_�m
�m

ð9Þ

to be established. Generally, �m develops both for elastic and plastic
response. It will be assumed here that the matrix material is plastically
incompressible, so that �m is dependent upon the elastic response only.
By assuming that void growth is due only to plasticity, it can be concluded
that

_ln J e ¼ _�m=�m

holds, and also that

_ln J v ¼
_ln J p ¼ tr l pð Þ ð10Þ
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where the operator tr denotes the trace of a second-order tensor. The second
equality in Equation (10) is found by applying Liouville’s theorem to F p.
The well-known expression for the evolution law for the void-volume
fraction is obtained if advantage of Equation (8) is taken, i.e.,

_f ¼ ð1� f Þtrðl pÞ ð11Þ

is obtained. The format (11) is the evolution law for void growth that
Gurson (1975) proposed. The evolution law just mentioned is redundant in
the present formulation, however, and need not to be considered when the
constitutive model is established, a conclusion which follows from the fact
that an integration of Equation (10) is possible, yielding

J v ¼ J voJ p ð12Þ

where J vo is due to voids present in the reference configuration. Thus,
knowledge of J p allows J v or f to be calculated explicitly via Equation (5).
This will be used later when the evolution laws are established.

In addition to the void-volume ratio given by f (or Jv) an additional scalar
field � representing the damage accumulation is introduced in the model.
The motivation for introducing the field � different from the void-volume
fraction f is to memorize the largest volume of void-volume ratio.

Thermodynamics

An admissible thermodynamic process is defined as one which satisfies the
postulate of the conservation of energy (first law of thermodynamics) and
the postulate of the growth of entropy (second law of thermodynamics)
(Truesdell and Toupin, 1960). The second law of thermodynamics,
which places restrictions on the model, can be reduced to the dissipation
inequality

�0 ¼ s : D�
J

�
q � Jx� � �0 _ � 0 ð13Þ

where the Kirchhoff stress s is related to the Cauchy stress via s¼ Jr.
The temperature and heat flux vector are denoted as � and q, respectively.
In the elasto-plastic model considered here, both isotropic hardening and
elastic degradation is considered. Assuming isothermal conditions, it is
postulated that Helmholtz’s free energy can be written as  ðC e, "pm,�Þ, where
C e ¼ F eTF e is the elastic deformation tensor and "pm is the internal variable
associated with isotropic hardening in the model. The internal variable �
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is associated with the elastic degradation due to damage and in the present
formulation an isotropic damage dependence is utilized. If other effects are
considered, additional internal variables need to be introduced into
Helmholtz’s free energy. For present purposes, however, the earlier format
is sufficient. Inserting Helmholtz’s free energy into the dissipation inequal-
ity (13) and taking advantage of Equation (2) results in

�0 ¼ s� 2�0F
e @ 

@Ce F
eT

� �
: Dþ S d _�þ D : l p � R _" p

m �
J

�
q � Jx� � 0 ð14Þ

where the Mandel stress tensor, D, and the thermodynamic force, R,
conjugated to _"pm and damage stress S d were introduced as

D ¼ 2�oC
e @ 

@C e
, R ¼ �0

@ 

@ " p
m

and S d ¼ ��0
@ 

@�
ð15Þ

One allowable solution is given by the following constitutive relations for
the Kirchhoff stress

s ¼ 2�0F
e @ 

@C e
F eT ð16Þ

which allows the dissipation inequality (14) to be reduced to

�0 ¼ D : l p þ S d _�� R _" p
m �

J

�
q � Jx� � 0 ð17Þ

A conservative approach to fulfill the second law is to split of the dissipation
inequality (17) into

�ð1Þ0 ¼ D : l p � R _" p
m � 0, �ð2Þ0 ¼ S d _� � 0, �therm0 ¼ �

J

�
q � Jx� ð18Þ

that means � ð1Þ
0 � 0, � ð2Þ

0 � 0 and � therm
0 � 0 are fulfilled independently.

Moreover, since no thermal coupling effects will be considered it will be
assumed that � therm

0 � 0.
In order to establish proper evolution laws for l p and _" p

m, the first part of
the dissipation inequality (18) needs to be considered. Associated plasticity
will be adopted here and a convex yield function FðD;R; J vÞ � 0 defining the
elastic region is introduced. Note that J v is considered as being a parameter
in F. To ensure that �ð1Þ0 � 0 we adopt the postulate of maximum dissipation
which can be formulated as a minimization problem by introducing the
Lagrangian L ¼ ��ð1Þ0 þ �F. The Lagrangian multiplier is denoted as �.
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For given fluxes l p and _" p
m as well as J v, stationarity with respect to the

Mandel stress D and R of the Lagrangian functional L, provide the
following evolution laws:

l p ¼ �
@F

@D
and _" p

m ¼ ��
@F

@R
ð19Þ

Note that in the present formulation the evolution of the void-volume,
cf. Equations (10) and (12), is given implicitly by the evolution law (19a).

The plastic multiplier � is determined from the Kuhn–Tucker conditions,
which also follow from the minimization procedure

� � 0, F� ¼ 0, and F � 0 ð20Þ

From the conditions in Equation (20), it follows that plastic loading
can take place only when F¼ 0. For plastic loading to continue, it is
required that _F ¼ 0 hold. The relation _F ¼ 0 is known as the consistency
relation.

When considering elasto-plastic constitutive models coupled with
damage, one important question is how to establish the evolution law for
the damage variable. A possible form for the evolution of the damage is to
associate the damage to the evolution of the void-volume ratio. Here, we will
use � to memorize the most severe loading conditions, that is the largest
value of the void-volume ratio. Thus, it turns out that a natural choice for
the evolution of � is given by

_� ¼
_f if � ¼ f and _f > 0
0 otherwise

�
ð21Þ

i.e., the damage field � is defined by the maximum void volume during the
loading process. From Equation (21) it follows that � is an internal variable
that memorizes the maximum void-volume ratio. Evidently, more refined
suggestions for _� can be proposed, however, the format (21) suffices for the
present purposes. To proceed, let us turn to the stress conjugated to �, i.e., S d.
Instinctively, we expect that the stiffness and the hardening of the material
will decrease with increasing damage which indicates that S d is positive, cf.
Equation (15). In the following discussion, we will consequently assume that
S d>0, which along with Equation (21) reveals that �ð2Þ0 � 0.

Remark: Note that for the situation where no decrease in void growth
takes place the proposed evolution law (21) will imply that the void-volume
ratio equals the damage, i.e., � ¼ f.
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SPECIFIC CONSTITUTIVE MODEL

Assuming isotropic elasticity and isotropic plastic hardening, Helmholtz’s
free energy is chosen as

�o ðC
e, " p

m,�Þ ¼
1

2
K I e1
� �2

þ2GJ e
2 þ R1 " p

m þ "o expð�"
p
m="oÞ

� �
þ
1

2
H1ð" p

mÞ
2

ð22Þ

where R1, H1, and "o are material parameters describing the hardening of
the material. That damage accumulation is assumed to enter the free energy
via the hardening parameters R1 and H1, as well as the bulk modulus K
and the shear modulus G. The two strain invariants I e1 and J e

2 present in
Equation (22) are defined as

I e1 ¼ tr lnU eð Þ ¼ ln J e and J e
2 ¼

1

2
lnU eð Þ

dev lnU eð Þ
dev

h i
ð23Þ

where the superscript dev denotes the deviatoric part of a second-order tensor.
U e is the right elastic stretch tensor which follows from the polar
decomposition of F e ¼ R eU e. The Kirchhoff stress, cf. Equation (16), and
the Mandel stress, cf. Equation (15a), both resulting from Equation (22),
are given as

s ¼ K ln J e1þ 2GðlnV eÞ
dev and D ¼ K ln J e1þ 2GðlnU eÞ

dev ð24Þ

where V e is the left stretch tensor following from the polar decomposition
F e ¼ V eR e. Note that Helmholtz’s free energy (22) gives rise to a natural
isochoric–volumetric split of the elastic stress–strain relation. For complete-
ness, it is noted that the thermodynamic force R conjugated to the effective
plastic strain, " p

m, becomes

R ¼ R1ð1� expð�" p
m="0ÞÞ þH1"

p
m ð25Þ

Using the results of Budiansky (1970), and following Davison et al. (1977)
and Rabier (1989), a model can be found, in which the bulk modulus K and
the shear modulus G depend on the damage. For a composite with two
constituents, one of which is the collection of voids, the voids being associated
both with a zero shear modulus and a zero bulk modulus, it follows that

K ¼ Ko 1�
3 1� �oð Þ

2 1� 2�oð Þ
�

� �

G ¼ Go 1�
15 1� �oð Þ

7� 5�o
�

� � ð26Þ
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where Ko, Go, and �o are the bulk modulus, the shear modulus, and
Poisson’s ratio, respectively, for the virgin material. In analogy to the elastic
parameters, it is natural to assume that both R1 and H1 depend on �
(Olsson and Ristinmaa, 2003). Since no explicit expressions of their
dependencies on the damage can be found in the literature, it is will
conveniently be assumed that

R1 ¼ Rm
1 1� hð�Þð Þ, H1 ¼ Hm

1ð1� hð�ÞÞ ð27Þ

where Rm
1 will be identified later as the saturation of the exponential part of

the hardening of the matrix material and Hm
1 as the asymptotic hardening

modulus of the matrix material for large values of " p
m. The function h(�)

describing the dependency on the void-volume fraction, will be considered
later on.

Remark: It was previously assumed that S d>0. For the present model it
can easily been shown that S d ¼ ��0ð@ =@�Þ > 0 if h

0

ð�Þ > 0.

In Olsson (2003) a yield function for porous materials was proposed.
This yield function by Tvergaard (1981) and Tvergaard and Needleman
(1984), together with modifications, similar to those introduced for
Gurson’s (1977) yield function, will be adopted here. The format of the
yield function is given as

F ¼ B �2
e þ

1

2

ð1� q1 f
�ð f ÞÞq2�t

lnðq1 f �ð f ÞÞ

� �2

� ð1� q1 f
�ð f ÞÞ�mð Þ

2

 !
ð28Þ

where B ¼ ð1� q1 f
�ð�ÞÞ=ð2ð1� q1 f

�ð f ÞÞ2�mÞ. Moreover, �m denotes the
yield stress for the matrix material, �e ¼ ðð3=2Þ'dev : 'devÞ

1=2 and �t ¼ trð'Þ.
The material parameters q1 and q2 present in Equation (28) are similar to
the parameters introduced by Tvergaard (1981) to improve the Gursonmodel
for low void-volume fractions. The function f �ð f Þ taken from Tvergaard
and Needleman (1984) is defined as

f �ð f Þ ¼

f for f � fc

fc þ
f �u � fc
ff � fc

ð f� fcÞ for f > fc

8><
>: ð29Þ

This function is so adjusted that zero stress is obtained when f � ¼ f �u ¼ 1=q1,
complete loss of stress-carrying capacity thus being obtained for f ! ff.
On the basis of experiments and a simple model for local necking,
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Brown and Embury (1973) found the void-volume fraction at coalescence to
be fc 	 0:15 and the analysis by Andersson (1977) showed that the void-
volume fraction at fracture is approximately 0.25. The reason for
introducing the scaling B is that a simple interpretation of the plastic
multiplier is obtained. Note also that since ð1� q1 f

�ð f ÞÞ=lnðq1 f
�ð f ÞÞ ! 0

as f ! 0, Equation (28) degenerates in the case of no voids being present, to
the usual von Mises criterion. To obtain a yield stress of the (damage free)
matrix material, that does not depend on the damage accumulation, the
following form is chosen

�m ¼ �y0 þ Rð" p
m,�Þ=ð1� hð�ÞÞ ð30Þ

where �y0 denotes the initial yield stress of the matrix material. Accordingly,
use of Equations (25) and (27) enables the yield stress of the matrix material
to be identified as

�m ¼ �y0 þ Rm
1ð1� expð�" p

m="0ÞÞ þHm
1"

p
m ¼ �mð"

p
mÞ ð31Þ

which clearly shows the yield stress of the matrix material, �m, as previously
stated, is independent of the damage. For simplicity, it will also be assumed
that hðzÞ ¼ q1 f

�ðzÞ, since this yields a natural format for the mechanical
dissipation. The present model does not consider the size and location of the
individual pores, i.e., the formulation does not involve a length scale. In
order to take that effect into account, Håkansson et al. (2006) introduced a
smeared void-volume ratio and consequently a length scale into the Gurson
formulation. This approach does, however, introduce an additional
boundary value problem and will for simplicity not be utilized in the
present formulation.

The implications of the proposed model will now be considered. Taking
advantage of Equations (20b), (28), and (30) results in the following
expression for the rate of effective plastic strain:

_" p
m ¼ � ð32Þ

Straightforward derivation using Equations (19), (28), and (32) results in

D : l p ¼ ð1� q1 f
� ð�ÞÞ�m _"

p
m ð33Þ

Note that for the situation where q1¼ 1 and f ¼ �, Equation (33) reduces
': l p ¼ ð1� f Þ�m _"

p
m which usually is adopted as the basis to form the

evolution laws for _" p
m.
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Finally, the explicit format for the dissipation shown in Equation (17) will
be investigated. Using the results shown in Equations (32) and (33) one can
express the dissipation as

�ð1Þ0 ¼ D : l p � R _" p
m ¼ �ð1� q1 f

�ð�ÞÞ�y0 ð34Þ

From Equation (34), one can conclude that the dissipation inequality is
clearly fulfilled. Moreover, since �ð2Þ0 vanish for the situation where _� ¼ 0, it
follows that for the situation � 
 0, the mechanical dissipation degenerates
to the dissipation resulting from an associated isotropic hardening von
Mises formulation.

NUMERICAL TREATMENT

In order to make use of path-dependent constitutive models in a finite
element context, numerical algorithms for the integration of the constitutive
equations must be employed. Use of an implicit finite element formulation
also requires establishment of the algorithmic tangent-stiffness tensor. Thus,
a consistent linearization of the integration algorithm is necessary if the
quadratic convergence rate in the equilibrium iterations is to be preserved.
In the present study, an implicit integration algorithm based on the
exponential map (Weber and Anand, 1990) and the backward Euler scheme
is applied to the constitutive equations. To increase the efficiency of the
integration procedure, a spectral decomposition of the constitutive
equations is employed.

Integration Scheme

Before entering the discussion regarding the updating of the state
variables, a check on whether plastic evolution has taken place during the
load increment is needed. The trial quantities used to determine whether
elastic or plastic response has taken place are obtained from an assumed
purely elastic response:

F e, tr ¼ F nþ1ðF p, nÞ
�1, " p, tr

m ¼ " p, n
m , f tr ¼ f n, �tr ¼ �n ð35Þ

where the superscripts tr and n refer to quantities in the trial state and in the
last accepted equilibrium state, respectively. For elastic loading, i.e., where
FðDðF e, tr,�trÞ,Rð" p, tr

m ,�trÞ, f trÞ � 0, the trial quantities are accepted as
the updated state. For the case, however in which, FðDðF e, tr,� trÞ,
Rð" p, tr

m ,�trÞ, f trÞ > 0, plastic response has taken place. In addition to this
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standard trial state we have to investigate the algorithmic counterpart to
Equation (21). For the situation where � n ¼ f n and trð'trÞ > 0 we use that
� nþ1 ¼ f nþ1 whereas � nþ1 ¼ � n otherwise. The internal variables are then
updated using an exponential update for F p and a backward-Euler update
for " p

m, such that

F p ¼ expð��@DF ÞF p, n ¼ A pF p, n,

"pm ¼ " p, n
m ���@RF,

FðDðC e,�Þ,Rð" p
m,�Þ, f Þ ¼ 0

ð36Þ

a system of non-linear equations is to be solved. To simplify the notation,
the superscript nþ 1 was dropped in Equation (36). Note that although � is
present in Equation (36) no extra algebraic equation needs to be solved. To
proceed it will be assumed that � ¼ f, i.e., _� ¼ _f. The situation _� ¼ 0 is found
by taking � ¼ �tr in the following derivations.

Due to the symmetry of C e, the dimension of the system (37) can be
reduced if the following equations are considered

RC e ¼ C e � Ap�TC e, trAp�1

R"pm
¼ "pm � " p, tr

m þ��@RF

RF ¼ FðDðC e, f Þ,Rð" p
m, f Þ, f Þ

ð37Þ

in which C e, tr ¼ F e, tr,TF e, tr is introduced. Note that the updated state
Y ¼ ½C e, " p

m, ��� can be obtained by a direct solution of Equation (37) (i.e.,
R ¼ ½RC e , R" pm

, RF� ¼ 0); this approach is not employed here, however, a
further reduction of the system (37) being carried out instead.

In order to investigate whether the algorithm can be simplified, the
coaxiality of the terms involved in Equation (37a) is considered. For the case
in which F ¼ Fð�e,�t,R, f Þ, the plastic flow direction can be expressed as

@DF ¼
3G

�e

@F

@�e
lnU e

i þ
@F

@�t
1 ð38Þ

where the subscript i denotes the isochoric part of the tensor in question.
Using the spectral decomposition lnU e

i ¼
P

� ln �
e, �
i n� � n� it follows

from Equation (38) that @DF is coaxial to C e and is thus also coaxial
to expð���@DF Þ. From Equation (37a) it can then be concluded that
all of the components of Equation (37a) are coaxial to C e (or C e, tr).
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Therefore, since C e, tr is fixed during the solution process, only one
eigenvalue problem needs to be solved.

Using the yield function in Equation (28), the plastic flow direction can be
expressed as

@DF ¼
X
�

g�n� � n�, g� ¼ 2B 3G ln �e, �i þ
1

4

ð1� q1 f
�Þ

2q22�t

ðlnðq1 f �ÞÞ
2

� �
ð39Þ

The results provided by Simo and Taylor (1991) allow the eigenvalue basis
n� � n� to be expressed in terms of C e, tr and invariants of C e, tr. In the case
in which coinciding eigenvalues are present, a perturbation of the
eigenvalues is performed.

From the isochoric/volumetric split of Equation (37a), it follows that J e is
related to J e, tr ¼ detðF e, trÞ in the following manner:

J e ¼ J e, trexp
�
���

X
�

g�
	
¼ exp �

3

2
��B

ð1� q1 f
�Þ

2q22�t

ðlnðq1 f �ÞÞ
2

� �
J e, tr ð40Þ

where
P

� ln �
e,�
i ¼ 0 was used to obtain the second equality in Equation (40).

The use of Equation (40) also enables Equation (37a) to be reduced to the
simple format

ln �e,�i ð1þ 6BG��Þ � ln �e, tr, �i ¼ 0 ð41Þ

Thus, the isochoric part of Equation (37) is given by Equation (41) and the
volumetric part by Equation (40). Finally, by introducing the invariant
J e, tr
2 ¼ ð1=2Þ

P
�ðln �

e, tr, �
i Þ

2 it follows that rather than solving Equations
(37), (40) and using (41) in (37c) provide the following reduced system:

R1 ¼ J e � exp �
3

2
��B

ð1� q1 f
�Þ

2q22�t

ðlnðq1 f �ÞÞ
2

� �
J e, tr

R2 ¼
12G2J e, tr

2

ð1þ 6GB��Þ2
þ
1

4

ð1� q1 f
�Þ

2
ðq2�tÞ

2

ðlnðq1 f �ÞÞ
2

� ð1� q1 f
�Þ

2�2m ð42Þ

where Equation (37b) obviously provides "pm ¼ "p, nm þ��. A system of two
equations and two unknowns ð��, J eÞ is thus obtained. To summarize,
once the solution to Equation (43) has been found, the state is trivially
updated using Equations (39), (41), and (36). Note that in Equation (42),
f (and �) is calculated using Equations (5), (12) and from the relation
J p ¼ J=J e.
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The Newton–Raphson iteration scheme that is used to obtain the updated
solution is simply given as

Y iþ1 ¼ Y i �
@R
@Y

ji
� ��1

Ri ð43Þ

where Y is defined as Y ¼ ½J e ���. Since calculation of the Jacobian @YR,
although straightforward, is lengthy, it will not be presented here.

ATS Tensor

The algorithmic tangent stiffness tensor, L, that enters the consistent
linearization of the equilibrium equations, is defined as

L ¼ 2
@S

@C
, S ¼ F p�1S eF p�T, S e ¼ 2�0

@ 

@C e
ð44Þ

where S and C represent the second Piola–Kirchhoff stress tensor and the
Cauchy–Green deformation tensor, respectively. Straightforward differen-
tiation of Equation (44) leads to

L ¼ P :
@S e

@C e :
@C e

@C
þ
@S e

@�

@�

@C

� �
þM :

@Ap�1

@C
ð45Þ

where the Cartesian components of the fourth-order tensors P and M are
defined as

Pijkl ¼ 2F
p�1
ik F

p�1
jl , Mijkl ¼ 2 F

p�1, n
ik S e

lt F
p�1
jt þ F

p�1
it S e

tlF
p�1, n
jk

� 	
ð46Þ

On the right-hand side in Equation (45), the terms @C eS e and @�S e within
the parentheses follow from a direct differentiation using results provided by
Miehe (1998). The remaining derivatives in Equation (45) are obtained from
spectral representations of A p and C e, i.e., from

A p ¼
X
�

expð��g�Þn� � n� and C e ¼
X
�

ð�e,�Þ2n� � n� ð47Þ

The derivatives of A p�1 and C e can then be obtained as

dA p�1 ¼
X
�

dðexpð���g�ÞÞn� � n� þ expð���g�Þdðn� � n�Þ ð48Þ
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and

dC e ¼
X
�

dðð�e, �Þ2Þn� � n� þ ð�e, �Þ2dðn� � n�Þ ð49Þ

respectively. From Equations (48) and (49) it follows that ��, �e, �, g�, and
n� � n� need to be linearized. Some of the derivatives sought, however, are
ones already implicitly calculated within the stress integration procedure and
to realize this, consider the system Equation (42), which in fact can be
written as

RðYðXtrÞ,XtrÞ ¼ 0 8Xtr ð50Þ

where X tr ¼ ½J e, tr J e, tr
2 � are the variables that drive the evolution of the

internal variables. Differentiation of Equation (50) results in

@Y

@Xtr ¼ �
@R
@Y

� ��1 @R
@Xtr ð51Þ

Since the derivative @XtrR is obtained from straightforward differentiation of
Equation (42), and since @YR is used in the solution process in Equation (42),
the important derivatives of J e and �� with respect to J e, tr and J e, tr

2 are
provided by Equation (51). For the remaining differentiations the reader is
referred to the Appendix, where all the linearization found in Equation (45)
can be obtained in a rather simple manner.

RESULTS

Two examples will be considered to illustrate the capabilities of the model.
The parameters related to the elastic properties are given by

G0 ¼ 80:2GPa, K0 ¼ 164:2GPa, �0 ¼ 0:3

whereas the plastic behavior is governed by

�y0 ¼ 450MPa, "0 ¼ 59:1 � 10�3, Rm
1

¼ 265MPa,Hm
1 ¼ 129:2MPa

The elastic and the plastic material data employed was taken from Wriggers
et al. (1992). The material data related to the void growth was chosen
in accordance with Tvergaard and Needleman (1984). The initial void-
volume fraction is set to f0 ¼ 0:005 and the coefficients related to the
modifications for low void-volume fraction are chosen as q1 ¼ 1:5 and
q2¼ 1. Moreover, in accordance with f0 ¼ 0:005 we assume that the initial
damage field is given by �0 ¼ f0. The parameters related to coalescence of
the voids are chosen as

fc ¼ 0:15, ff ¼ 0:25, f �u ¼ 1=q1
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The constitutive parameters given earlier characterize a typical steel and
in order to fit the model to a experimental data use can be made of the
optimization procedure by Springman and Kuna (2005).

The elements used in the numerical calculations are displacement based
four-node quadrilaterals. It is well known that finite element simulations of
damage-dependent materials result in mesh-dependent solutions in the final
softening stage. To resolve this issue, gradient-enhanced formulations can be
utilized (de Borst and Mühlhaus, 1992; de Borst et al., 1996; Svedberg and
Runesson, 1997; Håkansson et al., 2006) or integral-enhanced formulations,
(Bažant and Lin, 1988; Strömberg and Ristinmaa, 1996) neither of these
approaches will be utilized here.

Necking of Circular Cylinder

The necking process of a cylindrical solid bar has previously been
considered byWriggers et al. (1992) and Simo andMiehe (1992) for example,
in the context of thermo-plasticity and by Tvergaard and Needleman (1984),
Becker and Needleman (1986), Aravas (1987) and Mahnken (2002) for
porous materials. The finite element mesh used in the present simulation,
as shown in Figure 1(a), consists of 750 axisymmetric elements. In order to
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Figure 1. Necking of a cylindrical bar. (a) Geometry of the specimen and the finite element
discretization and (b) The global response of a cylindrical bar subjected to a prescribed
tensile load. The solid and the dotted lines represent the perturbated (nonhomogeneous)
and the homogeneous solution, respectively, for the porous material. The dashed line and
dashed–dotted line represent the homogeneous and the perturbated solution, respectively,
for the matrix material.
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trigger the nonhomogeneous deformation mode, a small imperfection in the
form of a radius reduction (�R=R ¼ 0:0013) is introduced. The bar is 50mm
in length and has a 5mm radius.

Figure 1(b) shows the global force–displacement relation. The solid and
the dotted line represent the perturbated and the homogeneous solution,
respectively, for the porous material. The solution is terminated when the
maximum porosity within the bar has reached ff ¼ 0:25, i.e., when in
the most damaged region of the specimen no load carrying capacity is left.
The perturbated solution shows a dramatic increase in porosity immediately
after onset of the necking. For reference purposes, the response of
a specimen consisting of pure matrix material ð f0 ¼ 0, �0 ¼ 0Þ is also
shown in Figure 1(b). The homogeneous and the perturbated solutions for
the matrix material are indicated by the dashed and the dashed-dotted lines,
respectively. As expected (Becker and Needleman, 1986) the onset of
necking takes place at a much later deformation stage for the matrix
material than for the porous material.

Figure 2 shows the evolution of damage at different stages of the
pertubated solution. As can be seen, the damage is greatest at the center
of the specimen. This is due to the maximum hydrostatic pressure, which
drives the growth of voids, being at a maximum at the center of the
specimen. Although the solution process was continued to a stage at
which f¼ ff was reached, the numerical algorithm turned out to be very
stable, no numerical problems being encountered. Continuing the solution
process requires an element-removal technique which is not implemented
in the present work.

Localization in a Plane Strip

A plane strip subjected to a tensile load is considered, it is being assumed
that plane strain conditions apply. The dimensions of the undeformed
specimen are s¼ 20mm, w¼ 200mm, v¼ 400mm, and h¼ 400mm and the
thickness is t¼ 10mm, Figure 3(a), where the finite element mesh
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Figure 2. Evolution of damage � during a tensile test of a cylindrical bar. The void-
volume-fraction distribution is shown for displacements at: (a) 4.8mm, (b) 5.1mm, and
(c) 5.422mm.
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consisting of 1320 quadrilaterals is shown. Structures similar to the strip
contained in Figure 3(a) have been considered previously by
Benzerga et al. (2002) and Kojic et al. (2002). In Figure 3(b), the total
applied force versus the displacement u is plotted. Please note that the
specimen is free to move in the horizontal direction. At a displacement of
u¼ 36mm the maximal void-volume fraction within the specimen has
reached f¼ ff, i.e., a crack has been created. Similar to the case of a
cylindrical specimen, the crack is located at the center of the specimen where
the hydrostatic pressure is at a maximum. Note for the porous material in
Figure 4(b) the sharp drop in the load around u¼ 35mm, a drop caused by
the diffuse necking that has taken place. No sharp drop of this sort could be
detected for the situation f ¼ f0 ¼ 0. Figure 4 shows the evolution of the
void-volume fraction. During initial stages of the deformation, the isolines
(of the void-volume fraction) are almost circular (Figure 4(a)). After the
onset of necking, the isolines have become more rectangular in shape
(Figure 4(c)). As in the simulation of the cylindrical specimen, the void-
volume fraction f¼ ff was reached without numerical problems being
encountered.

CONCLUSIONS

It was shown that a model for porous ductile fracture can be established
within a consistent thermodynamic framework. A model that allows for
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Figure 3. A tensile test of a notched specimen, plane strain conditions being assumed to
prevail. (a) The initial geometry with an undeformed finite element mesh consisting of 1320
quadrilateral elements and (b) a load–displacement graph. The solid line represents the
response of the porous material, whereas the response of the matrix material is indicated by
the dashed–dotted line.
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both growth and shrinkage of voids was considered within this framework.
The model also accounts for isotropic damage which influences the response
via both the usual elastic parameters and the parameters governing the
plastic behavior. It could be shown that when the void-volume fraction
equals zero the model degenerates into the usual von Mises plasticity model.

The model was implemented in a finite element program. It was found
that, if the exponential update of F p was utilized, the constitutive relation
took a very simple format, in fact, only two nonlinear equations needed to
be solved. The algorithmic tangent stiffness tensor was also considered, and
it was shown that it can easily be derived from the (two) reduced equations.
It should be emphasized that no separate evolution equations for the
void-volume fraction were needed, since it was shown that the void-volume
fraction could be calculated explicitly from J p ¼ detðF pÞ.

Two examples were considered as a final demonstration of the
possibilities of the model involving an axi-symmetric bar and a plane
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Figure 4. Evolution of the damage, � during the tensile test of a plane strip. The void-volume
fraction distribution is shown for displacements: (a) 24mm, (b) 28mm, (c) 35mm, and
(d) 36mm.
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notched specimen, respectively. In both cases, the specimens were loaded up
to the point at which somewhere in the material the stress-carrying capacity
vanished indicating that the solution algorithm was very stable.

APPENDIX

It turns out that, to obtain the remaining derivatives contained in
Equation (45), J, J e, �e, tr, �e, tri , Je, tr, J e, tr

2 , ��, and n � � n � need to be
differentiated with respect to C. Using Liouville’s theorem, the linearization
of J and Je, tr are obtained trivially as

d ln J ¼ d ln J e, tr ¼
1

2
C �1 : dC ð52Þ

where Equation (35) was used in the first equality. Following Simop and
Taylor (1991) and using Equation (52), the linearization of the isochoric trial
eigenvalues are obtained as

d ln �e, tr, �i ¼
1

2
N � �N � �

1

3
C �1

� �
: dC ð53Þ

where the transformed eigenvectors N � are defined as

N � ¼
1

�e, tr,�
F p, n,�1n� ð54Þ

and n � is an eigenvector belonging to C e, tr. Using the definition of J e, tr
2 ,

straightforward calculations with the use of Equation (53) result in

dJ e, tr
2 ¼ Q : dC, where Q ¼

X
�

ðln �e, tr, �i Þ
1

2
N � �N �½ � ð55Þ

For notational simplicity, the scalars a1 � a4 are introduced as

a1 ¼
1

2

J e, tr

J e

@J e

@J e, tr
, a2 ¼

1

J e

@J e

@J e, tr
2

, a3 ¼
J e, tr

2

@��

@J e, tr
, a4 ¼

@��

@J e, tr
2

ð56Þ

Use of Equation (56) enables the rate of change of ln Je to be
obtained as

d ln J e ¼ a1C
�1 þ a2Q


 �
: dC ð57Þ

In a similar way, just as for ln J e, the linearization of �� and of "pm are
obtained as

d�� ¼ d" p
m ¼ a3C

�1
þ a4Q


 �
: dC ð58Þ
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Taking advantage of the results provided by Simo and Taylor (1991),
dðn� � n�Þ can be expressed as

dðn� � n�Þ ¼ W � : T : dC ð59Þ

where the Cartesian components of T are given by Tijkl ¼ F
p, n,�1
ki F

p, n,�1
lj and

where W � is a fourth-order tensor which can be expressed in terms of the
eigenbasis n � � n� and the eigenvalues �e, tr, � (Simo and Taylor, 1991), for
the explicit expressions of W �.
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