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A Micro—Macro Approach to
Modeling Progressive Damage
in Composite Structures
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ABSTRACT: Modeling progressive damage in composite materials and structures
poses considerable challenges because damage is, in general, complex and involves
multiple modes such as delamination, transverse cracking, fiber breakage, fiber
pullout, etc. Clearly, damage in composites can be investigated at different length
scales, ranging from the micromechanical to the macromechanical specimen and
structural scales. In this article, a simple but novel finite-element-based method
for modeling progressive damage in fiber-reinforced composites is presented. The
element-failure method (EFM) is based on the simple idea that the nodal forces
of an element of a damaged composite material can be modified to reflect the
general state of damage and loading. This has an advantage over the usual material
property degradation approaches, i.e., because the stiffness matrix of the element
is not changed, computational convergence is theoretically guaranteed, resulting in
a robust modeling tool. The EFM, when employed with suitable micromechanics-
based failure criteria, may be a practical method for mapping damage initiation and
propagation in composite structures. In this article, we present a micromechanical
analysis for a new failure criterion called the strain invariant failure theory and
the application of the EFM in the modeling of open-hole tension specimens.
The micromechanical analysis yields a set of amplification factors, which are used
to establish a set of micromechanically enhanced strain invariants for the failure
criterion. The effects of material properties and volume fraction on the amplification
factors are discussed.

KEY WORDS: progressive damage, multiscale damage, element-failure method,
strain invariant failure theory, micromechanical amplification.
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INTRODUCTION

AMAGE PROGRESSION IN composite materials and structures is, in

general, very complicated and involves multiple failure modes, such as
fiber breakage, fiber pullout, delamination between plies, matrix cracking,
fiber—matrix debonding, etc. Modeling the damage process accurately
poses a very difficult problem because these mechanisms clearly operate
at various length scales (Tay, 2003). However, if more rational design and
damage tolerance approaches are to be developed for composite structures,
it becomes necessary to develop engineering tools that will enable analysts
to model damage and its propagation. At the micromechanics scale, the
fibers may be modeled individually and microcracks introduced (Mahishi,
1986). However, the large variations in local fiber distribution and possible
flaw sizes quickly renders such models impractical, and invariably,
simplifications and idealizations are introduced in the form of representative
volume elements (RVE) to make the problem more tractable. The goal of
many RVE analyses is to obtain some form of weighted or effective
composite property or behavior so that it may be used in constitutive stress—
strain relations. Furthermore, it is neither practical nor desirable to model
explicitly the very numerous microcracks often observed in damaged
composite materials under the microscope. At the macromechanical level of
the effective constitutive relations of the damaged material, there have been
significant strides in the development of damage mechanics (Cheng and
Chen, 2006; Chow et al., 1993; Ju et al., 2006; Paulino et al., 2006; Talreja,
1994). In most damage mechanics approaches, the crucial components are
the damage variables, which are sometimes obtained phenomenologically.
In a sense, the traditional continuum damage mechanics approach may be
viewed as part of the class of methodology whereby damage is modeled by
degradation of selective elastic or mechanical properties. This material
property degradation method (MPDM) (Camanho and Matthews, 1999;
Shokrieh and Lessard, 2000; Tserpes et al., 2001) essentially involves directly
reducing the values of certain material properties in the constitutive relations
when and if damage or failure is determined. The severity of damage may be
characterized by damage evolution laws, which are typically determined
through damage mechanics. However, a drawback of this approach is that,
by reducing the material properties, there is a possibility that the stiffness
matrix of the finite element (FE) may inadvertently become ill-conditioned
so that convergence to a solution is not always assured. For a conservative
analysis, it is usual to set the values of certain material properties to zero
when damage or failure is assumed. For example, if failure is determined
to have occurred in the fiber direction (as in the breaking of fibers in
tension), the fiber-direction Young’s modulus E;; may be set to zero.
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However, while not explicitly stated in most published literature, in
practice, the material stiffness properties (typically the elastic moduli) are
sometimes not set to exactly zero but to a certain (often arbitrarily) small
percentage of the original value in order to overcome computational
difficulties. Another issue involves deciding which of the many material
properties to degrade. For example, if transverse cracking or failure is
predicted in a composite, it is not clear if only the transverse Young’s
modulus E», or the in-plane shear modulus G, as well should be set to
zero; additionally, the effect on the Poisson’s ratios vy, and v,y is neither
obvious nor easily determined. The MPDM is popularly used in laminated-
plate and laminated-shell FE codes with failure criteria such as the Tsai-Wu
tensor theory, because it is convenient to set to zero the material property
values in lamination theory. Examples of application of the Tsai-Wu
and other failure theories in progressive damage in composite structures
can be found in Ochoa and Engblom (1987), Kim et al. (1996), and
Wolford and Hyer (2005). However, the application of MPDM in three-
dimensional (3D) problems where delaminations and interactions with
numerous damage mechanisms are significant, may be cumbersome.
At the moment, it is still very difficult to translate information from
a micromechanical analysis to guide the development of modified
constitutive relations for damaged composite materials. If this can be
achieved, the modeling of damage at the components and structures level,
supported by the micromechanics of failure and damage, should result in
greater accuracy.

In this article, a novel FE-based element-failure method (EFM) is
proposed for the modeling of damage in composite structures, in which
only the nodal forces are changed to reflect changes in the stress-bearing
capability of the damaged material. Because the stiffness matrix remains
unaltered, there is no similar computational problem associated with
the MPDM. Another consequence is that there should be savings in
computational effort since no reformulation of the stiffness matrix with
damage progression is involved; each change in the damage state is modeled
by appropriately modifying the nodal forces only. Moreover, a new
micromechanics-based failure theory, recently proposed by Gosse and
Christensen (Gosse and Christensen, 2001; Gosse, 2002), is used together
with the EFM to determine damage initiation and propagation. Called
the strain invariant failure theory (SIFT), a unique feature of this failure
theory is that information at the micromechanical scale is extracted
from micromechanical FE block analyses to amplify strain invariant
quantities, which are, in turn, used as criteria to determine failure. In
combination with a simple nodal force modification scheme, the SIFT-EFM
approach enables the modeling of damage progression in composite
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structures that takes into account mechanisms that bridge micro and macro
length scales.

The paper first describes the concept and implementation of the EFM,
followed by the SIFT. It should be noted that, while we have chosen SIFT
for the work reported herein, EFM may in general be used with any
appropriate failure theory. Indeed, in an earlier work by the authors
(Tay et al., 2003), the Tsai-Wu failure criterion (Tsai, 1992) was used with
EFM in a plane strain analysis to predict the pattern of delamination growth
by low-velocity impact on composite laminates. However, the Tsai-Wu
failure criterion (and some of the other more established failure criteria) is
best known for application in essentially plane stress analyses involving the
classical-lamination theory (CLT) of laminated plates. Its extension to the
more general 3D cases is considerably more complex, and it is difficult to
determine the parameters that will ensure closed or admissible failure
envelopes in the six-component stress or strain space. Although plane stress
analyses significantly simplifies matters and may be sufficient for many
design purposes, there is growing realization that damage and delamination
in composite structures are truly 3D events with the need for appropriate
analytical and modeling tools (Tay, 2003). SIFT is selected partly because it
offers a fully 3D theory with inherent micromechanical features. There are
other new micromechanics-based failure theories; an example is the so-called
multicontinuum failure theory developed by Mayes and Hansen (2001).

This article describes SIFT-EFM’s implementation in a 3D implicit FE
code and its application in open-hole tension of composite laminates. The
damage maps of several cases are shown.

CONCEPT OF THE EFM

The idea and assumption of EFM is that the effects of damage on
the mechanical behavior can be essentially described by the effective
nodal forces of an FE. It was first developed for dynamic fracture in
metals (Beissel et al., 1998), but the modified EFM was used for impact
damage in fiber-reinforced composites (Tay et al., 2003). The manner by
which these effects due to damage translate to the effective nodal forces
will, in general, depend upon the damage evolution law appropriate for the
local mode of damage experienced by the composite material, as well as
on the FE formulation. Traditionally, when damage is assumed to have
occurred within an element of a material, the stiffness matrix of the element
is altered to reflect the damaged state. One is able to develop explicit
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relations between the nodal forces and the elastic stiffnesses of an FE
as follows.
The force—stiffness relation for a finite element is given by

Ku=f ()

where u is the vector of nodal displacements, f the vector of nodal forces,
and K the elemental stiffness matrix of undamaged material, integrated over
the domain €,

K= / B7CB Q. )
Q

For 2D plane strain or plane stress problems, clements of the material
stiffness matrix C;; are defined for i,j=1,2, 6. Although equations for 2D
FE are used for illustrative purposes, the extension to 3D FE is similar and
straightforward.

The matrix B is defined as

Nl.x 0 N2,x 0 Nm,x 0
B = 0 Ny 0 Ny - 0 Ny 3)
Nl Wy Nl X N2,y N2,x e Nm,y Nm,x

where m is the number of nodes for the element, and N;, = (dN;/dx) and
Ni, = (dN;/dy) are the derivatives of the shape functions N; with respect to
the global x and y coordinates, respectively.

The elemental stiffness matrix K can be written as

Ki Kp - Ky
Ky - K
K= , o (4)
symm. | (.

where K;; is a matrix of the form

. |:C11 Joy NixNj<092 + Cos [y NiyN;, 92 Cia [y NiN;, 82 + Ces [ N,-J,.N,;XBQ}
i = >

Cpp fQ NiyN;02 + Ces fQ NixN;,0Q2 Cxn fQ NiyNj, 02 + Ces fQ NixNj 0%
fori,j=1,2,...,m.

)
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Substituting Equations (2) through (5) into Equation (1), the x and y
components of the nodal force for node i can be explicitly written as

m
Jxi=Cn / Nix (Z Nﬂx“xf) 982
@ j
m
+ C12/ Nix (Z N/,y“}fi) a2 (6)
@ j
+ C66f Niy (Z Njytyj + Z Nj,xu)y') a2
Q 7 =

and

m
Jyi = Cn/ Niy (Z N/,xux/) 982
Q2 J
m
+ sz/ Niy (Z N.L,v”yi) o8 Q)
Q2 J
+ C(,(,/ N,"x <Z Nj,yuxj + Z Nj,x”ﬁ) Q2.
Q@ J

j

Equations (6) and (7) show the relationship between nodal forces and
the material stiffness properties. It is clear that for every change in the
stiffness coefficients Cy, there are corresponding changes in the nodal forces.
The EFM, however, works through the direct manipulation of the nodal
forces. While it is possible to work out the required nodal force
modifications with any given set of changes in material stiffness properties,
the reverse is not generally true. In other words, a set of changes to the nodal
forces may not translate to a set of identifiable changes in material stiffness
properties. A detailed comparison with material degradation methods
and comparison with the solution for a central cracked panel are given in
Tay et al. (2005). It was shown that the EFM is a more general method than
the material degradation method.

Consider an FE of an undamaged composite material (Figure la)
experiencing a set of nodal forces, which have been obtained from the FE
solution of the problem. On the other hand, in an FE containing damaged
material, the load-carrying capacity of the FE will be compromised,
very likely in a directionally and spatially dependent manner. If much of the
damage consists of transverse matrix microcracks, it is reasonable to assume
that the FE will have reduced load-bearing capacity in the direction
transverse to the fibers (Figure 1b). In conventional MPDMs, this reduction
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Figure 1. (a) FE of undamaged composite with internal nodal forces. (b) FE of composite
with transverse matrix cracks, components of internal nodal forces transverse to fiber
direction are modified; and (c) completely failed or fractured element. All net internal nodal
forces of adjacent elements are zeroed.

is achieved by reducing or zeroing certain pertinent material stiffness
properties of the damaged FE. In the EFM, however, the reduction is
effected by applying a set of external nodal forces such that the net internal
nodal forces of elements adjacent to the damaged element are reduced
or zeroed [the latter if complete failure or fracture is implied (Figure 1c)].
The decision whether to fail an element is guided by a suitable failure theory,
and in each step, only one or two elements are failed at a time. The required
set of applied nodal forces to achieve the reduction within each step is
determined by successive iterations until the net internal nodal forces
(residuals) of the adjacent elements converge to the desired values. Typically,
less than 200 iterations are required and convergence is guaranteed. Note
that it is not the internal nodal forces of the damaged element that is zeroed
[for the case of complete failure (Figure Ic)], but the net internal nodal
forces of adjacent elements. Thus, the ‘stresses’ within the failed element no
longer have physical meaning, although compatibility may be preserved.
This process leaves the original (undamaged) material stiffness properties
unchanged, and is thus computationally efficient as every step and iteration
is simply an analysis with the updated set of applied nodal forces. For this
reason, it may also be called the nodal force modification method. Hence,
no reformulation of the FE stiffness matrix is necessary.

IMPLEMENTATION OF THE EFM

The EFM has been implemented in an in-house 3D implicit FE code.
Since the method merely involves nodal force modification, it can also be
readily implemented in commercial FE codes. However, a commercial
general-purpose code was not used to implement EFM because it was not
possible to over-ride the internal computational housekeeping associated
with each step of nodal force modification, which would unnecessarily



12 T. E. TAY ET AL.

—»| Perform FE analysis

recover strains

|

Apply SIFT and
determine next failed
element

Find nodal forces of
failed elements

J

Apply external nodal
forces at nodes

|
1

|
! |
1

|
! |
1

|
! |
1

|
! |
1

|
! |
1

|
! |
! |
! |
i |
: Continue |
! iterations |

|
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |

|
! |
! |
! |
! |

Proceed to fail
additional elements
until the desired
number is reached

Solve for new
displacements and new
nodal forces

g

Check
convergence

Yes

Figure 2. Implementation flow chart of EFM.

increase the computational time. Hence, it was necessary to validate the
in-house codes by comparing their solutions for simple problems without
damage with those of the general purpose FE code Abaqus.

Figure 2 is the implementation flowchart of the EFM. It begins with a
straightforward linear elastic FE analysis of the problem. The solution
in terms of strains is fed into the portion of the program that deals with
determining failure; in this case, the program uses SIFT. Within this
subroutine, the strains are amplified through amplification factors
predetermined from micromechanical block analyses, and the three strain
invariants are calculated. These are, in turn, compared with their critical
values, and failure is determined when any one of them reaches its critical
value. A more complete description of SIFT and method of strain
amplification is reserved for a subsequent section.
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The analysis then proceeds to the part of the program that deals with
nodal force modification, where the appropriate scheme is applied to all
the nodes of the failed element. For the moment, a simple nodal force
modification scheme is employed; it zeroes the components of the internal
nodal forces that are transverse to the fiber direction. This assumes that
the dominant damage mode at the micromechanics level is transverse
microcracking, which could, in reality, be various combinations of
microfractures within the matrix material and fiber-matrix debonding.
This assumption is considered reasonable and conservative for initial-stage
damage or damage that is not yet very severe or extensive.

However, it is possible that an already partially failed element (with
mainly matrix microcracks and/or fiber—matrix microdebonds) may
subsequently fail completely (by local fiber rupture). It is, therefore,
necessary to develop a criterion to determine when partially failed elements
may lose all load-bearing capability. A very simple criterion is to use the
ultimate failure strain of neat carbon fibers. The rationale is that when
extensive matrix microcracks have already occurred, the fibers, while still
able to carry some load, are no longer as constrained locally by the
surrounding matrix material as before. The ultimate failure strain of fibers,
however, is a property that may be dependent upon the length of fiber
tested. Nevertheless, recent tests of woven foldable composite structures
(Yee and Pellegrino, 2005) show that the maximum bending strains (in the
fiber direction) of T300 fiber composites range from 1.9 to 2.8%. A value
of 1.9% for the ultimate failure strain of IM7 fiber is reported by Kollar
and Springer (2003). The value for the fiber’s ultimate failure strain eg%er of
1.9% is used later in the section titled ‘3D implicit FE analysis of damage in
open-hole tension laminates’ to determine the ultimate failure loads of two
open-hole tension composite laminates, which compare reasonably well with
experiment. If fiber failure is detected, then all components of the in-plane
nodal forces are modified, and the situation for the failed element resembles
the state in Figure lc.

In general, whenever an element is deemed to have failed, nodal forces
transverse to the fiber direction are modified. Furthermore, if the partially
failed element is found to have strains in the fiber direction exceeding 1.9%,
additional nodal force modification is applied to the element in the fiber
direction. The external forces are applied until the desired residual internal
nodal force values (in this case, zero) are reached. This process takes typically
a few iterations, but convergence is always assured. After convergence has
been achieved, the program, guided by the failure theory, searches out the
next element that has failed and performs the nodal modification for that
element. If and when no elements are deemed to have failed, the applied load
or displacement for the structure is increased until failure is again predicted.
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It is found that in the open-hole tension cases studied here, the situation
whereby elements have completely failed (Figure 1c) only occurs in
significant numbers very close to the ultimate load. In other words, while
SIFT predicts mainly transverse cracking and delamination, the load drop
due to these damages, while significant, is usually not as large as those when
elements start to fail completely (i.e., also along the fiber direction) in large
numbers. When the latter happens, ultimate failure is imminent.

THE STRAIN INVARIANT FAILURE THEORY (SIFT)

In this section, a description of the new strain invariant failure theory
(SIFT) is given. The EFM, of course, may be used with other failure
theories, but SIFT is chosen because it is fully 3D. Recently proposed by
Gosse and Christensen (Gosse and Christensen, 2001; Gosse, 2002), the
theory determines if failure has occurred by considering the criticality of
three strain invariant values, which have been ‘amplified’ through
micromechanical analysis. The procedure is more fully described later, but
essentially, the strain components from the homogenous FE solution are
amplified with thermo-mechanical amplification factors extracted from unit
cell FE micromechanical models before the invariants are calculated.

The first of the invariants is J;, defined by

J] =&y + Eyy + &2 (8)

where &y, &y, €--, €x» €, and g, are the six components of the strain vector
in general Cartesian coordinates. Where distortional deformation is
significant, a criterion based on the second deviatoric strain invariant may
be more useful.

The second deviatoric strain invariant J; is defined by

7 1 2 2 1
Jy = < [(gxx — &) (& — €22) H(Ewy — 822)2] -7 (giy + giz + 8§Z>. )
SIFT employs the von Mises (or equivalent) strain, which is related to the
second deviatoric strain invariant by

Evm = +/ 3-]/2 (10)

These strain invariants are amplified through the use of representative
micromechanical blocks, whereby individual fiber and matrix are modeled
by 3D FEs (Figure 3). Three fiber arrangements or arrays are considered:
square; hexagonal; and diamond. The diamond arrangement is, in fact, the
same as the square, but rotated through a 45° angle. These representative
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Figure 3. Micromechanical blocks with (a) square, (b) hexagonal, and (c) diamond packing
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Figure 4. (a) Prescribed normal displacements and (b) prescribed shear deformations.

micromechanical blocks are given prescribed unit displacements in three
cases of normal and three cases of shear deformations. For example, in
order to obtain strain amplification factors for prescribed displacement in
the fiber (labeled 1) direction for one of the faces, the model is constrained
in the other five faces (Figure 4a). The procedure is repeated each time
in order to obtain strain amplification factors for displacements in the
other two orthogonal (labeled 2 and 3) directions. Similarly, for shear
deformations, the prescribed shear strain is applied in each of the three
directions (Figure 4b). The local micromechanical strains are extracted from
various positions within the model (Figure 5) and normalized with respect to
the prescribed strain. In addition to the aforementioned mechanical

amplification factors, the so-called thermo-mechanical amplification
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Figure 5. Locations for the extraction of amplification factors within the micromechanical
block models: (a) square array and (b) hexagonal array.

factors may be obtained by constraining all the faces from expansion and
performing a thermo-mechanical analysis by prescribing a unit temperature
differential above the strain-free temperature. In the subsequent analysis,
thermal effects are included by prescribing a AT of 155°C, which is
between the cure or stress-free temperature of 180°C and the use
temperature of 25°C.

The locations chosen for the extraction of local amplification factors
are shown in Figure 5a for the square array model and Figure 5b for the
hexagonal array model. The points FI through F8 are located at the
fiber—matrix interface and are for values of amplification factors computed
using fiber properties, while points M1 through M8, also located at the same
positions along the fiber—matrix interface, are for values of amplification
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Table 1. Fiber and epoxy elastic properties used in
micromechanical block models.

IM7 carbon fiber S-glass fiber Epoxy
Ef 303 GPa 85.50 GPa E. 3.31 GPa
Ef 15.2 GPa 85.50 GPa
Ef3 15.2GPa 85.50 GPa
Vr1o 0.2 0.2 Vm 0.35
VF13 0.2 0.2
Vro3 0.2 0.2
Grio 9.65 GPa 35.65 GPa
Gns 9.65GPa 35.65 GPa
Gro3 6.32 GPa 35.65 GPa
an 0 5.04 x 1076/°C U 5.76 x 107%/°C
ap 8.28 x 107°6/°C 5.04 x 107°/°C
s 8.28 x 107°/°C 5.04 x 107%/°C

factors computed with matrix properties. The point F9 is located at the
center of the (assumed circular) fiber, IF1 and IF2 are inter-fiber positions
and IS corresponds to the interstitial position. The total number of locations
is therefore 20. There are six mechanical and six thermo-mechanical strain
amplification factors for each position; since there are 20 positions and three
fiber arrangements, the total number of amplification factors is
720 (i.e., 12 x 20 x 3). It should be noted that for a given matrix and fiber
material system, the suite of micromechanical block analyses need only be
performed once; the resulting amplification factors are stored in a look-up
table or subroutine. The output of strains from a macro-FE analysis is
efficiently amplified through this look-up subroutine before the strain
invariant values are calculated and compared with the corresponding critical
values. The amplification factors for carbon fiber—epoxy system used in all
the analyses reported in this article were obtained from Gosse (Kim et al.,
1996) and coded in a look-up subroutine. However, the amplification factors
have been independently verified by the authors, who performed the
micromechanical FE block analyses. The matrix and carbon fiber (IM7)
material properties are given in Table 1. The subscripts m and f refer to
matrix and fiber, respectively; the subscript 1 indicates the axial fiber
direction, the subscripts 2 and 3 the transverse directions. The material
properties for IM7 and epoxy are obtained from Ha (2002), Gosse and
Christensen (2001), and Gosse (2002). The properties for S-glass fiber in the
table, used in the subsequent section on the effect of changing materials on
the amplification factors, are derived from Gibson (1994).

The first strain invariant J; (Equation (8)) is calculated with strains
amplified only at the IF1, IF2, and IS positions within the matrix material in
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the micromechanical block. It is generally believed that J;-driven failure is
dominated by volumetric changes in the matrix material. On the other hand,
the von Mises strain (Equation (10)) may be amplified with factors not only
within the matrix material (IF1, IF2, IS, and M1 through MS), but also
within the fiber and fiber—matrix interface (F1 through F9). We designate
the superscript m for the former case to denote ‘matrix’ (i.e., £”)) and the

vm
superscript f for the latter case to denote ‘fiber’ (i.e., s(im). SIFT states that
failure occurs when any one of the three strain invariant values reaches
its respective critical values (i.e., Jiciit, €pycri> and scmcm)’ which are
determined from the analysis of coupon tests of composite laminates with
various lay-ups (Gosse and Christensen, 2001; Gosse, 2002). It is clear from
the foregoing that for each failure prediction, it is possible not only to
determine the invariant that has become critical, but also the position within
the micromechanical block model where this has occurred.

It should also be noted that the third critical SIFT criterion e’:mCrit is
an effective property, obtained through the testing of unnotched
0° unidirectional and [10°/—10°],s laminates in tension (Gosse, 2002). The
critical values of the strain invariants used in the work reported here are
derived from the experimental data of Gosse (2002) and given in Table 2. In
fact, all the SIFT criteria are effective properties of the composite and not
only of dry fibers or pure polymers. Analysis of extensive test data have
shown that the failure of fibers within a 0° laminate (unnotched tension) and
the failure of fibers in a [10°/—10°],s laminate (also unnotched tension)
occur near a common &/, . Since the extraction of the SIFT invariants is
done through the micromechanical block models, we hypothesize that the
criterion &, (at the locations along the fiber-matrix interface) incorporates
not just the behavior of the fiber phase, but also the interfacial behavior
(or at least the matrix phase very near the fiber). Viewed in this way, ¢/, is
not just a fiber-only strength value. This third invariant can become critical

if the fiber material or if the matrix material very close to the fiber is

Table 2. Material properties of carbon-epoxy composite
used in OHT FE models.

Modulus in fiber direction E; (GPa) 161.3
Transverse moduli E; =E3 (GPa) 8.3
Shear moduli Gy, =G43 (GPa) 5.16
Shear modulus Gy (GPa) 3.38
Thermal expansion coefficient in fiber direction «4 (/°C) 0.01x10°®
Thermal expansion coefficients in transverse direction ap = a3 (/°C) 32.7x107°
Critical invariant J4¢;it 0.0274
Critical invariant &)} . 0.103
Critical invariant & 0.0182

vmCrit
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compromised or both. However, it is very difficult to test this hypothesis
directly.

The micromechanical block models described in the preceding text
contain idealized fiber arrangements. In reality, the fibers are arranged in
random order. The question, therefore, arises as to whether it is acceptable
to use idealized arrangements. A recent article by Jin et al. (2007) addresses
the issue of random fiber arrangement in micromechanical block models,
utilizing statistical methods to obtain strain amplification factors. They
actually built micromechanical block models with large numbers of fibers
arranged randomly and found that the mean values of the strain
amplification factors for random distributions more closely resemble the
values from the hexagonal arrangements. For the moment, this is a subtopic
for further study. The authors aim to incorporate amplification factors
derived from block models with random fiber arrangements in future
analyses.

EFFECTS OF CHANGING VOLUME
FRACTIONS AND MATERIALS

The maximum amplification factors computed from the micromechanical
block models with three different volume fractions are shown in Table 3 for
the square array and Table 4 for the hexagonal array. In each table, the
three orthogonal directions of tensile loading are denoted by ‘Dir-1°, ‘Dir-2’
and ‘Dir-3’, while the shear loadings are given by ‘Dir-12°, ‘Dir-13’, and
‘Dir-23’. Clearly, due to rotational symmetry, the case for Dir-2 yields the
same results for Dir-3, and for the square array model, Dir-12 produces the
same results for Dir-13. The maximum or highest values of amplification
factors are shown in bold fonts, while the next highest are shown below the
highest in italics. Similarly, the locations of the occurrence of the maximum
amplification factors are denoted by bold fonts, and the locations of the next
highest by italic fonts.

We see that in loading modes normal to the direction of the fibers, the
maximum amplification factors appear in the inter-fiber regions (IF1 and
IF2), suggesting possible failure in the matrix material, although the next
highest values occur at the fiber—matrix interface (M1, M5, M3,and M7).
For shear cases in the 1-2 and 1-3 planes, amplification factors for the
highest and the next highest values are extremely close, especially for the
fiber volume Vy=60% case. This suggests that failure in the case of pure
shear is almost equally likely to occur in the matrix (IF1 and IF2) as in the
fiber-matrix interface (M1, M5, M3, and M7). For the case of shear across
the fibers in the 2-3 plane, failure in the matrix is more likely to be in the
interstitial position (IS) although failure in the fiber—matrix interface may
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Table 3. Effect of fiber volume fraction V; on amplification factors in
square array model (Figures in bold are maximum values; figures in
italics are the next highest values. Positions are marked in Figure 5).

Fiber volume

fraction Dir-1 Dir-2 Dir-3 Dir-12 Dir-13 Dir-23
V;=50%

Maximum 1.0 2.494 2.494 3.308 3.308 2.280
amplification 2.012 2.012 3.049 3.049 2.041
factor

Position All IF1 IF2 IF1 IF2 IS

points M1, M5 M3, M7 M1, M5 M3, M7 M1, M3, M5, M7
V;=60%

Maximum 1.0 2.897 2.897 4.662 4.662 2.623
amplification 2.383 2.383 4.639 4.639 2.575
factor

Position All IF1 IF2 M1, M5 M3, M7 IS

points M1, M5 M3, M7 IF1 IF2 M1, M3, M5, M7
Vi=70%

Maximum 1.0 3.156 3.156 7.502 7.502 3.904
amplification 2.771 2.771 7.347 7.347 3.747
factor

Position All IF1 IF2 IF1 IF2 M1, M3, M5, M7

points M1, M5 M3, M7 M1, M5 M3, M7 IF1, IF2

still occur. At the high volume fraction of V;=70%, the preferred failure
site appears to switch to the interface region from the interstitial position.
Generally, maximum amplification factors increase with increasing fiber
volume fraction. However, this does not mean that resin-rich composites are
necessarily more resistant to damage progression, because the macroscopic
composite elastic properties will also change with volume fraction and the
critical invariants will also very likely be functions of volume fraction.

The effect of changing the fiber material from that of carbon IM7 to
S-glass is shown in Table 5 (for square array) and Table 6 (for hexagonal
array). The fiber volume in each table is kept at 60% for comparison. The
properties of the fibers and epoxy are given in Table 2.

THREE-DIMENSIONAL IMPLICIT FE ANALYSIS OF
DAMAGE IN OPEN-HOLE TENSION LAMINATES

A 3D implicit EFM code (with SIFT) was written and applied to the
analysis of open-hole composite laminates under uniform remote tension
loading. Damage progression for a carbon—epoxy cross-ply laminate with a
stacking sequence [03/904]s is shown in Figure 6a and b. The diameter of the
hole is 12.7mm, and the width of the plate is 76.2 mm. The macroscopic
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Table 4. Effect of fiber volume fraction V; on amplification factors
in hexagonal array model (Figures in bold are maximum values; figures
in italics are the next highest values. Positions are marked in Figure 5).

Fiber volume

fraction Dir-1 Dir-2 Dir-3 Dir-12 Dir-13 Dir-23
V;=50%

Maximum 1.0 1.843 2.346 2.691 3.023 2.437
amplification 1.696 1.869 2.061 2.710 1.948
factor

Position All points M2, M4, M6, M8 IF1 M1, M5 M3, M7 M1, M5

IF2 M3, M7 IF2 IF1 IF2
V;=60%

Maximum 1.0 2.050 2.786 3.360 3.529 2.913
amplification 1.833 2.160 2.428 3.524 1.899
factor

Position All points M2, M4, M6, M8 IF1 M1, M5 M3, M7 M1, M5

IF2 M3, M7 IF2 IF1 M3, M7
Vi=70%

Maximum 1.0 2177 2.880 3.357 3.767 2.712
amplification 2.101 2.482 3.199 3.594 2.085
factor

Position All points IF2 IF1 IF2 M3, M7 M1, M5

M2, M4, M6, M8 M3, M7 M1, M5 IF1 M3, M7

Table 5. Effect of materials on amplification factors in square array model
(Figures in bold are maximum values; figures in italics are the
next highest values. Positions are marked in Figure 5).

Dir-1 Dir-2 Dir-3 Dir-12 Dir-13 Dir-23
IM7-epoxy
Maximum 1 2.897 2.897 4.662 4.662 2.623
amplification 2.383 2.383 4.639 4.639 2.575
factor
Position All IF1 IF2 M1, M5 M3, M7 IS
points M1, M5 M3, M7 IF1 IF2 M1, M3, M5, M7
S-glass—-epoxy
Maximum 1 6.952 6.952 6.878 6.878 3.892
amplification 5.442 5.442 6.754 6.754 3.470
factor
Position All IF1 IF2 M1, M5 M3, M7 M1, M3, M5, M7
points M1, M5 M3, M7 IF1 IF2 IS

elastic properties of the composite are given in Table 2. The mesh consists
of 3D 20-noded isoparametric brick elements, with one element per ply in
the thickness direction. One element per ply in the thickness direction is
probably sufficient for modeling in-plane damage, as the following results
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Table 6. Effect of materials on amplification factors in hexagonal array
model (Figures in bold are maximum values; figures in italics are the
next highest values. Positions are marked in Figure 5).

Dir-1 Dir-2 Dir-3 Dir-12 Dir-13 Dir-23
IM7-epoxy
Maximum 1 2.050 2.786 3.360 3.529 2913
amplification 1.833 2.160 2.428 3.524 1.899
factor
Position All M2, M4, M6, M8 IF1 M1, M5 M3, M7 M1, M5
points IF2 M3, M7 IF2 IF1 M3,M7
S-glass—epoxy
Maximum 1 3.157 5.248 4.330 4,778 4.403
amplification 3.134 3.921 4.309 4.731 3.387
factor
Position All M2, M4, M6, M8 IF1 M1, M5 M3, M7 M1, M5
points IF M3,M7 IF2 IF1 IF2
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Figure 6. Damage maps for cross-ply [03/90,4]s laminate: (a) innermost 90° ply (sixth ply);
(b) outermost 0° ply (sunface ply); (c) representation by matrix cracks; and (d) damaged
cross-ply specimen.

will show, but is very likely to be inadequate for modeling interlaminar
stresses that lead to delamination. The nodal force modification employed is
simply to zero the component of the force transverse to the fiber direction
once failure is determined by SIFT. This rather simple scheme is reasonable
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for initial-stage damage. Figure 6a shows the development of damage
emanating from the hole edge in the innermost 90° ply. The dominant strain
invariant that governs the failure of this ply is Ji, although some elements
did fail due to ¢&,,. The pattern indicates that failure in the rather thick
group of 90° plies is predominantly due to a large transverse crack, although
other smaller transverse matrix cracks may also arise. Figure 6b shows the
damage progression in the outermost 0° ply. Damage in the 0° plies appears
much later than damage in the 90° plies, since the latter are weaker. The
pattern suggests matrix cracking in the longitudinal direction, and a picture
of a tested specimen with typical longitudinal cracks along the 0° outer ply
is also shown for comparison. An alternate representation of damage,
with the dominant microcracks drawn in, is shown in Figure 6¢, where the
damage from the 0° and 90° plies is superposed to form one diagram. This
type of representation has the advantage that the damage can be more easily
compared with X-ray images. A failed cross-ply specimen with typical
longitudinal cracks in the surface 0° ply is shown in Figure 6d.

A word about the interpretation of local damage predicted by &/, may be
in order here. We have already stated that the criterion &/, (at the locations
along the fiber—matrix interface) incorporates not just the behavior of the
fiber phase but also the interfacial behavior. While the superscript /' denotes
‘fiber’ in the section titled ‘the stain invariant failure theory’ in the cases of
damage in the 90° and 45° plies described in the preceding text, the locations
where the failure by &/, occurred in the cases analyzed were determined
to be invariably at the interface between matrix and fiber (i.e., F1-F8 in
Figure 5, and never on F9). The interpretation is that the failure is mainly at
the interface and not within the fiber. The same interpretation is offered
if failure is located from M1-M8. However, no critical failure locations
were observed on MI1-MS8 in all the simulations. Therefore, the failure
patterns shown indicate not ‘fiber failure’ in the usual understanding of fiber
breaks or splits but fiber—matrix debonding. At the ply level, the transverse
cracks are assumed to traverse regions of fiber—matrix debonding and
matrix cracking.

Damage maps for a laminate with a more general stacking sequence
[—45/+45/05/90/0]s under remote uniform tensile load are shown in
Figure 7. The results for the outermost —45° ply are shown in Figure 7a;
when compared to the results for the +45° ply (Figure 7b), the former
appears to suffer less damage. This suggests that stacking sequence has
a significant effect on damage propagation. Both &/, and J, appear to have
contributed to damage in these plies. Damage in the fifth layer is typical of
a 0° ply (Figure 7c) and is dominated by sf;m. The only 90° ply in the lay-up
(Figure 7d) exhibits J; dominated failure; the interesting pattern suggests
a distributed system of parallel transverse cracks originating from the edge
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Figure 7. Damage maps for [—45/+45/03/90/0]s laminate: (a) —45° ply; (b) 45° ply;
(c) 0° (fifth) ply; and (d) 90° ply.

of the hole. This is in contrast to the single transverse crack found in the 90°
ply of the [03/904]s laminate described earlier (Figure 6a). Clearly, this
difference is due to the level of constraint experienced by the 90° ply in
the two laminates. It is reasonable to assume that when the level of
constraint is high, as in the case of the single ply in the [—45/4+45/05/90/0],
laminate, the damage becomes more diffused and less likely to form large
single cracks. A similar analysis but with a mesh more refined around the
hole is also performed, and the results shown in Figure 8. An encouraging
feature is that the results do not show great sensitivity to mesh design and
density. The matrix cracks representation of damage is shown in Figure 9.
It shows a reasonable distribution of damage that may be expected from
an OHT specimen.

The foregoing analysis was performed without consideration for
delamination in order to save computational effort. It was, therefore,
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Figure 8. Damage maps for [—45/+45/05/90/0]s laminate (refined mesh around hole):
(a) —45° ply; (b) 45° (fifth) ply; (c) 0° ply; and (d) 90° ply.

XLr

Figure 9. Matrix cracks representation for the [—45/+45/05/90/0]s laminate.

decided to analyze two cases of OHT specimens with three elements per ply
in the thickness direction and to apply nodal force modification to the out-
of-plane force components when failure is determined by SIFT. The out-of-
plane modification of nodal forces is applied only to failed elements adjacent
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(a) (b)

Figure 10. Predicted matrix cracks and delaminations for: (a) [45/0/—45/90]s and
(b) [+45/90/0]s laminates.

to the relevant interface between plies of different fiber orientations. For
example, if possible delamination is allowed between the 45° and 0° plies,
the failed elements on either side of the interface between the two plies will
have their nodal forces modified in the thickness direction, in addition
to modification of in-plane nodal forces. It was found that this scheme
may result in rather large out-of-plane strains, i.c., €33, ¥13, and y,3, very
close to the edge of the hole. The in-plane strains, however, remain relatively
small. In this way, it is possible to map out potential areas of delamination
for each interface between plies of dissimilar fiber orientations. The
superimposed delaminations from each interface may be combined
with predicted system of transverse crack to form composite images. Two
quasi-isotropic laminates with different stacking sequences ([45/0/—45/90]
and [1+45/90/0],) are analyzed, and the combined damage and delamination
maps are shown in Figure 10. The predicted ultimate failure loads
are 474.4MPa (68.8ksi) for the [45/0/—45/90]; laminate and 518.5 MPa
(75.2ksi) for the [£45/90/0]; laminate. These values are in reasonable
agreement with the experimental results of 413.7MPa (60ksi) for the
[45/0/—45/90]s laminate and 556.4MPa (80.7ksi) for the [£45/90/0]
laminate (Kim and Sihn, 2004). The lower ultimate strength for the
[45/0/—45/90]; laminate is correctly predicted by the analysis. It appears
that nodal force modification in the through thickness direction is necessary
to correctly account for the interlaminar effects of changing the stacking
sequence, although it does not affect the in-plane damage patterns
significantly. However, in order to predict delamination, at least three
elements per ply in the thickness direction is necessary, which considerably
increases the computational effort. The authors are developing submodeling
techniques so that local damage and delamination patterns close to
regions of high stress gradients may be predicted using 3D SIFT-EFM,
while the rest of the structure may be modeled using shell or plate
elements. This approach will enable modeling of damage progression in
practical structures with more reasonable resources, but will have the
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disadvantage that the damage cannot be simulated beyond the zone of the
3D elements.

CONCLUSION

The element-failure or nodal force modification method is introduced
for the modeling of damage in composite laminates. It assumes that the
deleterious effects of damage on mechanical properties can be effectively
modeled through the manipulation of nodal forces, which are then applied
to the FE as damage progresses. The method has the advantage that
no elements are removed from the FE mesh, and therefore, it has a
mechanism to ensure that interpenetration of crack surfaces does not occur.
Furthermore, the material stiffness properties are not altered, ensuring that
no recalculation of FE stiffness matrices is necessary. This is in contrast to
conventional material property degradation techniques, which may result in
computational problems because convergence is not always assured
and results may be highly mesh-dependent. The EFM has been applied in
this study with a recent micromechanics-based composite SIFT to predict
damage pattern evolution for open-hole tension problems. This combined
SIFT-EFM approach appears to predict reasonable damage patterns
emanating from a hole in laminates loaded under remote tension.
Furthermore, the results are independent of mesh design and density.
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