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ABSTRACT: The multiaxial fatigue loading in the high-cycle regime leads to
localized mesoscopic plastic strain that occurs in some preferential directions of
individual grains for most metallic materials. Crack initiation modeling is difficult in
this fatigue regime because the scale where the mechanisms operate is not the
engineering scale (macroscopic scale), and local plasticity and damage act
simultaneously. This article describes a damage model based on the interaction
between mesoplasticity and local damage for the infinite and the finite fatigue life
regimes. Several salient effects are accounted for via a simple localization rule, which
connects the macroscopic scale with the mesoscopic one, and by the model presented
here, which describes the coupled effects of mesoplasticity and damage growth.
Irreversible thermodynamics concepts with internal state variables are used to

maintain a balance between extensive descriptions of plastic flow and damage events.
Cyclic hardening behavior is described by a combined isotropic and kinematic
hardening rule while the damage evolution is governed notably by the accumulated
plastic mesoscopic strain. In this study, predictions are compared to fatigue tests
performed on a mild steel (C36) under different loading modes. All the experiments
are carried out under in-phase loading conditions: reversed tension, torsion, and
combined tension–torsion. The mean stress effect is also studied through tests
conducted under tension. The predicted Wöhler curves under any loading mode can
be readily obtained with this model, but the main feature of this approach is to
ensure a clear link between the mesoscopic parameters like the hardening behavior of
individual grains and the subsequent local damage.
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INTRODUCTION

M
ANY ATTEMPTS HAVE been made to describe the behavior and the
evolution of damage for different kinds of solid materials submitted to

high-cycle fatigue (HCF). For this particular fatigue regime, damage can be
considered as a process of progressive deterioration of the material, at the
mesoscopic scale (Lemaı̂tre, 1992). This deterioration should be properly
handled from the thermodynamic standpoint, taking into account the
irreversibility of the cumulative damage process. This assumes a clear
distinction between the plasticity and damage effects on the physically
representative scale, and this distinction is made according to the major
cause of degradation of material properties (Lemaı̂tre, 1992). The two
phenomena are, of course, coupled and this feature must be carefully
examined.

Continuum damage mechanics considers the concept of ‘delocalized’
defects, that is defects whose physical presence has not necessarily been
confirmed (Chaboche, 1974). This leads to the study of early stage effects
with respect to what happens at the end of the life of the sample, even before
a dominant macrocrack occurs. The defects concerned could be, for
example, microcavities initiated in a ‘well-oriented’ grain. The detailed
position of such defects and their dimensions, do not need to be known, as
the material is regarded as being continuous. Hence, the use of the term
‘continuum damage mechanics’ (CDM).

When dealing with fatigue crack growth, linear elastic fracture mechanics
has proved its capacity to reflect the main trends of crack propagation or the
advanced part of ‘damage’. However, when dealing with microdefects, for
example small cracks (i.e., ‘small’ as compared to the microstructure) or
when the crack growth in shear bands is observed, fracture mechanics tools
are inadequate. Moreover, the mechanism that results in the appearance and
growth of small cracks in shear bands is closely related to plasticity and
damage, both of them strongly interacting with each other.

REVIEW OF SELECTED DAMAGE MODELS APPLIED

TO HIGH-CYCLE FATIGUE (HCF)

In this section, we will review four different models, based on damage
mechanics, which account for some salient phenomena that occur during
cyclic loading. The first approach is an early model proposed by Chaboche
(1974) and Chaboche and Lesne (1988). It is strongly phenomenological
and based on the identification of a differential law to describe damage
progression. The second model, suggested by Yang and Chow (2003),
presents an interesting compromise between the phenomenological
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approach and micromechanical modeling. The third model developed by
Lemaı̂tre (1992) includes scale transition (from the macroscopic scale to the
mesoscopic scale) and an explicit description of the plastic behavior of
crystal. Hence, it is able to take into account more complex stress
states. The last model presented here is proposed by Hoshide and Socie
(1987, 1988) and Socie (1993); it puts forward a propagation point of view
on the critical planes.

The HCF Model of Chaboche

The model proposed by Chaboche (1974) has been put forward for
metallic materials, and describes the different steps of the fatigue
process: accommodation, initiation, and microcrack propagation. The
author assumes that the scale of observation is the ‘engineering scale’,
and the loading parameters considered are the maximum macroscopic
stress �max and the mean macroscopic stress � for each cycle. In order to
take into account non-linear damage evolution which occurs for example
with block loading (Figure 1), the damage increment dD is considered
to be dependent on the damage D (macroscopic damage variable),
for each cycle increment dN.

dD ¼ f �max,�,D
� �

dN ð1Þ

This model is able to reflect damage growth below the fatigue limit of
the material once the damage is initiated. It is shown that the fatigue
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Figure 1. Non-linear damage accumulation for a two block loading (Chaboche model)
(Chaboche, 1974).
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limit (damage threshold) is reduced by damage accumulation (Chaboche
and Lesne, 1988). This is not necessarily in correlation with experimental
results (De Los Rios et al., 1984). This model is one of the first to be
devoted to fatigue and built in the framework of CDM. It brings
forward non-linear damage evolution, efficient treatment of multiple levels
tests (loadings by blocks), and a complete description of the SN curve
(stress according to number of applied cycles, with N¼ 10–107 cycles). These
effects will be included in the model proposed in the present article.

The Viscoplastic Fatigue Damage Model Proposed by Chow and co-workers

This constitutive model by Yang and Chow (2003) and by Wei et al.
(2000) captures the response of a complex material subjected to a variety of
loading paths including fatigue loadings. The model is based on
experimental study, in particular for 63Sn–37Pb solder joints subjected to
thermo-mechanical fatigue. Internal state variables are used to characterize
temperature effect and material degradation observed. A damage-coupled
viscoplastic constitutive model is formulated. Equation (2) allows one to
determine explicitly the accumulated equivalent inelastic strain rate _pin, by
incorporating different effects embodied by several parameters.

_pin ¼
1� �

1�D
f exp

�Q

RT

� �
l0
l

� �p

sin hm
� � 1� �

1�D

J2
cþ ĉð Þ

� �
ð2Þ

J2 is the second invariant of the deviatoric stress, D and � are damage
variables, f, p, m, and Q are material parameters, R is the gas constant, T is
the absolute temperature, l is the current grain (or phase) size, l0 is the
initial phase size, c and ĉ are state variables. It is important to note that all
these quantities are defined at the macroscopic scale. This formulation
illustrates the evolution of damage, by a competition between the effect
of the variables D and �. The evolution equations for the two damage
variables, D and �, are established within the framework of irreversible
thermodynamics

_D ¼ � _!
YD

2Yd
ð3Þ

where

Yd ¼
1

2
ðY 2

D þ �Y 2
u Þ

� �1=2
ð4Þ
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is the equivalent damage energy release rate.

_� ¼ � _!
�Y�
2Yd

ð5Þ

where ! is the equivalent overall damage variable and � is a material
constant. YD and Y� are the damage energy release rates (driving forces)
corresponding to damage variables D and �, and Yd is the equivalent
damage energy release rate combining Yd and Y�.

The major features of this model are as follows: the macroscopic scale is
considered (as in Chaboche (1974) and Chaboche and Lesne (1988)) and
specific correlations related to cyclic plasticity introduced (see for example,
Figure 2). The model is focused on large and unrecoverable plastic strain at
the macroscale scale (generalized plasticity in the case of large plastic strains,
or the low cycle fatigue (LCF) regime).

The model under consideration (Yang and Chow, 2003; Wei et al., 2004)
is able to take into account many phenomena related to the material (size of
grains, modification of phases, . . . ), and to the applied loads (stress,
temperature, . . .). The isotropic hardening driving (thermodynamic) force
given later in this article (Equation (15)), coupled with damage process, was
introduced in the somewhat analogous form by Yang and Chow (2003)
and Wei et al. (2004) in an empirical manner.

The formulation of damage is stimulative (see also Wei et al. (2000)).
The effect of the competition between two damage variables, expressed
further by two distinct energy release rates, makes it possible to model
different mechanisms. However, the correlation between these mechanisms
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Figure 2. Hysteresis loops for different strain ranges under strain rate 10�3/s at temperature
25�C (Yang and Chow, 2003).
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needs to be interpreted further. This concept, handled in a different way,
will be included in the model proposed in this article.

THE TWO-SCALE MODEL PROPOSED BY LEMAÎTRE

Lemaı̂tre (1985, 1992) has attempted to extend the framework of CDM
to the fatigue field including its multiscale aspect. In HCF in particular,
macroscopic plasticity is for the most part negligible, and crack initiation
occurs in localized plasticity spots surrounded by a material in elastic range.
Two-scale insight is introduced to account for the fact that HCF damage
takes place on a smaller scale than the engineering scale (Lemaı̂tre, 1985).
Consequently, this approach considers a microscopic spherical inclusion
within an elasto-plastic damage framework in a macroscopic infinite elastic
or eventually elasto-plastic matrix (Figure 3). Damage is then localized on a
microscopic scale, with negligible influence on the macroscopic scale. Elastic
behavior is assumed to be identical within the inclusion and in the matrix.
The introduction of the effective stress concept, initially dedicated to the
unidimensional creep process, was the starting point for this model. The
stress localization – in the sense of scale transition from the matrix scale to
the inclusion scale – is carried out following the analysis of Eshelby (1957),
within the framework of the self-consistent models, like the one proposed by
Berveiller and Zaoui (1979):

� ¼ �� 2� 1� �lð Þ "p � Ep
� �

ð6Þ

where Ep and � are the macroscopic elastic strain and stress tensor,
respectively, "p and � are the mesoscopic plastic strain and stress tensor, and
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Figure 3. Lemaı̂tre two-scale model.
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the coefficient �1 depends on the stress ratio. The mechanical degradation
of the inclusion, due to the fatigue crack initiation, is taken into account
by letting the mechanical strength of this inclusion be considered
equal to the fatigue limit of the material �f (the mechanical weakness of
the matrix is not considered). Figure 4 gives an example of predicted
normalized mesoscopic yield stress and predicted damage as a function of
the normalized number of cycles in torsion.

The evolution of the local yield stress, due to the influence of the
mesocrack at the scale of the inclusion is an interesting feature of this model.
The damage evolution occurring in the inclusion induces a modification
of the microscopic stress (in the inclusion). However, the effective stress
concept used in the model fixes the stress redistribution form. This effect
could be induced in a different way by using an enhanced form of a
thermodynamic potential and the resulting constitutive equations. In the
case of the HCF regime, the damage mechanisms are different from those
of creep fatigue, and the physical justification for the use of the isotropic
effective stress framework is weak. For this HCF model, the decrease of
the damage threshold which occurs as the damage grows is a way to take
into account the reduction of the fatigue limit during the sample life.

The model by Lemaı̂tre considers the complete lifetime of a specimen
(initiation, short-crack growth, and long-crack growth), and hence focuses
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Figure 4. Normalized mesoscopic yield stress (r/r1) and normalized damage (d/dc) in
function of the normalized number of cycles in torsion (�a¼ 165MPa that induce number of
cycles equal to failure NR¼ 1.7� 106 cycles).
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on the macroscopic degradation of the sample. Indeed, numerical
calculations show intense damage evolution near failure. This is the
consequence of the model taking into account phenomena relevant to
fracture mechanics (at the end of the lifetime). The application of the
effective stress concept to creep fatigue leads to the analogous effect
with a loss of rigidity only at the end of the test immediately before the
failure of the specimen. In HCF, a small loss of macroscopic rigidity (the
consequence of meso-cracking) may coincide with significant fatigue
damage. The model proposed in this study will be further based on an
approach in a way similar to Lemaı̂tre’s model, without employing
the effective stress concept, while looking to refine the description of the
evolution of damage. However, the same problem of competition will occur
with the ‘fracture mechanics’ point of view during the crack propagation
phase of the sample life.

Crack Nucleation and Growth Model Proposed by Socie

The model proposed by Socie (1993) is based on critical planes of crack
growth. The SAE1045 steel studied has microstructure and mechanical
properties close to the C36 steel used for our study. A dislocation model is
applied to compute the nucleation of cracks within individual grains.
Finally, the model adopts a framework based on the classical Paris-type
propagation laws. For example, a combination of modes I and II is taken
into account for the equivalent strain intensity:

�Keq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YIF�"n

ffiffiffiffiffi
�c

p� �2
þ YIIG��m

ffiffiffiffiffi
�c

p� �2q
ð7Þ

where �"n and ��m are the normal and shear strain amplitudes on the crack
growth plane, c is the crack length, and YI and YII are geometry factors
depending on aspect ratio. Integrating this law leads to an estimate for the
crack propagation life Np:

Np ¼

Z c2

c1

dc

A �Keq

� �m ð8Þ

To conclude, this empirical model, regarding the propagation
rules, is strongly based on observed mechanisms at the mesoscopic
scale (grain size). The developments carried out in this study converge
in some respects, in particular, by noting the important role of the
critical planes.
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FEATURES OF DAMAGE PATTERNS IN TENSION AND TORSION

The steel under consideration (C36) is composed of grains of ferrite and
of pearlite, the mean grain size being 16 mm for ferrite and 22 mm for pearlite
(Figure 5). The mechanical characteristics of this material are shown in
Table 1.

After mechanical polishing (with abrasive paper down to a grain size
of 6 mm, and finally, polishing with a diamond paste of 1 m), all samples were
tempered at 500�C for 1 h under a vacuum (to reduce residual stresses).
All experimental work was conducted at room temperature and pressure
in an air environment on a servohydraulic biaxial testing machine
(Instron type 1343) operating in force (and torque) control in the frequency
range 10–20Hz.

For all of the observed specimens in tension (seven samples), the
importance of the two critical planes related either to maximum shear stress
or maximum principal stress is evident. The plane of maximum shear stress
corresponds to the first stages of nucleation and the beginning of short-crack
growth (stage I, mode II, corresponding to the plane at 45� to the specimen
axis), as shown in Figure 6. After this first phase of shear crack growth, the
cracks branch toward a plane of maximum normal stress (stage II, mode I,

Figure 5. C36 steel: grains of ferrite (white) and pearlite (black).

Table 1. Mechanical characteristics of the C36 steel.

Young’s modulus RP 0.2 monotonous RP 0.2 cyclic Rm A%

205,000MPa 350MPa 280MPa 580MPa 30%
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corresponding to the plane normal to the specimen axis) as shown in
Figure 7. This branching occurs after a maximum crack length of 20 mm.
Observation of the specimen surface shows that the damage is very localized.
Very few signs of damage or plasticity are observed elsewhere. All the
tension cracks are initiated at either a surface defect (due to polishing), an
inclusion (sulfide), or at plastic shear bands occurring at the sample surface.

SEM observations made during the tests clearly show that cracks start to
grow after their initiation, but can be stopped by meeting a microstructural
barrier such as the pearlite bands. Most of the time, the crack growth speed

Figure 6. Tension test-tube after 2�105 cycles. Initial observed cracking (number of cycles
to failure¼4.16�105 cycles).

Figure 7. The same test-tube after 4� 105 cycles. This crack is the same as in Figure 2
(number of cycles to failure¼ 4.16�105 cycles).
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increases with the cycling pursued, and finally, a single crack leads to failure.
This observation proves that under the corresponding fatigue regime,
damage is higly localized and shows that microdamage sites can exhibit
growth independently of each other (i.e., growth without interactions).

Under fully reversed torsion loading (five samples), the observations show
that the initial first stage of crack initiation is governed by mode II along
the planes of maximum shear stress. These planes correspond to the
longitudinal and transverse directions relative to the specimen axis. On a
specimen where the number of cycles to failure was 8� 105 cycles, many
cracks and plastic shear bands oriented along these two directions, with a
length of about 20 mm and almost homogenous distribution on the specimen
gage length, were observed after 1� 105 cycles. During the following cycles,
new cracks can develop while the existing cracks continue to grow mainly
along the longitudinal axis. In the case of the specimen shown in Figure 8,
the first crack coalescence is observed after 5� 105 cycles, at around half
of the sample lifetime. This figure clearly illustrates the accumulation of
plastic strain in bands. Final failure occurs after the shear crack branches to
45� along the plane of maximum normal stress. Figure 9 shows such a crack
where stages I and II are clearly distinguished.

In accordance with the observations aforesaid, it is important to point out
the different damage mechanisms that exist under pure torsion and pure
tension loadings. Tension loadings lead to very few cracks while the damage
pattern due to torsion is more diffuse on the specimen surface (Figure 9).
The damage kinetics is different, and the damage modeling must correctly
reflect this feature.

Figure 8. A torsion test-tube after 105 cycles. Accumulative plastic strain on critical mode II
planes (number of cycles to failure¼4� 105 cycles).
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COUPLED PLASTICITY-DAMAGE MODEL

FOR HCF: NEW PROPOSAL

In the following, a model devoted to the problem of HCF of metallic
materials is presented. It is based on a simple micromechanical
approach, where plasticity and damage are coupled and expressed at the
mesoscopic scale.

The goal of the new proposal is to describe the salient features of the
mesoscopic behavior of the crystal (notably plastic strain accumulation in
localized grains), using the ideas and postulates put forward in the models
previously discussed. These are in particular:

(a) The framework of CDM enabling us to track the damage at each
moment in time and for all points of the structure. As stated by
McDowell (1999), during the initiation phase, damage can be considered
as being homogenous in the representative volume element (RVE).

(b) The choice of meso/micro scale justified by the nature of the
physical mechanisms. The transition embodied by a localization
rule (macro to meso) allows one to determine the mesoscopic stress
and strain from their macroscopic counterparts which are accessible by
the engineer.

(c) The mean stress effect accounted for. In particular, it was experimentally
shown that the mean shear stress has no effect on the fatigue limit,
whereas mean normal stress influences the amplitude of the admissible
stress.

Figure 9. A torsion test-tube after 8�105 cycles near the end of the life of the sample
(number of cycles to failure¼ 9�105 cycles).
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(d) It is stipulated that once initiated, the damage can grow even for load
levels below the fatigue limit (or the initial damage threshold) and that
damage evolution is non-linear and depends on the stress level.

A compromise between the phenomenological approach and a complex
multiscale description seems to be appropriate for dealing with the HCF
problem. The proposed model considers material evolution at the
mesoscopic scale, in particular local plasticity, and is based on a simple
micromechanical approach, where plasticity and damage are defined and
coupled at the scale of the grains size. To obtain the stress and strain fields at
this scale, different rules can be introduced (e.g., the Lin–Taylor or the self-
consistent scheme, etc.). For the sake of simplicity (Dang Van, 1993), the
Lin–Taylor proposal (9) is utilized:

� ¼ �� 2�"p ð9Þ

where � and "p represent the stress and plastic strain tensors at the
mesoscopic scale and � is the macroscopic stress tensor. It is important to
note that this localization law considers the material, at both the mesoscopic
and macroscopic scales to be purely elasto-plastic, undamaged and
isotropic. It is known that, for HCF, damage appears in the form of
localized shear bands, in specific directions (Figure 8). Consequently,
it would eventually be possible to work specifically on this localization
problem, and to modifiy the Lin–Taylor proposal. In particular, the relation
employed by Lemaı̂tre, in relation to the self-consistent scheme, is a possible
alternative way.

The framework of irreversible thermodynamics with internal variables for
time-independent, isothermal, and small deformations is used. The model is
built by assuming the existence of a thermodynamic potential, namely free
energy, as well as the existence of dissipation potentials for evolution laws
involving distinct multipliers. A normal dissipation is thus postulated for
each mechanism (plasticity, damage), while the evolution laws regarding
plasticity are governed by associated rules. This is not the case for damage.
The axiom of the local accompanying state (LAS) allows one to put forward
a constitutive model based on a finite number of state variables (observable
and internal) (Bataille and Kestin, 1975) for the dissipative processes.
The choice, a priori, of uncoupled dissipations for plasticity and damage
makes it easier to distinguish between the mechanisms concerned and the
corresponding criteria. This choice leads to local plastic straining before
any damage occurs.

In the model brought forward, two distinct scalar internal variables are
used to account for the evolution of the mesocracking. The first variable d is
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called ‘the damage effect variable’ and makes it possible to account for the
reduction of the mechanical strength of the crystal, as well as the reduction
of its capacity to accommodate strain in the elastic domain. The second
variable �, expresses the degree of cumulated degradation of the crystal, by
analogy to the cumulated plastic strain variable p. This choice is similar to
the proposal of Cordebois and Sidoroff (1979). Further discrimination
between d and � is shown below.

The elastic and inelastic parts of the specific free energy of a grain can be
written as follows in Equations (10) and (11).

! ¼ � ¼ !e "e
� �

þ !p "p, p, d
� �

þ !d d,�ð Þ ð10Þ

! ¼
1

2
"� "p
� �

: C : "� "p
� �

þ
1

2
c� : �þ ~r1p exp �sdð Þ

þ
~r1
g
exp �gpð Þ exp �sdð Þ þ

1

2
q�2: ð11Þ

The intrinsic dissipation, at the level of the grains, is given below by:

� ¼ � : _"p � x : _�� r: _pþ Fd
_d� k _� � 0: ð12Þ

The expression of intrinsic plastic dissipation is well-known, while the
presence of the last two terms, accounts for the damage of the crystal in
connection with the two damage variables (d and �). The sign preceding
each of these terms depends on the sign affecting each driving (thermo-
dynamic) force in Equations (14)–(17) in connection with physical meaning
(storage or dissipation of energy). The damage effect variable d thus
tends to dissipate energy (creation of a new decohesion surface during
mesocracking), whereas the cumulated damage variable � tends to store
energy (friction effect on the crack faces).

The elastic behavior is classically defined via the derivation of the free
energy (11).

� ¼
@!

@"e
¼ C : "e: ð13Þ

It is important to note that in this model, the damage of the crystal is not
taken into account via degradation of elastic moduli; this effect is neglected
as in some other models where the primary issue is damage and plasticity
coupling. At the same time, as shown below, the elastic limit depends on
the crystal damage, via the damage effect variable d. The thermodynamic
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(conjugate) forces relative to kinematic and isotropic local hardening
mechanisms are given as follows:

x ¼
@!

@�
¼ c� ¼ c"p ð14Þ

r ¼
@!

@p
¼ r1 1� exp �gpð Þð Þ exp �sdð Þ: ð15Þ

In the last expression, r1 designates the saturation value of the driving
force r in connection to the yield limit (Equation (18)), g is the hardening
parameter and s is a damage sensitivity parameter. This relation
incorporates specific coupling effects between plasticity and damage at a
local scale. Figure 10 shows the evolution of the yield stress r with the
applied number of cycles for pure torsion loading applied to mild steel
C36 (�xy,a¼ 165MPa). As the damage increases, the degree of isotropic
hardening becomes weaker. At the same time, the kinematic hardening,
which is not affected by damage, remains active. The isotropic part of the
hardening then tends to vanish and a local elastic shakedown state is
impossible to reach. Crack initiation and subsequent failure of the
component is then likely to occur due to the exhaustion of ductility.

Fd is the conjugate force corresponding to the damage variable d. This
force derived from the energy (11) with respect to d depends both on the
accumulated plastic strain p and the damage d:

Fd ¼ �
@!

@d
¼ r0 þ ~r1s exp �sdð Þ pþ

exp �gpð Þ

g

� �
: ð16Þ

Figure 10. Stress–strain curves, for the stabilized states, according to several values of total
imposed strain (Gros, 1996).
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A second scalar variable, denoted as �, is defined as the measure of
‘cumulated damage’. Its conjugate force is denoted as k and depends
linearly on �.

k ¼
@!

@�
¼ q�: ð17Þ

The plastic yield condition at the mesoscopic scale is given by (18).

f �, x, r
� �

¼ J2 � � x
� �

� rþ r0ð Þ ¼ 0 ð18Þ

with

J02 � � x
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
s� x
� �

: s� x
� �r

ð19Þ

and

s ¼ � �
1

3
Tr �
� �

ð20Þ

where s is the mesoscopic stress deviator. The form J02 leads to a threshold
value equal to the applied shear stress for a pure shear stress and for the first
loading increase from 0 (x ¼ 0).

A non-associated law is assumed concerning damage evolution; it
stipulates that the damage loading function is distinct from the damage
dissipation potential H. Equation (21) gives the damage loading function h,
where a is the hydrostatic stress sensitivity coefficient for the damage
threshold, and k0 is the initial damage threshold, while k governs the damage
threshold evolution. The function H in (22) shows a similar expression but
exhibits a different hydrostatic stress sensitivity parameter b governing the
damage growth.

h Fd, k; �hð Þ ¼ Fd 1þ a�hð Þ � kþ k0ð Þ � 0 ð21Þ

H Fd, k; �hð Þ ¼ Fd 1þ b�hð Þ � kþ k1ð Þ ð22Þ

From the aforesaid assumptions, it is now possible to set the
complementary laws, notably the evolution laws for the internal variables
of plasticity (23, 24) and damage (25, 26).

_� ¼ _"p ¼ � _�p
@f

@x

 !
¼

1

2
_�p

s� x

rþ r0
ð23Þ

_p ¼ � _�p
@f

@r

� �
¼ _�p ð24Þ
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_d ¼ �_lp
@H

@Fd

� �
¼ _lp 1þ b�Hð Þ ð25Þ

_� ¼ �_lp
@H

@k

� �
¼ _lp: ð26Þ

This model shows two distinct damage effects: d describes the
damage effect on the material properties (see, for example, its influence
on the isotropic hardening conjugate force r in (15)), by controlling the
change of the elastic surface radius. The second variable, �, is a measure
of cumulated damage, by analogy to p in plasticity. The conjugate force to
� is k, which represents the damage threshold surface, see also Hayakawa
and Murakami (1998). The damage variable � and the damage effect
variable d evolve in a convergent or divergent manner depending on the
stress-path:

_� ¼
_d

1þ b�Hð Þ
: ð27Þ

For a pure torsion loading where the hydrostatic stress is zero, _� ¼ _d.
Finally, all the constitutive equations of this model are summarized

in Table 2. It is shown that nine different material constants are required to
describe the crystal behavior at the mesoscopic scale. All these parameters
are assembled in Table 3, and classified according to their relevance.

Table 2. Constitutive equation of the proposed modeling.

Localization law � ¼ �� 2�"p ð9Þ

Intrinsic free energy (Helmholtz)
! ¼ 1=2ð"� "pÞ : C : ð"� "pÞ þ 1=2c� : �þ ~r1p expð�sdÞ

þð~r1Þ=g expð�gpÞexpð�sdÞ þ 1=2q�2 ð11Þ

Mesoplasticity Damage (non-associated law)

� ¼ @!=@"e ¼ C : "e ð13Þ Fd ¼ �ð@!=@dÞ ¼ r0 þ r1s exp �sdð Þ

ðpþ ðexpð�gpÞÞ=gÞ ð16Þ

x ¼ @!=@� ¼ c� ¼ c"p ð14Þ k ¼ @!=@� ¼ q� ð17Þ

r ¼ @!=@p ¼ r0
þ~r1 1� exp �gpð Þð Þexp �sdð Þ ð15Þ

h Fd,k; �hð Þ ¼ Fd 1þ a�hð Þ � k þ k0ð Þ ð21Þ

fð�,x,rÞ ¼ J
0

2ð� � xÞ � ðr þ r0Þ � 0 ð18Þ H Fd,k; �hð Þ ¼ Fd 1þ b�hð Þ � k þ k1ð Þ ð22Þ

_"p ¼ � _�pð@f=@xÞ ¼ 1=2 _�pðs� xÞ=ðr þ r0Þ ð41Þ _d ¼ _�dð@H=@FdÞ ¼ _�dð1þ b�hÞ ð25Þ

_p ¼ � _�p @f=@rð Þ ¼ _�p ð24Þ _� ¼ � _�d @H=@kð Þ ¼ _�d ð26Þ

Volume intrinsic dissipation at the mesoscopic scale

� ¼ � : _"p � x : _�� r: _pþ Fd _d � k _� � 0 ð12Þ
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Plastic and Damage Evolutions, Further Comments

The evolution laws, previously discussed, allow us to establish the plastic
strain accumulation and the damage evolution. However, beforehand, it is
necessary to establish the plastic multiplier _lp and the damage multiplier _ld

from the respective consistency conditions.

_f ¼ 0 )
@f

@�
: _� þ

@f

@x
: _xþ

@f

@r
_r ¼ 0: ð28Þ

Introducing (18) into (23) and noting that ð@f=@xÞ : ð@f=@xÞ ¼ ð1=2Þ,
(@f/@r)¼� 1, and _r ¼ ð@2!=@p2Þ _pþ ð@2!=@p@dÞ _d, it can be seen that:

@f

@�
: _� �

1

2
c_lp �

@2!

@p2
_lp �

@2!

@p@d
_d ¼ 0 ð29Þ

and finally from (24)

_p ¼ _lp ¼
@f=@�
� �

: _� � @2!=@p@d
� �

_d

1=2ð Þcþ @2!=@p2ð Þ
ð30Þ

@!

@p@d
¼ �~r1s 1� exp �gpð Þð Þ exp �sdð Þ � 0 ð31Þ

Table 3. Mechanical parameters used in the proposed modeling.

Localization rule (elastic parameter)
� Lamé coefficient

Hardening parameters
c Kinematic hardening modulus
r0 Initial yield stress
r0þ r1 Yield stress at saturation
g Hardening modulus

Damage parameters
k0 Initial damage threshold
s Sensitivity of isotropic hardening to damage
q Evolution of the damage threshold modulus
a Effect coefficient of the hydrostatic

stress on the damage threshold
b Effect coefficient of the hydrostatic

stress on the damage growth
dc Critical value of the damage effect
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where

@2!

@p2
¼
@r

@p
¼ ~r1g exp �gpð Þ exp �sdð Þ ð32Þ

@f

@�
¼

s� x
� �

2J02 s� x
� � : ð33Þ

Equation (30) clearly shows the coupling between plasticity and damage.
The evolution of the accumulated plastic strain p is related to the stress path,
and to the evolution of the damage effect variable, d.

For the damage consistency, a similar procedure involving _h ¼ 0
leads to the expression of the damage multiplier _ld, and consequently _�
(Equation (26)).

_h ¼ 0 )
@h

@Fd

_Fd þ
@h

@k
_k ¼ 0

@h

@Fd

_Fd þ
@h

@k

@k

@�
_� ¼ 0 ) _� ¼ _ld ¼

� @h=@Fdð Þ _Fd

@h=@kð Þ @k=@�ð Þ
: ð34Þ

By noting that (@h/@k)¼� 1, and by expanding the terms in (34), one
obtains:

_� ¼ _ld ¼
1þ a�Hð Þ

q
_Fd ð35Þ

with

_Fd ¼ �
@2!

@d2
_d�

@2!

@d@p
_p: ð36Þ

The evolution of the cumulated damage variable � thus depends on the
rate of the damage driving force related to the plastic accumulated strain
rate _p (30). The role of the hydrostatic stress is also taken into account
by the coefficient a. The damage effect variable rate follows the same
construction, with an extra coefficient b occurring in (37).

_d ¼
1þ a�hð Þ 1þ b�hð Þ

q
_Fd: ð37Þ
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This distinction between the cumulated damage variable � and the
damage effect variable d can be explained by considering that � globally
corresponds to the storing of energy (dislocation movement and
friction of crack faces), whereas d dissipates energy by a decohesion
mechanism. These considerations are close to the damage model proposed
by Murakami and Kamiya (1997). Moreover, at the end of the seventies,
Cordebois and Sidoroff (1979) proposed a damage model for brittle
materials based on two different mechanisms. The first mechanism was
related to shearing, whereas the second mechanism was assisted by
the stress normal to the crack faces. The two different variables accounted
for the corresponding effects. It is to be reminded that in the
model presented here, the two mechanisms, represented by the two
variables, are connected:

_� ¼
_d

1þ b�Hð Þ
: ð27Þ

By using a differential form for the evolution of the damage driving force
Fd, it is possible to observe the coupling between the damage effect variable
d and the accumulated plastic strain amplitude p (see Equation (39) below),
by using the Equations (11), (36), and (38).

@2!

@d2
¼ ~r1s2 pþ

exp �gpð Þ

g

� �
exp �sdð Þ � 0 ð38Þ

_Fd ¼
q

1þ a�hð Þ 1þ b�hð Þ
_d )

_d ¼
� 1þ a�hð Þ 1þ b�hð Þ=qð Þ @2!=@d@p

� �
_p

1þ 1þ a�hð Þ 1þ b�hð Þ=qð Þ @2!=@d2ð Þ

with
@2!

@d@p
� 0: ð39Þ











By substituting (39) into (30), one can derive Equation (40) below, which

gives the evolution of p as a function of the stress-path only.

_p ¼
@f=@�
� �

: _�

A

with A ¼
1

2
cþ

@2!

@p2
�

@2!

@p@d

� �2
1þ a�hð Þ 1þ b�hð Þ

@k=@�ð Þ þ 1þ a�hð Þ 1þ b�hð Þ @2!=@d2ð Þ
:












ð40Þ
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From (40), it is possible to estimate the local plastic evolutions at any
time in the loading cycle. The principal advantage of a non-associated model
is the possibility of distinguishing the effects of hydrostatic pressure (first
stress invariant) on the damage threshold, damage evolution, and plastic
strain evolution, respectively.

The failure of the crystal is defined by a ‘critical’ value of the damage
effect variable d. So, for d¼ dc, complete failure at the mesoscopic scale
of the crystal is assumed. This criterion is built on the damage variable effect
d and not on the cumulated damage variable �. This choice corresponds
to the significance of these two variables. In fact, the damage effects will
produce the failure of specimens, by a degradation of local material
properties. This is only possible with the variable d (related to energy
dissipation), and not the variable � (energy storage).

It is assumed that the time necessary for the damage transition from
the mesoscopic scale to the macroscopic scale is considered to be negligible.
This assumption is confirmed by experiments in the HCF regime.

The Role of the Hydrostatic Stress

As previously noted, the spherical part of the stress tensor influences the
damage rate laws. Equations (27) and (39) illustrate the consequences of this
choice. The hydrostatic stress is regarded as a loading parameter, and not
explicitly as an active force. If �h had been considered as an active force
in expressions (21) and (22) for the functions h and H, the consistency
condition applied to the damage threshold function would have contained
the term _�h. This term would have then appeared for the respective evolution
laws ( _d and _�). The choice of �h as a true driving force could be related
to particular mechanisms of damage, independently of the stress state.
This alternative approach, not developed here, could have important
applications, in particular for quasi-brittle materials.

Consequence of the Localization Rule on the Plasticity

and Damage Evolution

One of the basic features of this model is the use of stresses and strains
defined at the local scale. To describe the transition from macroscopic
to mesoscopic scale, a precise localization rule is required. The introduction
of the Lin–Taylor transition law assumed in the present context, provides
the necessary connection to numerical computations involving the
macroscopic stress evolution.
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Starting from the expression for the cumulated plastic strain rate,
Equation (40), and employing the expression for the plastic multiplier (30),
one obtains:

_"p ¼ � _�p
@f

@x

 !
¼

@f=@�
� �

: _�

A

s� x
� �
rþ r0

¼
1=2ð Þ s� x

� �
=rþ r0

� �
: _�

A

1

2

s� x
� �
rþ r0

:

ð41Þ

In the case of proportional loading (and only in this case), the
tensors ðs� xÞ and _s are deviatoric and colinear; it can be shown (Dang
Van, 1993) that:

ðs� xÞ : _s
h i

ðs� xÞ ¼ ðs� xÞ : ðs� xÞ
h i

_s ð42Þ

_"p ¼
1

2

_s

A
: ð43Þ

In order to find S, the deviatoric macroscopic stress tensor, the
localization rule (9) is introduced into the local plastic strain rate expression:

_"p ¼
1

2A
_S� 2� _"p

� �
) _"p ¼

1=2ð Þ _S

Aþ �
: ð44Þ

This relation illustrates the role of the localization law, through the sum
Aþ� in the denominator. Recall that A is not a constant coefficient but
depends on p, d, and �h. By using an alternative localization rule, for
example by replacing � by �(1� �) to get an alternative self-consistent
scheme approximation, the plastic (and consequently the damage) evolution
changes but the numerical computation principle remains unchanged.
A modification would be to introduce a dependence of the coefficient �(d )
on damage, as put forward by Sauzay (2000). In this case, the quantity d
plays the role of a ‘loading’ parameter, at least with respect to the
localization relation. In the same way, _p can be expressed as a function of _S.

_p ¼

ffiffiffiffiffiffiffiffiffiffi
_S : _S

q
2 Aþ �ð Þ

: ð45Þ

Equation (45) gives the accumulated plastic strain rate as a function of
macroscopic stress rate. Even if the macroscopic stress deviator rate _S
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appears explicitly in this equation, one should not forget that A depends
on the macroscopic hydrostatic stress. For the selected localization rule,
this hydrostatic stress is completely transmitted from the macroscopic scale
to the mesoscopic scale, and then no modification of A with the localization
is necessary. With other types of localization, the transmission of the
hydrostatic stress should be checked.

MATERIAL, IDENTIFICATION PROCEDURE,

AND MODEL PREDICTIONS

In the experimental part of this work, a mild steel C36 was subjected
to different loading conditions. A part of the experimental results has
been used to identify the 11 parameters used by the model (Table 3). The
remaining experimental data are used to check the accuracy of the
predictions made by the model. The identification procedure discussed
below employs only data obtained from uniaxial tension and torsion tests.
It should be noted that other identification strategies could be considered,
for example, by exploiting the results of multiaxial tests.

Firstly, five elastic–plastic parameters are required to account for the
cyclic hardening behavior at the mesoscopic scale: c (kinematic hardening
coefficient), g (isotropic hardening coefficient), r0þ r1 (asymptotic yield
stress close to the torsion fatigue limit), r0 (initial yield stress), and �
(Lamé coefficient). The value of this last parameter is asummed to be
equal to the typical value for this type of steel (�¼ 70GPa). The
kinematic hardening coefficient c was identified by using cyclic hardening
curves established by Gros (1996), for the same C36 steel. Figure 10
shows these curves, for total imposed strain value varying from 0.5 to 4%,
and for various stabilized states. These curves were obtained by the
progressive increase of the total imposed strain value (this method gives
c¼ 2000MPa).

After the identification of the kinematic hardening coefficient, three
parameters related to the plasticity of the crystal must be determined.
According to the Von Mises equivalent stress chosen, the saturation yield
(r¼ r0þ r1) is equal to the torsional fatigue limit. (This loading accounts for
the maximum elastic shakedown of the crystal for a pure shear stress state.)
Moreover, this stress state does not include hydrostatic stress; hence it is
possible to eliminate the parameters related to the spherical part of stress
tensor. For these two reasons, the identification procedure begins with
the use of torsional data. The fatigue limit in torsion for C36 steel
is estimated to be 169MPa for 106 cycles (by using the staircase
method r0þ r1 ¼ 169MPa). The initial yield r0, is identified by comparing
the expression of plastic dissipation for the present model and the
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Taylor expression of plastic work converted to heat for the material under
consideration. The corresponding numerical simulations allow one to
delimit the value of r0 (Flaceliere, 2004).

The parameter g controls the effect of cyclic hardening for the crystal, due
to the accumulated plastic strain. Its value is selected so that the isotropic
hardening threshold reaches the saturated state for cumulated plastic strain
values equal to a few percent (g¼ 0.1).

Secondly, three coefficients govern the damage evolution: s reflects
the damage influence on the isotropic hardening behavior while q and dc
influence the critical damage at the end of the sample life. The large number
of parameters used in this model implies that one parameter must be
assumed during the identification procedure (one freedom degree).
Consequently, it is necessary to fix one parameter in order to determine
all the other parameters from the experimental data. Our choice of the first
fixed parameter concerns dc (dc¼ 3). Moreover, it is assumed, as Lemaı̂tre
shows in his two-scale model (Lemaı̂tre, 1992), that a reduction in the crystal
shakedown capacity of about 30% happens just before the end of the
lifetime. Equation (15) then allows us to estimate the order of magnitude of
the coefficient of sensitivity to the damage (s¼ 0.06).

The threshold value of damage initiation, k0, is selected to predict damage
activation for lifetime fractions close to that observed in the experiments
with torsional loads. This stage corresponds to the formation of local plastic
strain in the form of bands, considered as incipient damage (k0¼ 80MPa).

The coefficient of damage shakedown q was obtained by inverse
identification (i.e., adjustment on lifetimes obtained in pure torsion tests).
In particular, this parameter controls the damage progression
(q¼ 400MPa).

After this first stage of identification, it is possible to plot a ‘correlated’
Wöhler curve in torsion (Figure 11), together with the experimental fatigue
data used in the identification process. It should be noted that this diagram
does not constitute a prediction. In such a case do not use ‘‘predicted’’ in
captions (Figures 11 and 12). The analogous curve representing the tension
fatigue Wöhler curve is given in Figure 12.

In torsion, Figures 13 and 14 show the evolution of the damage effect
variable and of the mesoscopic yield limit, respectively, as a function of the
number of cycles. Three stress amplitudes are considered: �a¼ 165,
�a¼ 170, and �a¼ 190MPa leading to the predicted lives of 1.7� 106,
7.94� 105, and 3.2� 105 cycles. For these torsional loadings, with no
hydrostatic stress, the relation �¼ d (27) is verified for the whole process.

The graphs mentioned show an almost linear damage evolution for the
stress level �a¼ 190MPa. The corresponding slope increases with an
increasing stress amplitude. In HCF, this has been corroborated by the
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observations of Miller (1993). The nucleation phase is shortened, leading
to a larger part of the lifetime for damage growth. As shown in Figure 13,
the non-linearity increases with a decrease of the stress level. This trend
is a direct consequence of the mesoscopic yield limit evolution depicted
in Figure 14.

The second step of the identification process takes into account the
influence of the hydrostatic stress, which is reflected through the two
parameters a and b. Parameter a occurs in the damage threshold
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Figure 11. Experimental data and corresponding Wöhler curves in torsion.
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Figure 12. Experimental data and corresponding Wöhler curves in tension.
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whereas b affects damage evolution. The tension fatigue limit and the
corresponding SN curve lead to a¼ 0.01 and b¼ 0.04. Table 4 summar-
izes the values identified for all parameters of the proposed model for
C36 steel.
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In order to show the predictive capacities of the model, the comparison of
the model with fatigue tests carried out under constant amplitude
multiaxial conditions has been undertaken. More precisely, results from
tests under combined tension and torsion with two stress ratios k¼ 	a/�a are
presented (k¼ 0.5 in Figure 15 and k¼ 1 in Figure 16). All comparisons
shown further in Figure 17 correspond to the fatigue strength for a
fatigue life of 106 cycles. For the sake of clarity, the experimental points and
the calculated data are assembled on the same graph that represents a
threshold endurance curve (at 106 cycles and for a 50% failure probability)
in the plane ðJ02,max,�H, maxÞ. The predicted curve is almost a straight line
for positive hydrostatic stresses and all the experimental points lie very
close to this line.

It is to be stressed that this curve shows predictive capacities of the model,
and not just a simple correlation (Figures 11 and 12), since the identification
procedure used only the experimental results obtained in pure tension and
in pure torsion, while more complex loading programmes such as combined
tension and torsion are exploited in order to validate the model.

When remaining under the macroscopic plastic yield limit in a Haigh
diagram (the dotted line in Figure 18), the proposed model provides
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Figure 15. Tension–torsion (for k¼0.5) tests results and predicted Wöhler curve.

Table 4. Parameters identified for the C36 steel.

C l r1 r0 g s k0 q dc

2000MPa 70GPa 108MPa 60MPa 0.1 0.06 80MPa 400 3
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predictions very close to the Gerber curve drawn for endurance limits at
106 cycles and to tension data with a load ratio R¼�0.3. The model
presented in this article, therefore, reflects the mean stress effect under
tension loads. Let us recall that for a torsional load with a mean level
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Figure 16. Tension–torsion (for k¼ 1) tests results and predicted Wöhler curve.

0

50

100

150

200

−40 −20 0 20 40 60 80 100

Model
Torsion
Tension
Tension–Torsion k= 0.5
Tension–Torsion k=1

k = 0k = 0.5
k =1

k = 4

ΣH,max

J2,max

Figure 17. Predicted threshold endurance curve (at 106 cycles and for a 50% failure
probability) and experimental data in the plane ðJ02,max,�H,maxÞ.

500 L. FLACELIERE ET AL.



(e.g., R¼ �zy,min/�zy, max¼�0.3), the model predicts no influence of the
mean shear stress on the fatigue strength (Davoli, 2003).

INFLUENCE OF MATERIAL CONSTANTS

ON MODEL PERFORMANCE

This section summarizes the influence of the important material constants
on the model. This appears useful to illustrate the coupling effects between
plasticity and damage, and also to clarify their respective roles. The
coefficients were identified for a mild steel (C36), as discussed before.

The first two constants discussed are Lamé’s coefficient � and the
kinematic hardening modulus c, occurring in the denominator of the plastic
strain rate, Equation (44). The terms derived from the free energy (11)
are numerically smaller (second-order significance) compared to the
coefficient c. Consequently, the quantities � and c control the plastic
strain accumulation rate. However, � is much greater than c; hence, � has
a greater influence.

The initial yield stress of the crystal is denoted as r0. In the first hardening
phase, the accumulated plastic strain p increases when r0 decreases.
In particular, r0 reflects an initial hardening level of the crystal.

The value r1 determines the mesoscopic saturation yield stress (15) and
the quantity r¼ r0þ r1 is close to the macroscopic shear fatigue limit of the
crystal. Indeed, when the equivalent load level is lower than r0þ r1, there is
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an elastic shakedown, with no damage evolution. Figures 19 and 20
illustrate the effect of varying r1 on the shape of the SN curves, in tension
and in torsion, respectively.

On these Wöhler curves, and on the following ones, it is possible to see
that the predictions of the model were extended up to lifetimes of 107 cycles.
The model proposed and the experimental results and observations are more
specifically dedicated to the lifetimes between 105 and 106 cycles. For this
reason, the model predicts flattened forms of the Wöhler curves between 106

and 107 cycles. Other physical mechanisms, however, will be activated for
such lifetimes; they are not considered in this modeling.

The other hardening parameter, g, influences the isotropic
threshold evolution r through the plastic strain accumulation p (see
also Equation (15)). The greater the g, the more quickly does r tend
toward the saturation value r0þ r1. The consequence of a large g value,
illustrated in Figure 21, is that the accumulated plastic deformation becomes
a quasi-linear function of the number of cycles. The end of a specimen’s
life is mainly controlled by damage, which induces slope variations with
a smaller dependence on the parameter g.

Concerning the parameters related to damage, one can obtain from
Equation (16) the initial value of the damage driving force Fd, as given
below. The initial value of Fd is not zero, but according to the terminology
of Maugin (1999) the ‘constrained equilibrum’ framework is assumed here in
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Figure 19. Effect of r1 (yield stress at saturation) on the SN curve in pure torsion loading.
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Figure 20. Effect of r1 (yield stress at saturation) on the SN curve in pure tension loading.
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Figure 21. Effect of different values of g (hardening modulus) on predicted cumulated
plastic strain in pure torsion loading.
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relation to the threshold value k0 regarding the activation of damage. It is
thus stipulated that a finite supply of energy is necessary to activate the
damage process.

Fd p ¼ 0 and d ¼ 0ð Þ ¼
r1s

g
: ð46Þ

Figure 22 illustrates the damage activation conditions as a function
of the number of cycles for pure reversed torsion. This effect is similar
in tension.

The parameter s is the damage sensitivity coefficient, which for the
damage evolution plays the same analogous role as the parameter g does for
plastic hardening. Constant s also influences the isotropic hardening yield
decrease with respect to damage variable d, see Equation (15). Increasing s
increases the damage rate, and makes the fatigue life shorter (Figure 23).
The parameter q explicitly controls the damage growth rate, as shown in
Equations (37) and (39) (Figure 24).

The critical damage value dc shifts the SN curve to the left or right side
of the SN plane, depending on whether dc is small or large. Figure 25 gives
the effect of dc on the mesoscopic yield limit evolution in pure torsion.
The crack-induced failure (d¼ dc) puts an end to the yield limit evolution
sooner or later depending on the dc value.
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Figure 22. Effect of k0 (initial damage threshold) on damage effect variable growth in pure
torsion loading.
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Figure 23. Effect of s (sensitivity of isotropic hardening to damage) on damage effect
variable growth in pure torsion loading.
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Figure 24. Effect of q (evolution of the damage threshold) on damage effect variable growth
in pure torsion loading.
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The parameters a and b act, respectively, on the damage threshold
function and on the damage growth rate, via the hydrostatic stress effect.
This implies that there is no influence of these two parameters for a purely
deviatoric loading (torsion). This property is used for the identification of
the model parameters. Figure 26 shows the effect of a on the tension Wöhler
curve. In addition to its influence on fatigue lives, this parameter also
controls the fatigue limit level. This is the consequence of the damage
activation, depending on the hydrostatic stress affecting the threshold
function (21).

Figure 27 illustrates the effect of coefficient b on the evolution of
the damage variable d, for pure tension (�xx,a¼ 260MPa, with constant
value of a). The slopes of these curves depend on coefficient b. The case
where a¼ 0.1 and b¼ 1 is a counterexample where the damage growth
appears to be too strong, inducing a knee in the curve.

DISCUSSION AND CONCLUSION

A framework of irreversible thermodynamics with internal variables is
employed to put forward a plasticity/damage model applied to multiaxial
HCF. Local (mesoscale) plasticity plays a fundamental role in this fatigue
regime, and simple mesoscopic cyclic hardening rules are postulated to
reflect this feature in the present model. The model leads to the prediction of
the fatigue limit (defined as the stress under which no initiation occurs)
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Figure 25. Effect of dc (critical damage) on the mesoscopic yield limit evolution in pure
torsion loading (�a¼ 170MPa).
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Figure 27. Effect of the constant b (influence of the hydrostatic stress on the
potential function H) on damage effect variable growth in pure tension loading (a¼ 0.1 for
all curves).
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Figure 26. Effect of the constant a (influence of the hydrostatic stress on the threshold
function h) on the SN curves in pure tension loading (b¼ 0.04 for all curves).
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in accordance with the concept of elastic shakedown. It is also able to
predict cyclic behavior similar to plastic shakedown because of the coupling
between plasticity and damage. Indeed, when a threshold value of the
accumulated plastic strain has been reached, damage inhibits yield stress
evolution so that only the kinematic part of the hardening remains active.
This hardening feature is precisely a condition of plastic shakedown.

Moreover, with this approach, damage nucleation and growth are
governed by non-associated law. The effect of the hydrostatic stress on
the damage threshold is different to its influence on damage growth. This
property is very interesting and none of the classical damage rules applied
in HCF make this distinction.

The question of the legitimate application of CDM to deal with the cracks
initiation and propagation problem remains open. Depending on the stress
state, experimental observations showed that the physical damage of the
crystal takes different forms, more or less evenly distributed. In pure torsion,
a large quantity and an even distribution of accumulated strain and damage
at the sample surface justifies the type of model presented here. However, in
tension, the use of a propagation law, as used by Hoshide and Socie (1988),
can be legitimate.

When compared to constant amplitude multiaxial fatigue data for mild
steel C36, the model predictions are satisfactory. However, it is hoped that
further predictive capacities of the model will be demonstrated when it is
applied to highly complex loading conditions, including multiaxial stress
states and variable amplitude loading conditions.

Fatigue tests based on the regular alternation of multiaxial loading
blocks, such as for example tension followed by torsion and vice versa,
with changes every 105 cycles, for experimental lifetimes limited to 106 cycles,
have already been carried out. This type of sequence is of particular
relevance to the damage accumulation predictions by the model.
A forthcoming article will present comparisons between the predictions
made by the proposed model and the experimental observations for
this type of loading. Further, more complex loading sequences could
also be considered in the future (variable amplitude loading, out of
phase loading, etc.). An additional coupling with a probabilistic approach
could be developed, to account for the significant scatter in fatigue crack
growth data.
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