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Numerical Analysis of Nonlocal
Anisotropic Continuum Damage

SABINE RICCI* AND MICHAEL BRÜNIG

Lehrstuhl für Baumechanik - Statik, Universität Dortmund
August-Schmidt-Str. 6, D-44221 Dortmund, Germany

ABSTRACT: This article deals with the numerical analysis of anisotropic
continuum damage in ductile metals based on thermodynamic laws and nonlocal
theories. The proposed model is based on a generalized macroscopic theory within
the framework of nonlinear continuum damage mechanics taking into account the
kinematic description of the damage. A generalized yield condition is employed to
describe the plastic flow characteristics of the matrix material, whereas the damage
criterion provides a realistic representation of material degradation. The nonlocal
theory of inelastic continua is established, which incorporates the macroscopic
interstate variables and their higher-order gradients which properly describe the
change in the internal structure and investigate the size effect of statistical
inhomogeneity of the heterogeneous material. The idea of bridging length scales
is made by using the higher-order gradients only in the evolution equations
of the equivalent inelastic strain measures. This leads to a system of elliptic
partial differential equations which is solved using the finite difference method. The
applicability of the proposed continuum damage theory is demonstrated by finite
element analyses of the inelastic deformation process of tension specimens.

KEY WORDS: elastic-plastic material, anisotropic damage, nonlocal material
model, finite strains, finite difference method, finite element analyses.

INTRODUCTION

T
HE ACCURATE AND realistic description of inelastic behavior of ductile
materials as well as the development of associated efficient and stable

numerical solution techniques are essential for the solution of numerous
boundary-value problems occurring in engineering. The nonlinear material
behavior is caused by two distinct material processes: (i) dislocations along
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distinct crystal slip planes and (ii) the evolution and growth of microcavities
and microcracks. These two completely different degradation phenomena
are adequately described by the continuum theories of plasticity and damage
mechanics.

Classical local continuum theories are based on the assumption that,
at a given point, the physical state of a body is completely determined by
the state of the material lying within an arbitrarily small neighborhood of
that point. Such local material models have been successfully used in
describing the macroscopic stress and strain fields in a large number of
engineering problems. Nonlocal effects, on the other hand, are important
when deformation mechanisms governed by microscopic phenomena as
well as scale effects have to be considered in order to explain and predict
certain experimentally observed critical phenomena. For example, nonlocal
theories represent a constitutive framework on the continuum level that is
used to bridge the gap between the micromechanical level and the classical
continuum level through the incorporation of intrinsic material length
parameters into the constitutive model. This is made by using spatial higher-
order gradients in the evolution equations of the respective internal state
variables describing plastic and damage growth.

The present article discusses a finite strain framework for ductile
anisotropic continuum damage and presents a numerical approach where
the gradient-enhanced constitutive model leads to a system of elliptic
partial differential equations for the internal variable which is solved using
the finite difference method; whereas the displacement-based finite element
procedure is governed by the standard principle of virtual work. The
applicability of the proposed continuum damage theory is demonstrated
by finite element analyses of the inelastic deformation process of tension
specimens.

FUNDAMENTAL GOVERNING EQUATIONS

In the past decades, the constitutive modeling of ductile damaged solids
in the finite deformation range has received considerable attention. For
example, scalar-valued damage variables have been proposed by Kachanov
(1958), Lemaitre (1985a,b), and Tvergaard (1990) among many others.
To be able to take into account the damage-induced material anisotropy,
damage tensors have been introduced e.g., by Murakami and Ohno (1981),
Krajcinovic (1983), Chaboche (1988a,b), Murakami (1988), Ju (1990),
Voyiadjis and Kattan (1992), Abu Al-Rub and Voyiadjis (2003), and
Hammi et al. (2003, 2004).

The framework presented by Brünig (2003a,b) is used to describe the
inelastic deformations including anisotropic damage due to microdefects.
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Briefly, the kinematic description employs the consideration of damaged
as well as fictitious undamaged configurations related via metric
transformations which allow for the definition of damage strain tensors
Ada. The modular structure is accomplished by the kinematic decomposition
of strain rates, _H, into elastic, _H

el
, effective plastic, _�H

pl
, and damage

parts, _H
da
.

To be able to address equally the two physically distinct modes of
irreversible changes, i.e., plastic flow and damage, respective Helmholtz free
energy functions with respect to the fictitious undamaged and to the current
damaged configurations are introduced separately. The effective specific free
energy �� of the fictitious undamaged matrix material is assumed to be
additively decomposed into an effective elastic and an effective plastic part

�� ¼ ��el �Ael
� �

þ ��pl �
^
� �

ð1Þ

where �A
el
is the logarithmic effective elastic strain tensor. In Equation (1), �

^

denotes the internal plastic variable

�
^
¼ 1�mpl

� �
� þmpl�̂ ð2Þ

where � is a local internal mechanical state variable characterizing plastic
deformation behavior and �̂ represents its nonlocal counterpart. The
parameter mpl in Equation (2) denotes the relative weight of the local plastic
effects compared to the nonlocal ones. If mpl¼ 0, Equation (2) reduces to
the standard local plastic constitutive relationship discussed by Brünig
(1999) whereas for mpl¼ 1, one obtains a purely nonlocal formulation. The
nonlocal internal variable plays the role of an explicit link between the
plastic hardening at the microscale and the behavior of the homogeneous
equivalent material at the macroscale. The use of the nonlocal theory is
made to achieve this long-range microstructural interaction. Nonlocal
effects are described via additional length quantities which play the role
of material parameters (Abu Al-Rub and Voyiadjis, 2004) and are used to
obtain weighted averages of the corresponding local variables over a
material volume of the body. In particular, the nonlocal equivalent plastic
strain �̂ is taken to be a volume average of the corresponding local variable
over a fixed and isotropic representative volume element surrounding
the considered material point. The volume average of � at a location x is
defined as

�̂ xð Þ ¼
1

Vpl xð Þ

Z
�pl x� sð Þ � sð Þ ds, ð3Þ
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where

Vpl xð Þ ¼

Z
�pl x� sð Þ ds ð4Þ

denotes a representative volume, x and s are coordinate vectors, and
the plastic averaging function �pl, which has a maximum at x¼ s,
decays smoothly with distance and is symmetric about this maximum,
and implicitly contains an intrinsic characteristic plastic length lpl. Physical
and micromechanical arguments suggest that the representative
volume should be sufficiently small. In numerical applications, good
convergence is obtained when �pl is the Gaussian bell curve (Strömberg
and Ristinmaa, 1996).

�pl xð Þ ¼ exp �
k xk k

lpl

� �2
" #

: ð5Þ

In Equation (5), the internal plastic length parameter lpl determines the
range of the function �pl, and for the one-, two-, and three-dimensional
cases, xk k and k are given by

1D : xk k ¼ x; k ¼
ffiffiffi
�

p

2D : xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, k ¼ 2

3D : xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, k ¼ 6

ffiffiffi
�

p� �1=3
,

ð6Þ

where x, y, and z denote Cartesian coordinates (Brünig et al. (2001)).
Physically, the characteristic plastic length lpl represents a material
property which is of the order of magnitude of the maximum size of
the plastic material inhomogeneities – in the case of crystalline solids,
this may be the lattice spacing; whereas in the case of granular
materials it may be the grain size. Also, when lpl is set equal to zero, the
classical local I1-J2- metal plasticity theory presented by Brünig (1999,
2003a) is recovered.

Furthermore, the spatial average �̂ is expanded into a Taylor series about
the point x and only first- and second-order terms are retained. Carrying out
the integration in Equation (3) and using the symmetry requirements for �pl
(Equation (5)), one arrives at

�̂ ¼ � þ dpl
@2�

@x � @x
þ � � � ¼ � þ dplr

2� þ � � � , ð7Þ
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where dpl is related to k (Equation (6)), and for the one-, two-, and three-
dimensional cases one obtains

1D : dpl ¼
l2pl
4�

2D : dpl ¼
l2pl
16

3D : dpl ¼
l2pl

4
ffiffiffiffiffiffiffiffi
36�3

p :

ð8Þ

Taking Equations (2) and (7) into account, the effective plastic part of
the Helmholtz free energy function ��plð�,r2�Þ (Equation (1)) is an explicit
function of both the local plastic internal variable � and its second-order
gradient r2�.

Moreover, the thermic state equation leads in the case of isotropic elastic
material behavior to the effective stress tensor

�T ¼ 2G �A
el
þ K�

2

3
G

� �
tr �A

el
1 ð9Þ

where G and K represent the shear and bulk modulus of the matrix material,
respectively. In addition, plastic yielding of the hydrostatic stress-dependent
matrix material is assumed to be adequately described by the nonlocal yield
condition

f pl �I1, �J2,c
� �

¼ 1�
a

c
�I1

� ��1
ffiffiffiffiffi
�J2

q
� c �,r2�

� �
¼ 0, ð10Þ

where �I1 ¼ tr �T and �J2 ¼
1
2dev

�T � dev �T are the invariants of the effective
stress tensor �T, cð�,r2�Þ denotes the gradient-enhanced strength coefficient
of the matrix material, and a represents the hydrostatic stress coefficient.

In addition, in elastic-plastically deformed and damaged metals,
irreversible volumetric strains are mainly caused by damage and, in
comparison, volumetric plastic strains are negligible. Therefore, the plastic
potential function,

gpl �T
� �

¼

ffiffiffiffiffi
�J2

q
ð11Þ

is taken to depend only on the second invariant of the effective stress
deviator which leads to the isochoric effective plastic strain rate

_�H
pl
¼ _�

@gpl

@ �T
¼ _�

1

2
ffiffiffiffiffi
�J2

p dev �T ð12Þ

where _� is a nonnegative scalar-valued factor.
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In addition, the normalized deviatoric tensor

N ¼
1ffiffiffiffiffiffiffiffi
2 �J2

p dev �T ð13Þ

is introduced which leads to the definition of the equivalent plastic
strain rate

_
�
^
¼ N �

_�H
pl
¼

1ffiffiffi
2

p _� ð14Þ

which will be used to express the plastic strain rate tensor (12) in the form

_�H
pl
¼

_
�
^
N: ð15Þ

Moreover, the anisotropically damaged configurations are considered
to formulate the constitutive equations which adequately describe the
deformation behavior of the damaged aggregate. The complexity of the
model is directly determined by the form of the Helmholtz free energy �
with respect to the anisotropically damaged configurations and by the
number of variables. In particular, dislocations, microvoids, and micro-
cracks are the predominant modes of irreversible microstructural
deformations at each stage of the loading process and, therefore, the
effects of plastic strain hardening and microdamage mechanisms have to
be considered. Pure plastic flow develops by dislocation motion and sliding
phenomena along some preferential crystallographic planes whereas
damage-related irreversible deformations are due to residual opening of
microdefects after unloading. These dissipative processes are distinctly
different in their nature and in the manner in which they affect the
compliance of the material. In order to take into account plasticity and
damage phenomena at a small-scale level in an adequate manner,
different internal variables and more than one length parameter should
be introduced. Therefore, two sets of internal state variables acting at
the microlevel as well as their nonlocal counterparts are chosen
characterizing formation of dislocations (plastic internal variables) as
well as describing nucleation and propagation of microdefects (damage
internal variables).

The Helmholtz free energy of the damaged material sample is assumed to
consist of three parts:

� ¼ �el Ael,Ada
� �

þ �pl �
^
� �

þ �da �
^
� �

ð16Þ
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with the damage internal variable

�
^
¼ 1�mdað Þ�þmda�̂: ð17Þ

The elastic free energy �el, which is an isotropic function of the elastic and
damage strain tensors, Ael and A

da, is used to describe the elastic response of
the damaged material at the current state of deformation and material
damage (see e.g., Lubarda and Krajcinovic (1995), Hayakawa et al. (1998)
and Brünig (2003a)). The plastic and damage Helmholtz free energies
depend not only on the macroscopic response associated with the local
internal variables � and �, but also on their nonlocal counterparts �̂ and �̂.
In this context, � denotes the local phenomenological internal mechanical
state variable describing damage behavior and �̂ is its nonlocal counterpart
which characterizes the notion of nonuniform distribution of microvoids
and microcracks over multiple length scales at which neighbor effects of
nonlocal character are significant. The parameter mda in Equation (17)
denotes the relative weight of the local damage effects compared to the
nonlocal ones. If mda¼ 0, Equation (17) reduces to the standard local
damage constitutive relationships (Brünig (2003a)) whereas for mda¼ 1 one
obtains a purely nonlocal formulation.

The nonlocal equivalent damage strain

�̂ðxÞ ¼
1

VdaðxÞ

Z
�da x� sð Þ� sð Þds, ð18Þ

is – in analogy to �̂ (3) discussed previously – taken to be a volume average
of � where

Vda xð Þ ¼

Z
�daðx� sÞ ds ð19Þ

denotes a representative volume, x and s are coordinate vectors. The damage
averaging function

�da xð Þ ¼ exp �
k xk k

lda

� �2
" #

ð20Þ

takes into account an internal damage length scale lda representing an
effective damage material property which is in the order of magnitude of the
maximum size of the material inhomogeneities which may be the microvoid
spacing. The parameters xk k and k are given in Equation (6). Similar to the

Numerical Analysis of Continuum Damage 289



nonlocal plastic variable (Equation (7)), the spatial average �̂ is expanded
into a Taylor series about the point x and only first and second-order terms
are retained. Carrying out the integration in Equation (18) and using the
symmetry requirements for �da (20), one thus arrives at

�̂ ¼ �þ dda
@2�

@x � @x
þ � � � ¼ �þ ddar

2�þ � � � , ð21Þ

where dda is related to lda according to Equation (8). Thus, taking into
account Equations (17) and (21), the damage part of the Helmholtz free
energy function �dað�,r2�Þ (see Equation (16)) is an explicit function of
both the local damage internal variable � and its second-order gradient r2�.

Furthermore, following Brünig (2003a) the Kirchhoff stress tensor of the
damaged material is expressed in the form

T ¼ 2 Gþ �2trA
da

� �
Ael

þ K�
2

3
Gþ 2�1trA

da

� �
trAel

þ �3 Ada
� Ael

� �� 	
1

þ �3trA
elAda

þ �4 AelAda
þ AdaAel

� �
ð22Þ

which is linear in Ael and Ada, and �1, . . . , �4 are newly introduced material
constants taking into account the deterioration of the elastic material
properties due to damage.

In analogy to the yield surface and flow rule concepts employed in
plasticity theory, evolution of damage is assumed to be adequately described
by the nonlocal damage criterion

f da I1,J2, ~�ð Þ ¼ I1 þ ~	
ffiffiffiffiffi
J2

p
� ~� �,r2�

� �
¼ 0, ð23Þ

which is a function of the stress invariants I1 ¼ trT ¼ tr ~T and
J2 ¼ 1=2 devT � devT ¼ 1=2 dev ~T � dev ~T expressed in terms of the stress
tensor ~T ¼ QelTQel�1 which is work-conjugate to the damage strain rate
tensor _H

da
and where Qel represents the elastic metric transformation tensor

(see Brünig (2003a) for further details). In addition, ~�ð�,r2�Þ denotes the
damage threshold which represents the material toughness to microdefect
propagation and ~	 characterizes the influence of the deviatoric stress state
on the damage condition simulating shear stress instabilities.

To be able to adequately compute damage strain rates, the damage
potential function

gda ~T
� �

¼ �I1 þ 	
ffiffiffiffiffi
J2

p
ð24Þ
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is also formulated in terms of invariants of the stress tensor ~T. In
Equation (24) � and 	 denote kinematically based damage parameters. This
leads to the nonassociated damage rule

_H
da

¼
_
�
^ @gda

@ ~T
¼

_
�
^
�1þ

_
�
^
	

1

2
ffiffiffiffiffi
J2

p dev ~T: ð25Þ

The first term in Equation (25) represents inelastic volumetric deforma-
tions caused by the isotropic growth of microvoids, whereas the second
term takes into account the significant dependence of the evolution of size,
shape, and orientation of microdefects on the direction of stress simulating
orthotropic damage behavior.

In addition, based on kinematic considerations (Brünig (2003a)) the
identities

_
�
^
¼

_
f
^

ð26Þ

and

� ¼
1

3
1� f

^
� ��1

ð27Þ

hold, where f
^

denotes the nonlocal generalization of the current void volume
fraction (Tvergaard (1990)). Then, Equation (25) can be rewritten in the
form

_H
da

¼
_
f
^ 1

3
1� f

^
� ��1

þ
_
f
^

	
1

2
ffiffiffiffiffi
J2

p dev ~T: ð28Þ

Based on experimental, theoretical, and numerical studies on iron-based
metals Brünig (2003a) discussed realistic macroscopic damage propagation
conditions. He proposed an isotropic damage model with 	 ¼ ~	 ¼ 0 in the
early stage of material degradation until the void volume fraction reaches
the critical value

fc ¼ 0:0344þ 1:25 f
o

ð29Þ

which depends linearly on the initial porosity f
o

of the material.

COMPUTATIONAL ASPECTS

On the numerical side, a key factor in the numerical treatment of inelastic
continuum models using the finite element method is the numerical
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integration of the nonlinear constitutive equations governing the flow and
damage behavior as well as the evolution of internal state variables.

For the numerical treatment of gradient-enhanced constitutive models
in the context of the finite element method, Mühlhaus and Aifantis (1991),
de Borst and Mühlhaus (1992), Sluys et al. (1993), and de Borst and Pamin
(1996) presented finite element formulations and algorithms for a gradient
plasticity model using mixed-type finite elements, thus satisfying the yield
condition and the equilibrium conditions in a weak sense. In addition,
Li and Cescotto (1996, 1997) and Brunet et al. (2004) presented a finite
element model for a gradient plasticity approach in which the Laplacian of
the effective plastic strain is evaluated at a quadrature point while the
nonlocal yield condition is satisfied in a pointwise fashion. Strömberg and
Ristinmaa (1996) also implemented a simplified nonlocal plasticity model
into their finite element formulation but treated the consistency condition as
an integral equation.

In the present study, however, estimates of the irreversible strain histories
are obtained via an extended version of the inelastic predictor method
(Nemat-Nasser, 1991; Brünig, 2003b). In the elastic corrector step the plastic
and damage correctors, �er�̂ and �er�̂, are expanded in respective Taylor
series, e.g.,

�er�̂ ¼ �er� þ dpl
@2�er�

@x � @x
þ � � � ¼ �er� þ dplr

2 �er�ð Þ þ � � � ð30Þ

for the plastic one where only terms up to second order are retained and dpl
takes into account a plastic internal length scale (Brünig et al., 2001). This
leads to the system of coupled elliptic partial differential equations for the
estimates of the correctors of the equivalent plastic and damage strains

mpldpl
@c

@�
r2 �er�ð Þ þ

ffiffiffi
2

p
G1k1 þ

@c

@�

� 	
�er� þ

ffiffiffi
2

p
G1k2�er� ¼ cpr � cðtÞ ð31Þ

and

mdadda
@�

@�
r2 �er�ð Þ þ

ffiffiffi
2

p
G2k4 þ

@�

@�

� 	
�er�þ

ffiffiffi
2

p
G2k3�er� ¼ �pr � �ðtÞ:

ð32Þ

where G1 and G2 as well as k1, . . . , k4 represent modified material parameters
(Brünig and Ricci, 2005). cpr and �pr are the equivalent stress measures
computed at the end of the inelastic predictor step while c(t) and �(t)
denote the equivalent stress measures at the end of the former time
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step, respectively. Equations (31) and (32) are solved via a standard finite
difference method employing an overlay mesh defined by the Gaussian
integration points of the underlying finite element mesh, whereas the global
equilibrium equations are solved using standard displacement-based finite
elements. At the end of each time step, equivalent plastic and damage
strain increments are computed simultaneously which then lead to the
corresponding tensorial quantities employing an integration scheme with an
exponential shift.

Furthermore, the finite element procedure is based on the principle of
virtual work and corresponding variational equations are obtained using
a consistent linearization algorithm. The finite element formulation relies
on quadrilaterals built up of four triangular elements with linear
displacement fields.

NUMERICAL SIMULATIONS

The numerical simulations deal with the finite deformation and
localization behavior of uniaxially loaded rectangular aged maraging steel
specimens. The material has been tested by Spitzig et al. (1976) and the
elastic material behavior is described by the shear modulus G¼ 81,300MPa
and the bulk modulus K¼ 166,300MPa whereas the rate-independent
plastic material properties are adequately simulated by the saturation law

c ¼ cs � c0ð Þ tanh
H0�

^

cs � c0

 !
þ c0: ð33Þ

Good agreement with test results is given with the initial yield stress
c0¼ 870MPa, the initial hardening parameter H0¼ 96,000MPa and the
saturation flow stress cs¼ 1120MPa (see Brünig (1999) for further details)
and the effect of superimposed hydrostatic stress on the flow characteristics
of aged maraging steel in Equation (10) is chosen to be a/c¼ 20TPa�1. Due
to numerical experiments the weighting parameters for nonlocality are
chosen to be mpl¼mda¼ 0.5. In addition, Spitzig et al. (1988) measured
various elastic moduli of damaged and undamaged iron specimens. These
experimental results are used to determine the material parameters �1, . . . , �4
in Equation (22) and the respective values

�1 ¼ �117500 MPa , �2 ¼ �95000 MPa

�3 ¼ �190000 MPa , �4 ¼ �255000 MPa

give the best fit to the experimental data (see Brünig (2003a)).
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Furthermore, the equivalent aggregate stress–equivalent damage strain
relationship is approximated by a piecewise linear curve with the respective
slopes Hda

¼ @�/@f. These slopes are chosen to be Hda
1 ¼�50MPa as long as

f
^

< fc and Hda
2 ¼�4000MPa for f

^

� fc.
Numerical calculations of uniaxially loaded rectangular specimens (initial

length l0/initial height h0¼ 4) with clamped ends are carried out using
displacement-based crossed-triangle elements. They take into account plane
strain conditions and are based on the elastic-plastic-damage model with the
constitutive parameters discussed earlier.

The corresponding load–deformation curves for different internal length
parameters l¼ lpl¼ lda (see Equations (5) and (20)) are shown in Figure 1.
In particular, the numerical calculation with l¼ 0 (local model) shows a
maximum load at u/l0¼ 0.015. The subsequent slight decrease in load
corresponds to the formation of a neck whereas the later larger decrease is
caused by the increase in damage. Similar load–deformation behavior is
numerically predicted taking into account a nonlocal model with l¼ 0.11
which only shows an increase in load of about 5%. Larger length
parameters, however, lead to different load–deformation behavior. For
example, the numerical calculation based on l¼ 0.13 leads to larger loads for
larger displacements which seems to be unrealistic. For the following
numerical computations the characteristic length is chosen to be l¼ 0.056
because for this value numerical experiments concerning the mesh
dependence yield the best results. Here, the characteristic length is a
weighted measure relative to the fineness of the mesh and is therefore
dimensionless.

Figure 1. Load–deflection curves for different l¼ lpl¼ lda.
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Furthermore, the effect of the kinematic parameter 	 which appears in the
damage rule (25) on the load–deformation behavior is shown in Figure 2.
After the onset of anisotropic damage behavior (f

^

� fc) a larger decrease
in load with further elongation is observed; but at the final elongation
u/l0¼ 0.064, the difference in load is only of about 10%. In addition,
Figure 3 shows the effect of increasing anisotropy on the deformation
modes. Larger anisotropy (	¼ 1.3) leads to more localized damage increase
in the center region of the specimen which will lead to the initiation of a
macrocrack in this region.

Figure 2. Load–deflection curves for different 	.

Figure 3. Deformed configurations.
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Moreover, the effect of anisotropy on damage variables in the center of
the specimen is demonstrated in Figures 4 and 5. In particular, the increase
in void volume fraction f (Figure 4) is remarkably larger with increasing
anisotropy. This effect is also shown in Figure 5, where the difference
between the evolution of damage strains in loading direction, Ada

11 (upper
curves), and normal to the loading direction, Ada

33 (lower curves), becomes
larger with increasing parameter 	.

Figure 5. Influence of 	 on damage strains.

Figure 4. Void volume fraction vs equivalent plastic strains for different 	.
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CONCLUSIONS

A nonlocal anisotropic damage model for ductile metals and its numerical
implementation, which is based on a nonlinear continuum damage
mechanics approach, have been discussed, taking into account kinematic
description of damage. The elastic constitutive equations are based on
Helmholtz free energy functions of the fictitious undamaged configuration
and of the current damaged configuration, respectively. The approach
incorporates macroscopic interstate variables and their higher-order
gradients which properly describe the change in the internal structure and
investigate the size effect of statistical inhomogeneity of the heterogeneous
material. The idea of bridging length-scales is made by introducing higher-
order gradients in the evolution equations of the equivalent inelastic strain
measures. A nonlocal macroscopic yield condition describes the plastic flow
properties of ductile metals and a separate nonlocal damage criterion takes
into account isotropic as well as anisotropic damage effects. Higher-order
gradients in the evolution equations of the equivalent inelastic strain
measures lead to a system of elliptic partial differential equations which are
solved using the finite difference method. The applicability of the proposed
continuum damage theory is demonstrated by the numerical simulation of
the deformation behavior of ductile metals. The effect of anisotropic
damage parameters on the numerically predicted deformation behavior of
ductile metals has been discussed.

In conclusion, the present gradient-enhanced model offers a complemen-
tary alternative to conventional fracture mechanics and provides a
comprehensive theory of anisotropic continuum damage mechanics capable
of solving practical engineering problems including service life prediction of
metal structures.
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Sluys, L.J., de Borst, R. and Mühlhaus, H.B. (1993). Wave Propagation, Localization and
Dispersion in a Gradient Dependent Medium, Int. J. Solids Struct., 30: 1153–1171.

Spitzig, W.A., Sober, R.J. and Richmond, O. (1976). The Effect of Hydrostatic Pressure on the
Deformation Behavior of Maraging and HY-80 Steels and its Implications for Plasticity
Theory, Metall. Trans., 7A: 1703–1710.

Spitzig, W.A., Smelser, R.E. and Richmond, O. (1988). The Evolution of Damage and Fracture
in Iron Compacts with Various Initial Porosities, Acta Metall., 36: 1201–1211.

298 S. RICCI AND M. BRÜNIG
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