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1,* AND STÉPHANE ROUX
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ABSTRACT: The identification of damage variables and their growth with loading
in two dimensions by using only full-field displacement measurements has been
proposed in this study. The equilibrium gap method is used to estimate the
damage field during a biaxial experiment on a sample made of a composite material.
From the analysis of a sequence of measurements, a proposed form of constitutive
law is tested and identified. The emphasis is put on the methodology that can be
applied to a vast class of materials.

KEYWORDS: equilibrium gap method, identification, isotropic damage, multiaxial
experiment, stiffness loss.

INTRODUCTION

T
HE CURRENT DEVELOPMENT of reliable displacement field measurement
techniques (Rastogi, 2000) allows for a better characterization of the

behavior of materials and the response of structures to external loadings.
Full-field measurements can be used in a variety of ways, namely:

. to check boundary conditions before performing the mechanical test itself
(Calloch et al., 2001). In that case, it allows the experimentalist to control
whether the boundary conditions correspond to the desired ones;

. to monitor an experiment (G’Sell et al., 1992; Fayolle, 2004) by using
optical means as opposed to gauges or extensometers. In this area, one
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can envision using FE simulations as input ‘signals’ to be compared with
actual full-field measurements;

. to perform heterogeneous tests for which single measurements (e.g.,
by strain gauges, extensometers, clip gauges) are not sufficient to fully
monitor an experiment, and particularly when the spatial heterogeneity
is not known a priori (e.g., strain localization (Desrues et al., 1985;
Bergonnier et al., 2005), damage localization (Berthaud et al., 1997)
or crack initiation and/or propagation (Dawicke and Sutton, 1994;
Forquin et al., 2004));

. to study an experiment by using contactless techniques. This provides
useful solutions to aggressive, hot, corrosive environments, or very soft
solids for which gauges are not adapted (e.g., polymers (G’Sell et al.,
1992; Chevalier et al., 2001), wood and paper (Choi et al., 1991), mineral
wool (Hild et al., 2002; Roux et al., 2002));

. to identify material properties. Identification techniques based upon
the constitutive equation error (Ladevèze, 1975; Kohn and Lowe, 1988;
Bui and Constantinescu, 2000) have been used in the determination of
damage fields (Geymonat et al., 2002) or to study heterogeneous tests
(e.g., Brazilian test (Calloch et al., 2002)). Similarly, the so-called virtual
fields method has been used to identify homogeneous properties of
composites (Grédiac, 1989; Grédiac et al., 2002; Grédiac, 2004) (i.e., in
anisotropic elasticity). Another procedure is based upon the reciprocity
gap (Bui, 1995) that can also be used to determine the local elastic field
or to detect cracks in elastic media (Andrieux et al., 1997, 1999). In this
study, an alternative method solely based on displacement field data is
used (Claire et al., 2002, 2004).

Continuum damage mechanics has reached a stage where the various
forms of damage descriptions call for identification and validation in a
systematic way (Allix and Hild, 2002). Various measurement techniques
are used to evaluate damage variables (Lemaitre and Dufailly, 1987). The
state coupling (Lemaitre and Marquis, 1992) between elasticity and damage
(i.e., damage-induced loss of stiffness) will be used as a means of evaluating
the damage state during an experiment. Instead of using single strain
measurements as is usually performed (Lemaitre and Dufailly, 1977), full-
field measurements are utilized. This requires resorting to non-conventional
identification techniques. Contrary to conventional strategies where each
test is designed to be homogeneous and thus where the sample behaves
as a representative volume element, new approaches are now developed
where a complex heterogeneous loading may allow the experimentalist
in one single mechanical test to retrieve data about many different states
(in terms of internal parameters) at once. It is emphasized that this change is
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a ‘cultural’ revolution whose consequences are expected to have a strong
impact in the near future for experiments in solid mechanics.

To determine the mechanical properties of materials, inversion techniques
are used as a means of identification or validation. When dealing with
nonlinear constitutive equations, one needs to postulate a priori the form of
the constitutive equation to identify the unknown parameters (Calloch et al.,
2002). It is proposed to analyze the distribution of damage and its
change by using the so-called ‘equilibrium gap method’ (Claire et al., 2004).
For the sake of simplicity and computational efficiency, a simple isotropic
damage model is introduced and used herein. The next section recalls
the basic steps to perform an identification from displacement field
measurements. The identification technique is then used to analyze a biaxial
experiment on a composite material. First, from the displacement field,
one determines the damage field for different load levels. Second, from
the knowledge of the damage variable and its associated force, the
corresponding growth is obtained without any a priori hypothesis on its
dependence. A thermodynamic consistency as well as an acceptable
identification error are then accounted for to refine the identification
and a rescaling is proposed to compare damage fields determined
independently from each analyzed load level. The particular challenge one
faces here is to base the identification procedure on the sole use of kinematic
measurements.

DAMAGE MODEL

The analysis performed herein is based upon an isotropic damage
description. For the sake of simplicity, only one damage variable D is
considered even though two are desirable (Burr et al., 1995). A continuum
thermodynamics setting is used (Germain et al., 1983). Under isothermal
conditions, the material state is described by the infinitesimal strain tensor e
and the damage variable D (with its usual bounds, namely, D¼ 0 for a virgin
material and D¼ 1 for a fully damaged state) so that the state potential  
(i.e., Helmholtz free energy density) reads

 ¼
1

2
e : KðDÞe, ð1Þ

where ‘:’ denotes the contraction with respect to two indices, and K the
fourth-order stiffness tensor that is written as (Lemaitre, 1992)

KðDÞ ¼ K0 � ð1�DÞ, ð2Þ
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where K0 is the virgin stiffness tensor. In Equation (1), only a recoverable
part of the state potential is considered. Consequently, it is assumed that no
residual stresses are present, created, or relaxed within the material during
the whole load history. The associated forces are respectively defined by

p ¼
@ 

@e
¼ K0 1�Dð Þe and Y ¼ �

@ 

@D
¼

1

2
e : K0e, ð3Þ

where p is the Cauchy stress tensor, and Y the energy release rate density
(Chaboche, 1977). The fact that the following second derivatives of the state
potential are different from zero

@2 

@D@e
¼
@2 

@e@D
6¼ 0 ð4Þ

indicates a state coupling (Lemaitre and Marquis, 1992) between elasticity
and damage. This coupling is used to measure indirectly damage variables
by their influence on the stiffness variation (i.e., stiffness loss (Lemaitre
and Dufailly, 1977, 1987)). Clausius–Duhem inequality, in the present case,
reduces to

Y _D � 0, ð5Þ

where a dotted variable corresponds to its first time-derivative. Since
the energy release rate density Y is a positive function, the damage growth
is such that

_D � 0: ð6Þ

Within the framework of generalized standard materials (Halphen and
Nguyen, 1975) and for a time-independent behavior, the damage growth can
be written as (Marigo, 1981)

_D ¼ _d
@f

@Y
, ð7Þ

where the damage multiplier _d satisfies the Kuhn–Tucker conditions, and
f is the loading function. It follows that the damage growth for any load
history can be recast as

DðtÞ ¼ H
max Yð�Þ
0 � � � t

� �
, ð8Þ
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where H is a monotonically increasing function to be identified. In the
following, a heterogeneous test is used to determine the function H.
Consequently, the damage distribution can no longer be assumed to be
homogeneous. To identify the damage field, the equilibrium gap method
is used since displacement measurements are available. In the sequel,
the heterogeneity of the elastic field is reduced to a scalar and
isotropic damage field D(x). For this type of damage description, the
Poisson’s ratio is unaffected and the Lamé’s coefficients can be written
as �(x)¼ �0 [1�D(x)] and �(x)¼�0 [1�D(x)], where the subscript 0 refers
to reference quantities.

THE EQUILIBRIUM GAP METHOD

An identification formulation is now presented in which the displacements
u(x) are known and the elastic properties are unknown. This problem setting
is unconventional in the sense that classical FE formulations assume known
mechanical properties and try to determine the displacement field for
different types of boundary conditions.

Problem Setting

Consider a structure �. When the considered medium is assumed to have
damage discontinuities, a suitable setting is related to the equilibrium
conditions corresponding to a continuity of the stress vector across a surface
of normal n

½½p � n�� ¼ 0, ð9Þ

where ½½��� denotes the jump of the quantity �. The jump conditions (9)
are directly applied to a FE formulation. The potential energy theorem
allows for a weak formulation of the equilibrium equations, which is
linearly dependent on the displacements and elastic properties. Since most
measurement techniques yield data on a regular mesh of points, the same
hypothesis is made for the identification procedure. Consequently, quadratic
square elements are considered for which each node corresponds to
a measurement point. This hypothesis allows us to derive a specific
formulation in which only middle nodes are considered. When the damage
parameter De is constant for a given element e occupying a domain �e,
the elementary stiffness matrix ½Kme� can be written as

Kme½ � Deð Þ ¼ 1�Deð Þ � Kme0½ �, ð10Þ
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where ½Kme0� is the elementary stiffness matrix of an undamaged element
(see Equation (2)). Similarly, the strain energy Eme can be written as

Eme Deð Þ ¼
1�Deð Þ

2
uef gt Kme0½ � uef g, ð11Þ

where fueg is the nodal displacement column vector and t the matrix
transposition. In the absence of external load on the considered nodes,
the equilibrium conditions (9) can be rewritten for each middle node ‘12’
of two neighboring elements 1 and 2

@Em12

@u12
D1,D2ð Þ ¼ 0, ð12Þ

with Em12ðD1,D2Þ ¼ Em1ðD1Þ þ Em2ðD2Þ, where D1, D2 are the damage
variables in elements 1 and 2, respectively. By writing this condition for each
middle node, one ends up with a linear system in which the unknowns are
the damage parameters assumed to be piece-wise constant and the known
quantities are all the nodal displacements. In practice, Equation (12) is not
strictly satisfied and a residual force Fr arises

Fr D̂1, D̂2

� �
¼
@Em1

@u12
D̂1

� �
þ
@Em2

@u12
D̂2

� �
, ð13Þ

where D̂1, D̂2 are trial values of the unknown damage variables. The aim of
the following section is to propose a practical setting for the identification
of a damage field from the knowledge of displacement fields by minimizing
the residuals Fr. The method is therefore referred to as equilibrium gap
method (Claire et al., 2004).

Practical Formulation

Since damage is assumed to be isotropic, a more appropriate setting can
be used. {p1} is the column vector of the nodal quantities of the first element
and {p2} that of the second element. The kth equilibrium condition becomes

�gk p1
� �� �

1�D1ð Þ ¼ g
^

k p2
� �� �

1�D2ð Þ, ð14Þ

where �gk and g
^

k are generic functions depending on the nodal displacements
(Claire et al., 2004). By considering all the equilibrium equations, the
following global system is obtained

G½ � Df g ¼ g
� �

with Df g ¼ D1,D2, . . .DNf g ð15Þ
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where [G] and {g} are known and contain the nodal displacements. The
advantage of this setting is that it can be written in a logarithmic form in
which the displacements only appear in the right-hand side of the following
scalar expression

ln 1�D1ð Þ � ln 1�D2ð Þ ¼ ln g
^

k p2
� �� �			 			� ln �gk p1

� �� �		 		: ð16Þ

Equation (16) automatically satisfies the requirement De<1. However,
this type of formulation can only be used for middle points. Corner nodes
are concerned with four damage unknowns associated to the connecting
elements and the same idea cannot be used. The system to solve is

M½ � df g ¼ q
� �

ð17Þ

where d is defined by

df g ¼ ln 1�D1ð Þ, ln 1�D2ð Þ, . . . , ln 1�DNð Þ
� �

ð18Þ

[M] is an assembled matrix corresponding to all the conditions (16) and {q}
a vector that depends upon the nodal displacements. The system (17)
is over-determined for the isotropic damage description used herein. For a
structure �, the following norm is minimized

�ð"Þ ¼ M½ � "f g � q
� �

 

2

2ð�Þ
ð19Þ

with respect to ". A certain robustness can be expected thanks to the
redundancy of the equations (e.g., for a square mesh made of N elements,
the number of equations M is of the order of 4N (Claire et al., 2002)).
The minimization produces the following linear system

M½ �
t M½ � "f g ¼ M½ �

t q
� �

ð20Þ

A variant to this formulation is to introduce a positive weight matrix [W]
to modulate the different contributions in (19) according to the stress level.
This is equivalent to modifying the norm k � k2ð�Þ and considering the norm
k � kWð�Þ. The higher the stress vector, the higher the weight. In the linear
system, it is suggested to use [W] as a diagonal M�M matrix

½W� ¼

w1 0 � � � 0
0 w1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . wM

2
664

3
775 ð21Þ
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with

wk ¼ �gk p1
� �� �

þ g
^

k p2
� �� �			 			�: ð22Þ

The present choice consists in favoring equilibrium equations that are
secure, because the load transfer between elements is large. This leads to the
natural choice of decoupling different equilibrium equations, and hence to
have a diagonal form for [W]. The dependence of the magnitude of the
weight [W] as compared to the magnitude of the load transfer remains the
sole degree of freedom. Choosing a power–law relation is again an arbitrary
choice. Finally, the power � is adjusted so that the test cases with known
damage distributions lead to the best results (Claire et al., 2002), a value
�¼ 1.5 has been obtained. The system to solve becomes

M½ �
t W½ � M½ � "f g ¼ M½ �

t W½ � q
� �

ð23Þ

For Equation (23), the matrix ½M�
t
½W�½M� has a zero eigen value and a

corresponding eigen vector "f g
t
¼ 1,1, . . . 1f g (i.e., this corresponds to a

global rescaling of the local elastic constants, or the (1�D) field, by a fixed
multiplicative factor which does not affect the solution). Consequently, one
can arbitrarily set one damage component of f"g. For simplicity, let us
choose the ith0 component and consider the following initial condition

"f g
t
0¼ 0,0, . . . ,0, ln 1�Dð Þi0 ,0, . . . ,0

� �
ð24Þ

and

(f g ¼ "f g � "f g0 ð25Þ

one needs to solve over the (N�1) degrees of freedom of {(}, i¼ 1, . . . ,N
and i 6¼ i0. This corresponds to omitting the ith0 line and column of the
½M�

t
½W�½M� matrix. The zero-eigenvalue is unique and thus the resulting

matrix is now positive definite

½M�
t
½W�½M� (f g ¼ ½M�

t
½W� q

� �
� ½M�

t
½W�½M� "f g0: ð26Þ

This linear system can be solved by using different numerical methods.
A conjugate gradient technique (Press et al., 1992) making use of the
sparseness of the matrix ½M�

t
½W�½M� is utilized. When artificial measure-

ments are used, a comparison could be performed with an a priori prescribed
damage field. An overall quality of the order of a few percents is achieved
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in all the configurations tested (Claire et al., 2002, 2004). When some
additional noise was considered, the error did not change significantly.

Error Estimator

From Equation (15), an error indicator can be defined when the exact
solution is unknown

� ¼ ½G� Df g � g
� �

 



2ð�Þ
ð27Þ

The quantity � characterizes the average equilibrium residuals. From
this point of view, it is close to the indicator based on equilibrium residuals
used to assess the quality of a FE computation (Babushka and Rheinboldt,
1978a, b; Zienkiewicz and Taylor, 1988). However, a simple dimensional
analysis shows that � depends on the stress scale, which is exogenous to the
present problem (i.e., based solely on kinematic measurements). Therefore,
even though the solution is defined up to a constant scale factor in (1�D),
� does depend on that factor. Consequently, the absolute scale for �
is meaningless. Only relative values can be utilized (Claire et al., 2004).
This is a central difficulty one faces in the sequel. It results from the choice
of making use of kinematic data alone.

Because of the stress scale sensitivity, it is of interest to introduce another
quantification of the suitability of a numerical solution to the identification
problem. Associated to the nth middle node where the residual force is
Fr(D1,D2), the work Wr(D1,D2) is defined as

Wr D1,D2ð Þ ¼ Fr D1,D2ð Þ � ~u12
		 		, ð28Þ

where the chosen displacement ~u12 is the measured displacement vector from
which the rigid body motion of elements 1 and 2 has been removed. The
magnitude of Wr(D1,D2) can be compared to the elastic energy
Eme12(D1,D2) in the two considered elements 1 and 2 so that the following
local indicator � no longer depends on the unknown stress scale

�ðnÞ ¼
Wr D1,D2ð Þ

Eme12 D1,D2ð Þ
, ð29Þ

An error per element can be defined as

�e ¼
Xnm
n¼1

�ðnÞ, ð30Þ
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where nm is the number of middle points for the considered element e
(i.e., generally 4 for an inner element, 3 for edge elements, and 2 for corner
elements, since the boundary conditions in terms of load are not considered).
A global indicator � can also be defined

� ¼
Wr

Em
, ð31Þ

where Wr is the total work done by the residuals and Em the corresponding
total elastic energy. The last indicators are independent of the stress scale
factor. They will be used in the following to analyze a biaxial experiment on
a composite material.

DETERMINATION OF A DAMAGE LAW BY ANALYZING

A HETEROGENEOUS EXPERIMENT

A vinylester matrix reinforced by E-glass fibers is studied (Figure 1(a)).
A quasi-uniform distribution of orientations leads to an isotropic elastic
behavior prior to matrix cracking and fiber breakage, which are the
main damage mechanisms (Collin et al., 1998). A cross-shaped specimen is
loaded in a multiaxial testing machine (Figure 1(b)). The experiment is
performed in such a way that the forces applied along two perpendicular
directions are identical. Their norm is denoted by F. The displacement
field of Figure 1(c) is measured by digital image correlation. Each
‘measurement point’ corresponds to the center of an interrogation
window of size 64� 64 pixels, equivalent to a surface of about 8mm2.
At this scale, the material is not homogeneous (see Figure 1(a)). The
shift between two neighboring measurement points is 32 pixels. A sub-pixel

500 µma

b
c

Figure 1. (a) Microstructure of the studied composite; (b) view of the sample and region of
interest (white box); and (c) displacement field measured by digital image correlation for one
load level (11 kN) close to failure (11.1 kN) in the region of interest.
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algorithm is used. It enables for a displacement uncertainty of one hundredth
of one pixel for eight-bit pictures studied herein. To achieve a better
robustness, a hierarchical multiscale version was used (Hild et al., 2002).

Five different load levels are analyzed, namely, F¼ 5, 7, 9, 10, and 11 kN.
For each load level, 19� 23 displacement measurements are obtained, from
which 9� 11 values of damage are evaluated. Figure 2 shows the (1�D)-field
computed from the measured displacement field. From the analysis of
Figure 1(c), a crack clearly appears on the top left corner for the last load
level before failure. This crack can be observed by the three dark elements.
For the three first load levels, one can note at least three different corners
where the damage value becomes significant. At this stage, crack inception is
likely to have occurred in these three corners. One of them subsequently
became preeminent as can be seen on the last load level. This type of analysis
cannot be performed by only looking at the displacement field measure-
ments. It shows that the present approach is able to give additional ways of
analyzing experimental measurements. In Figure 3, the change of the error
indicator � with the applied load F is shown. Up to approximately 9 kN,
the quality of the identification is identical. It starts to degrade for 10 kN
and strongly changes for 11 kN, thereby indicating a change that can be
attributed to macrocrack initiation.

In addition to 1�D, the thermodynamic force Y under plane stress
assumption is computed from the in-plane strain field in a non-
dimensional way

2Y

E0
¼

e211 þ 2�0e11e22 þ e222
1� �20

þ
2e212
1þ �0

, ð32Þ

where the directions 1 and 2 are associated to an in-plane frame, E0 the
Young’s modulus of the virgin material and �0 the corresponding Poisson’s
ratio (here taken equal to 0.28). The damage growth is written in terms
of 1�D versus 2Y/E0, which will be referred to as dimensionless strain

0 0.5 1

F = 5 kN F = 7 kN F = 9 kN F = 10 kN F = 11 kN

Figure 2. Identified (1�D) fields for five load levels. In each case, the maximum value of
(1�D) is set to 1.

Identification of a Damage Law 189



energy release rate density. Figure 4 shows the changes for the five load
levels. It should be remembered that upon performing the identification,
no damage growth is assumed. Consequently, a scatter is to be expected.
To analyze the whole sequence, the first convention that was chosen is to
set the maximum value of 1�D to unity (i.e., D¼ 0) for each load level.
To allow for a multiplicative correction, the following damage kinematics
is assumed

1�D ¼ min 1,AðFÞ
2Y

E0

� ��� �
, ð33Þ

where the parameter A can be load-dependent (since 1�D is determined
up to a multiplicative constant), and � a constant power. For all the
load levels, the power � only slightly varies around the �0.37 value.
Conversely, as anticipated, the prefactor A is load-dependent as
shown in Figure 4. The quality of the identification is assessed by computing
the RMS error associated to the (1�D)-field; in the present case, it is
equal to 0.08.

The second step consists in performing a coupled identification by
prescribing the same value for the power �, and keeping the parameter A
different for each load level. A value for � equal to �0.37 is found.

E
rr

or
, Θ

0

0.05

0.1

0.15

0.2

0.25

5 6 7 8 9 10 11

Applied load, F (kN)

Figure 3. Error indicator � vs load level. From the analysis of the results, it is expected that
crack initiation occurred between 9 and 10 kN.
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By assuming that the smallest damage level (for the lowest load level) is
equal to 0, a correction is performed to 1�D so that the prefactor of the
damage growth law is identical (Figure 5) for all the Y range. From the
present analysis, a single growth law is obtained that is valid over more than

0.01

0.1

1

10−6 10−5 10−4 10−3 10−2 10−6 10−5 10−4 10−3 10−2

1−
D

0.01

0.1

1

1−
D

0.01

0.1

1

1−
D

2Y/E0 2Y/E0

10−6 10−5 10−4 10−3 10−2 10−6 10−5 10−4 10−3 10−2

2Y/E0 2Y/E0

10−6 10−5 10−4 10−3 10−2

2Y/E0

0.01

0.1

1

1−
D

0.01

0.1

1

1−
D

F = 5 kN
A = 0.013
α = −0.35

F = 9 kN
A = 0.016
α = −0.38

F = 7 kN
A = 0.015
α = −0.36

F = 10 kN
A = 0.024
α = −0.35

F = 11 kN
A = 0.009
α = −0.42

Figure 4. Change of 1�D with 2Y/E0 for five different load levels. The symbols are
identification points and the solid line is the best fit according to Equation (33). The values of
the identified parameters are reported for each load level. For the sake of comparison, the
same range is used for all load levels.
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three decades of the dimensionless energy release rate density. The RMS
error associated to the (1�D)-field is equal to 0.08.

In the third step, the thermodynamic consistency is added. In the
identification stage, only the data points for which _D � 0 and _Y � 0 are
considered. It follows that for the first load step, all data are considered,
for the second all but one, for the third all but nine, in the fourth 18 data
are not considered, and in the last 17. Figure 6 shows the new results. The
power � is still equal to �0.37 and the RMS error is now reduced to 0.074.
The same correction was performed on the (1�D)-fields as in the previous
analysis.

Lastly, the fourth step accounts for points for which the identification is
deemed accurate enough according to the local damage identification error
�e. This analysis follows the previous one so that all data points are also
thermodynamically consistent. A maximum value of 0.0225, i.e., about two
times the average over all load levels. For the first three load levels, about 87
can be considered; for the last two only about 71 points are still admissible.
In Figure 7, the new data are shown with the best fit. An RMS error of 0.07
is now achieved. It is believed that a part of the remaining scatter is related
to the heterogeneous microstructure on the scale of the measurements.
A power � is now equal to �0.39.

0.01

0.1

1

10−6 10−5 10−4 10−3 10−2

F = 5 kN

F = 7 kN

F = 9 kN

F = 10 kN

F = 11 kN

2Y/E0

A(2Y/E0)α

1−
D

Figure 5. Change of 1�D after correction with 2Y/E0 when all load levels are considered in
one identification so that a single value for the power � is obtained. The symbols are
identification points and the solid line is the best fit according to Equation (33).
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0.01

0.1

1

10−6 10−5 10−4 10−3 10−2

2Y/E0

1
−D

F = 5 kN

F = 7 kN

F = 9 kN

F = 10 kN

F = 11 kN

A(2Y/E0)α

Figure 6. Change of 1�D after correction with 2Y/E0 when all load levels are considered and
only the thermodynamically admissible data are kept. The symbols are identification points
and the solid line is the best fit according to Equation (33).
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Figure 7. Change of 1�D after correction with 2Y/E0 when all load levels are considered.
The thermodynamic consistency and identification accuracy are enforced. The symbols are
identification points and the solid line is the best fit according to Equation (33).
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From the previous analysis, the (1�D) maps can be plotted again by using
the same multiplicative correction as in Figure 7. They are now consistent
with the proposed growth law (33). Figure 8 shows the corrected (1�D)-field
computed from the measured displacement field. Lower stiffnesses can be
observed for the last load levels, thereby indicating higher damage states as
for the first identification (Figure 2). The drawback of that type of approach
is that the multiplicative constant (but just one) is still unknown. However,
assuming that for the first load level, the minimum value of damage is 0,
gives an estimate of the latter. In the present case, the multiplicative constant
in Equation (33) is equal to A¼ 7.7� 10�3 with �¼�0.39.

CONCLUSIONS

An identification procedure is used to evaluate damage fields by using
kinematic fields and then the damage growth law. The equilibrium gap
method used herein is a non-standard finite element formulation in which
the nodal displacements are known (i.e., measured in practice) and the
elastic properties (or the damage field) are unknown. The latter are assumed
to remain uniform over each element, but vary from element to element.
When considering quadratic elements and dealing only with middle
nodes, a linear system was derived in which the unknowns are written in
logarithmic form. Such a procedure gives access to a space-varying field of
elastic properties and/or damage fields.

The example of a cross-shaped specimen loaded along two perpendicular
directions allowed us to analyze the damage state and changes prior to any
visible discontinuity on the measured displacement field. Up to this point,
the damage field is nothing but a simple way to account for a heterogeneous
stiffness throughout the sample. The additional step that is proposed
here, and tested against experimental data, is to require for an additional
consistency, namely that the damage inhomogeneity results from a
homogeneous damage law, combined with a heterogeneous loading. This
is a strong statement, which was not used in the first damage field estimates.

0 0.5 1

F = 5 kN F = 7 kN F = 9 kN F = 10 kN F = 11 kN

Figure 8. Corrected (1�D)-fields for five load levels. The maximum value of 1�D is set to 1
for the lowest load level.
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In a post-processing stage, it was shown that this additional consistency
could be obeyed by a slight adjustment of the damage field based on a global
scaling that remains undetermined in the present procedure. The fact
that the damage field can be related to a unique function of its associated
force is a very severe check of both the identification method and the
homogeneous damage law hypothesis.

Progress in this problem can be envisioned along different directions,
namely either by including the constitutive law hypothesis earlier in the
identification procedure, so that the local stiffness determination makes
use of the consistency assumption (e.g., Clausius–Duhem inequality), or
by refining the post-processing stage so that, for instance, the quality of
the algebraic form of the constitutive equation could be quantitatively
measured, and hence could be used as a guide to complexify the damage
law (e.g., anisotropic damage description, irreversible strain) to follow more
closely the experimental results.
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concept d’écart á la réciprocité, C. R. Acad. Sci. Paris, Série I (t. 324): 1431–1438,
in French.

Andrieux, S., Abda, A.B. and Bui, H.D. (1999). Reciprocity Principle and Crack Identification,
Inverse Problems, 15: 59–65.

Babushka, I. and Rheinboldt, W.C. (1978a). Error Estimates for Adaptive Finite Element
Computation, SIAM J. Num. Anal., 15(4): 736–754.

Babushka, I. and Rheinboldt, W.C. (1978b). A Posteriori Error Estimates for the Finite
Element Method, Int. J. Num. Meth. Engng., 12: 1597–1615.

Bergonnier, S., Hild, F. and Roux, S. (2005). Strain Heterogeneities in Tension and
Compression Tests on Mineral Wool Samples, J. Strain Analysis, 40(2): 185–197.

Berthaud, Y., Torrenti, J.-M. and Fond, C. (1997). Analysis of Localization in Brittle Materials
Through Optical Techniques, Exp. Mech., 37: 216–220.
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