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Nonlinear Behavior of Ductile
Quasi-homogeneous Solids

JANUSZ W. MURZEWSKI*

The Thaddeus Kosciusko University of Technology, Civil Engineering, L-13,
ul. Zaleskiego 44/6, 31-525 Kraków, Poland

ABSTRACT: First M.T. Huber in 1904, and later Mises and Hencky suggested
equivalent yield criteria for elastic-perfectly plastic solids in three-dimensional stress
states. The H–M–H criterion is commonly used in structural design. But, the Huber–
Hencky distortion energy formula and the Huber–Mises reduced stress formula do
not give unique yielding measures for elastic-nonlinearly plastic solids. The yielding
probability �, which has been introduced by the author in 1954, serves the purpose
for ductile elastic-nonlinearly plastic solids. This idea has been a part of a more
general probability-based theory such that the yielding ratio � and a cracking tensor
k are the damage measures for quasi-homogeneous continuous media. Structural
concrete has been analyzed in earlier studies. In this study, nominally ductile
materials are taken into consideration such as structural steel and aluminum alloys
in normal temperatures. The log-normal probability distributions of plastic micro-
strength and microstress are accepted. Constitutive equations are derived with the
yielding ratio � as the coordinate of state. The Ramberg–Osgood �–" curve is taken
as the empirical basis for evaluation of the probability distribution parameters. Two
points of the curve are taken into account: the conventional yield strength fy and the
ultimate strength fu. A numerical example indicates that both elastic and plastic
compressible phases of the quasi-homogeneous solid is a likely model of behavior.
A shear stress–strain curve is analytically derived. The conventional 0.2% perma-
nent strain for the characteristic plastic strength fy in a simple tension test applies
approximately also to shear cases for the same yielding ratio �y at the characteristic
strength level. The ultimate strength fu will occur when the effective stress �eff (�)
attains its maximum level for a critical yielding ratio �cr; however, it is not the
maximum point �eff (") of the monotone Ramberg–Osgood curve. The characteristic
�y and critical �cr values are verified in the case of shear.

KEY WORDS: elastic-plastic solids, brittle and ductile solids, material damage,
stress–strain relations.
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INTRODUCTION

I
N 1904, MAXIMILIAN Titus Huber, Professor of the Austrian and later
Polish Technical University in Lwów, suggested that specific work of

distortion Wf may be accepted as the yielding criterion of elastic-plastic
solids unless excessive tensile stresses are applied (Huber, 1904).

Wf ¼
E

6 1þ �ð Þ
�1 � �2ð Þ

2
þ �2 � �3ð Þ

2
þ �3 � �1ð Þ

2
� �

<Wpl ð1Þ

The material parameters of Equation (1) are: E is the Young’s modulus and
� is the Poisson’s ratio. The principal stresses �1, �2, �3 are invariant with
reference to rotations of the coordinate system x, y, z in the physical space.

Huber was inspired by the ideas of E. Beltrami. The same criterion (1) was
given in 1924 by H. Hencky. Collected works of Huber have been edited
by the Polish Academy of Sciences in 1957. The centenary of the Huber
criterion was celebrated in 2004 during an International Symposium in
Kraków, Poland.

Huber (1930) concluded that the reduced stress �red, comparable with the
uniaxial stress, might be the yielding criterion equivalent to the distortion
energy, Equation (1)

�red ¼

ffiffiffi
1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � �2ð Þ

2
þ �2 � �3ð Þ

2
þ �3 � �1ð Þ

2

q
<Rpl ð2Þ

Equivalent stress, formally identical with Equation (2), had been defined
by Mises, in 1911, but he treated it as an approximation of the Tresca
slip-plasticity condition. Both Wf and �red reach their specific values
Wpl¼ constant and Rpl constant at the yield point, therefore Conditions (1)
and (2) are equivalent as the yield point criteria and they are called Huber–
Mises–Hencky (H–M–H) yield criterion. The H–M–H criterion together
with the Hooke’s law is sufficient to assess the behavior of elastic-perfectly
plastic solids. The uniaxial stress–strain law �P("x) has been represented by
the Prandtl diagram (solid line in Figure 2). It may be written using the
symbolic notation of the Mathcad as:

�Pð"Þ ¼ if �Pj j<Rpl,E"x,Rpl

� �
ð3Þ

The last term in brackets shall be taken as �P¼Rpl, if the inequality
|�P|<Rpl is not actual. The limit value Rpl is constant for elastic-perfectly
plastic solids. No such point can be seen for elastic-nonlinearly plastic solids
(dotted line in Figure 1).
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The H–M–H yield criterion is not sufficient to assess the behavior
of elastic-nonlinearly plastic solids. A yielding measure is necessary. The
Huber–Hencky equation (1) and the Huber–Mises equation (2) do not give
unique yielding measure.

For example the Huber–Hencky equation gives deterministic yielding
measure �W¼Wf/Wpl¼ 0.25 while the Huber–Mises equation gives
��¼ �red/Rpl¼ 0.5 in the nondimensional coordinate system (Figure 2).

Fifty years after the Huber criterion, new ideas originating continuum
damage mechanics were presented (Murzewski, 1954). Nonlinear plastic
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Figure 1. Elastic-perfectly plastic �P (") and elastic-nonlinearly plastic �M (") stress–strain
diagrams.
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Figure 2. The Huber–Hencky (�W ) and Huber–Mises (��) yielding measures.
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deformation has been treated as an effect of simultaneous ductile and brittle
damage of a quasi-homogeneous solid. More than 30 contributions have
been presented by the author and his associates. Some publications are
listed in the author’s article in the first volume of ‘Damage Mechanics’
(Murzewski, 1992). The developments have concerned mostly structural
concrete.

A simpler presentation of the quasi-homogeneous theory is presented
here. It will be confined to nominally ductile materials like low-carbon steel
and aluminum alloys in conditions when the H–M–H criterion is applicable.
The time-independent yielding measure � will be applied to the quasi-
homogeneous solids. The measure � is a normed scalar variable (0<�<1),
which reflects cumulative damage of the material. Primarily, it was called
plastification ratio (Murzewski, 1954). Some special aspects of the �
measure will be discussed in the next section.

In practical applications, the conventional plastic strength fy relative
to the permanent strain "pl¼ 0.2% is taken for quality control of elastic-
nonlinearly plastic materials. It is determined in uniaxial laboratory tests.
The conventional yield strength fy is treated as the characteristic strength in
structural design.

The equivalent stress �red according to Equation (2) is applied to safety
verifications of structural elements at complex stress states. The design
value of stress �red is determined for design values of applied loads; they
are enhanced by load factors at the ultimate limit states. The design value
�red shall not exceed the design strength fd, which is reduced by a material
factor �M. The symbols fy, fd, and �M are used in the Eurocodes for
structural design. The question is whether the conventional plastic strain,
"pl¼ 0.002, basic for the definition of the characteristic value of strength fy,
should correspond to a constant value of cumulative damage �y¼ constant
at any state of stress. Another question is how to explain the behavior at the
ultimate stress limit �ult¼Rult if the stress would still increase.

Kachanov (1958), defined damage parameter as a time-dependent
variable of ductile materials subject to creep or relaxation of stresses.
Kachanov has given impetus for the development of continuum mechanics
of time-dependent elastic-plastic media.Microdamage problems and physical
microstructural aspects have been analyzed in many subsequent works
which are discussed in review articles (Krajcinovic, 1984; Ostoja-Starzewski,
2002). Thermomechanical framework has been also taken into considera-
tion (Reckwerth and Tsamakis, 2003). Such considerations help to elucidate
the real nature of material damage. Their scope goes often over the
continuum perception of the solid with virtual microscopic structure.
Structural materials like mild steel aluminum alloys in normal temperatures
do not need any time-dependent analysis.
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DAMAGE MEASURES OF A QUASI-HOMOGENEOUS SOLID

The scalar variable � may be defined in a deterministic way in terms of
geometric measures

� ¼
Apl

Ao
or � ¼

Vpl

Vo
ð4Þ

where Apl is the plastic part of a cross section, Ao is the total
(elasticþ plastic) area of the cross section, and Vpl, Vo are the plastic part
and total volume of a three-dimensional microelement.

It may be defined also as a probabilistic measure

� ¼ 1� Probð�eff<RDÞ ð5Þ

where

�eff ¼

ffiffiffi
1

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � �2ð Þ

2
þ �2 � �3ð Þ

2
þ �3 � �1ð Þ

2

q
¼

ffiffiffiffi
2

3

r
�red

�i is the random principal microstresses, i¼ 1, 2, 3 and RD¼ constant is the
random strength limiting the effective microstress �eff.

The deterministic definition of damage, Equation (4), is asymptotically
equivalent to the probability-based formula, Equation (5), provided that
probability is understood in the sense of ‘geometric definition’ given by
Euler. Such meaning of probability is different from probability of failure in
structural reliability, which is associated with the ‘statistical definition’ of
probability given elsewhere by Mises. The advantage of the probabilistic
approach to continuum mechanics is that strict definitions and well-founded
theorems of probability may be applied to the theory of quasi-homogeneous
solids without any special geometrical proofs.

Equation (5) is related to the Huber–Mises yielding measure. The yielding
ratio �(�eff) is understood as the probability that a particle belongs to the
plastic phase of the quasi-homogeneous continuum. Any particle of the
quasi-homogeneous solid will be elastic-perfectly plastic (piecewise linear
line �P(") in Figure 1). It is not so in the case of deformation of the quasi-
homogeneous aggregate. The whole quasi-homogeneous aggregate may
exhibit nonlinear macroscopic stress–strain relation �M(") (the curve �M(")
in Figure 1).

The quasi-homogeneous medium is the aggregate of nonhomogeneous
microscopic elements; however, it is treated as a continuous solid with
elastic-brittle and plastic-ductile phases. The elastic and plastic phases of a
quasi-homogeneous medium are understood similarly as the phases are in
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theory of dispersive media. The notional elastic and plastic phases have been
introduced to pass from analysis of the discrete aggregate of elastic and
plastic particles to continuum mechanics (Murzewski, 1969). A quasi-
homogeneous solid may be defined in the strict sense and broad sense as a
continuum characterized by identical probability distributions of mechan-
ical properties at each material point. It may be called a stochastically
homogeneous solid if autocorrelation of local properties are defined
(Murzewski, 1958). A quasi-homogeneous material in a broader sense is
characterized only by constant central values (mean or median) and
constant standard deviations or coefficients of variation of mechanical
properties.

The effective stress �eff has been introduced in Equation (5) instead of the
Huber’s reduced stress �red because of some good properties.

(1) The scalar product of effective stress �eff and effective strain "eff gives
the specific energy of distortion

Wf ¼
1

2
�eff � "eff ð6Þ

with the effective strain similarly defined as:

"eff ¼

ffiffiffi
1

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"1 � "2ð Þ

2
þ "2 � "3ð Þ

2
þ "3 � "1ð Þ

2

q
:

(2) The effective stress �eff is equal to the second coordinate of the
cylindrical system �A, �D, !� in the stress space where the principal
stresses �1, �2, �3 are the Cartesian coordinates.

�A ¼

ffiffiffi
1

3

r
�1 þ �2 þ �3ð Þ

�D ¼

ffiffiffi
1

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � �2ð Þ

2
þ �2 � �3ð Þ

2
þ �3 � �1ð Þ

2

q
¼ �eff

!� ¼ arcsin
�2 � �3ffiffiffi

2
p

�D

ð7Þ

The cylindrical coordinates �A, �D, !� are invariant in the stress space
with any Cartesian coordinates x, y, z being functions of the invariant
principal stresses �1, �2, �3.

(3) The first invariant �A of the cylindrical system is the axial coordinate
related to the axis �1¼ �2¼ �3 of the cylindrical system. The second
invariant �D is the radius of the polar coordinate system on the deviator
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plane �A¼ 0. The angle !� is counted from the projection of the
principal stress �1 on the deviator plane. The stress axiator characterizes
a uniform part of the 3-D stress, like the hydrostatic pressure.
The second invariant �D is the norm of the stress deviator and
it characterizes for example, simple shear. The invariants �A, �D
are components of the Euclidean norm of the stress tensor |r| in the
vector space,

�2A þ �
2
D ¼ rj j2 ð8Þ

Retransformation equations of the cylindrical invariants �A, �D, !� into
the principal stresses �i, i¼ 1, 2, 3 are as follows:

�i ¼

ffiffiffi
1

3

r
�A þ

ffiffiffi
2

3

r
�D cos !� þ i� 1ð Þ

2�

3

� �
ð9Þ

Similar equations can be formulated for principal strains "i, i¼ 1, 2, 3.
Equations (7)–(9) are of geometric nature and they are valid not
only in the quasi-homogeneous continuum but also in its elastic and
plastic phases.

The scalar ratio � might be an adequate measure in conditions of melting;
however, it is acceptable also as the damage measure in conditions of
slip plasticity of an isotropic quasi-homogeneous medium. It is helpful in
derivation of constitutive equations of ductile elastic-nonlinear plastic solids
provided that the elastic phase is not subject to microcracking.

Nonlinear stress–strain relations would be of another nature in case of
brittle elastic solids. Tensor of decohesion k (Murzewski, 1957), later called
tensor of cracking (Murzewski, 1976), has been defined for brittle damage
evaluation of the elastic-brittle phase of the quasi-homogeneous solids.
Principal probabilities of cracking �1, �2, �3 have been defined as con-
ditional probabilities of cracks in the three principal directions i¼ 1, 2, 3

�i ¼ 1� Probð�i < Rt ij Þ ð10Þ

where Rt is the cleavage strength in simple tension, lower than the
compression strength |Rc|.

Existence of orthogonal independent directions in any vector space
has been proved. Transformation rules of cracking components �ij in the
physical space, i, j¼ x, y, z, were derived (Murzewski, 1960) to clear up
objections which rose in the 1950s, whether tensor is the right geometrical
object to be used in mechanics of damage. Despite that, some authors
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associate scalar damage parameter not only with the ductile form of damage
(Table 1, compiled from Chrzanowski, 1978). They use different symbols in
place of � and � for the cumulative microdamage measures.

An overall microdamage tensor has been denoted l (Murzewski, 1954)
or x (Murzewski, 1992). It takes into account both microyielding and
microcracking in the unified theory of strength. The tensor l has been
defined using the theorem of independent random events and tensor
multiplication

l ¼ I� 1� j � Ið Þ � ð1� kÞ ð11Þ

where I is the unit tensor.
Principal damage components �i keep their directions i¼ 1, 2, 3, if the

stress process is proportional. Otherwise, incremental equations would be
needed; induced anisotropy and nonsymmetric elasticity should be taken
into consideration.

�i ¼ �� ��i þ �i ð12Þ

The tensor of damage l(�1, �2, �3) has been applied to concrete in earlier
works (e.g., Murzewski, 1954). The analysis will be much simpler if the
scalar ratio |l|!� is treated as the coordinate of state of elastic-plastic solid.
It is suitable to solve the problems of nominally ductile solids like structural
steel and aluminum alloys unless fatigue loading is applied.

The notion of material damage seems to be synonymous with what used
to be translated into English as material effort (wyte� _zzenie in Polish,
Anstrengung in German – in Huber’s works). The term ‘failure’ in some
earlier papers (Murzewski, 1958) shall be better used in theory of reliability.
The term ‘material defects’ should be rather applied to mezzo-defects.
The material defects are essential in the Weibull’s theory of strength and
size effect considerations, they were reviewed recently by Ostoja-Starzewski
(2002).

Table 1. Damage measures in the development
of damage mechanics.

Symbol Year of first appearance Author

�(�, �) 1954 J. Murzewski
1– 1958 L.M. Kachanov
! 1959 Yu.N. Rabotnov
D 1961 F.G.K. Odqvist and J. Hult
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STRESS–STRAIN RELATIONS OF THE

QUASI-HOMOGENEOUS SOLID

The total probability theorem has the fundamental importance in the
theory of quasi-homogeneous media. Symbols � and " with subscripts A or
D are relative to the mean values in the elastic phase and �, " are relative to
those in the plastic phase. Symbols �A, �D, !� will denote now the overall
mean values in the quasi-homogeneous medium

�D ¼ 1� �ð Þ �D þ � �D

"A ¼ 1� �ð Þ "A þ � "A

ð13Þ

In addition, compatibility equation of elastic and plastic distortions is
assumed

"D ¼ "D ¼ "D ð14Þ

as well as action–reaction equation for 3-D uniform stresses in plastic and
elastic phases

�A ¼ �A ¼ �A ð15Þ

Proportional stress processes will be taken into consideration

!� ¼ !" ¼ constant ð16Þ

The cylindrical invariants !�, !" remain equal not necessarily during a
proportional stress process if the analysis is confined to ductile solids such
that the yielding process can be defined by a scalar quantity.

The classical Hooke’s law is accepted in the elastic phase of the quasi-
homogeneous solid unless microcracks occur. The elasticity equations are
expressed in the cylindrical coordinate system as follows:

"A ¼
1� 2�

E
�A, "D ¼

1þ �

E
�D, !" ¼ !� ð17Þ

The Young’s modulus E and the Poisson’s ratio � will be treated here as
nonrandom constants. Statistical elasticity problems with random elastic
moduli have been taken into consideration by Volkov (1960), but without
taking plastic phenomena into account.
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Two models of behavior are taken for the plastic phase of a quasi-
homogeneous solid

Model 1: The solid remains compressible equally in the plastic and
elastic phases

"A ¼ "A ¼ " ð18Þ

Model 2: The solid is incompressible in the plastic phase

"A ¼ 0 ð19Þ

If the strains are time-invariant, the mean deviatory component of micro-
stress in the plastic phase will be equal to a constant mean yield stress RD

�D ¼ RD ð20Þ

If the behavior of a ductile material was time-dependent, the stress would
relax �D! 0 while "D¼ constant or the material would creep "D! 0 while
�D¼ constant. Such media would require kinematical equations. They have
been analyzed by Kachanov (1958) and other authors.

The 3-D mean stress–strain relations for time-invariant ductile elastic-
plastic quasi-homogeneous solids depend on the coordinate of state �. They
are derived from Equations (13) and (17), and either (18) or (19).

Model 1: "A ¼
1� 2�

E
�A "D ¼

1þ �

E 1� �ð Þ
ð�D � �RDÞ !" ¼ !�

ð21Þ

Model 2: "A¼
ð1�2�Þð1��Þ

E
�A "D ¼

1þ �

E 1��ð Þ
ð�D��RDÞ !"¼!�

ð22Þ

The theoretical uniaxial �1("1) equation, if �2¼ �3¼ 0, has been derived
from Equations (7), (9) and (21) or (22), as follows:

Model 1: "1 �1ð Þ ¼
ðð1� 2�Þ=3Þ�1 1� �ð Þ þ ð2 1þ �ð Þ=3Þ �1�Rpl�

� �
E 1� �ð Þ

ð23Þ

Model 2 : "1 �1ð Þ ¼
ðð1� 2�Þ=3Þ�1 1� �ð Þ

2
þð2 1þ �ð Þ=3Þ �1�Rpl�

� �
E 1� �ð Þ

ð24Þ
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where Rpl ¼ RD

ffiffiffiffiffiffiffiffi
3=2
p

is the mean value of the microstrength relative to
uniaxial stress and � is the yielding ratio identified with the cumulative
probability, Equation (5).

There are three questions to discuss:

(1) Should the permanent strain 0.2% characterize the Huber–Mises
reduced stress �red(�1, �2, �3) at any state of stress for the same value
�y as it is in the uniaxial tension test?

(2) Does the ultimate strength Rult and the yielding ratio �ult occur at the
maximum value of the effective stress �eff (")¼max?

(3) Would the rupture occur when the yielding ratio tends to one in a
continuous process, �! 1, or can it happen as a sudden event at a lower
critical value �cr<1?

MICROSTRESS AND MICROSTRENGTH DISTRIBUTIONS

The Huber–Mises yield criterion is expressed now in a multiplicative form
equivalent to that which has been considered in Equation (5)

�D
RD

< 1 ð25Þ

The quotient �¼RD/ �D of the yield microstrength RD¼Rpl

ffiffiffiffiffiffiffiffi
2=3
p

and the
effective microstress �D ¼ �eff may be called the ‘plasticity factor’. It is
analogous to the safety factor for materials in limit states design of
structural members. The effective stress �D in the elastic phase is derived
from Equations (13) and (20):

�D ¼
�D � RD�

1� �
ð26Þ

The coordinate of state � has been called yielding ratio or yielding prob-
ability. It is relative to the entire phase of the quasi-homogeneous solid,
Equations (4) and (5). The elastic-perfectly plastic behavior is supposed for
a small element of the quasi-homogeneous solid, that is �Pð"Þ in Figure 1.

The actual stress �i at a point of the quasi-homogeneous solid is a super-
position of initial microstress �oi and applied stresses

P
�i. The balanced

initial microstresses, positive and negative, will be the Gauss-normal
random variables. This theorem has been derived with very weak assump-
tions (Murzewski and Winiarska, 1970). The applied stresses �� are
of various origins and they may have various probability distributions.
Notwithstanding, the Gauss-normal probability function is often assumed
to be a fair approximation of the probabilistic composition �i ¼ �

o
i þ

P
�i.
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This assumption is motivated by the central limit theorem of probability.
But, the effective stress �eff¼ �D is a nonlinear function of principal stresses
�i and it cannot be the Gauss normal variable again. The Bessel function of
imaginary argument Io(�D)¼ Jo(i�D) will be the probability function of �D if
the principal stresses �i are Gauss-normal (Murzewski, 1958). In addition,
negative values �D are impossible and the Gauss-normal distribution does
not respect this condition. That is why the log-normal probability function
will be better accepted as the theoretical probability distribution of stress
invariant �D.

Statistical tests have shown that the log-normal probability function is the
most likely for distribution of plastic strength Rpl (Murzewski, 1976). The
log-normal probability functions are ‘stable’ in reference to multiplication.
Therefore, the random plasticity factor � will be also log-normal and the
Laplace function �(�) will define its cumulative probability function

� ¼ 1��
ln RD= �Dð Þ

�D

� �
¼ �

ln �D=RDð Þ

�D

� �
¼ � �ð Þ ð27Þ

Symbols �D and RD denote central values of the log-normal distributions.
Originally, they are medians, but the material factor RD= �D may be equal
to the quotient of mean values: RD expð�2R=2Þ and �D expð�2�=2Þ also if the
log-normal coefficients of variation �R and �� are equal, �R���.

The plasticity index � ¼ lnð�D=RDÞ=�D, so called, is like the reliability
index in probability-based design. It depends on log-normal distribution
parameters. The inverse Laplace function may be used to determine it as a
function of the yield ratio �.

�ð�Þ ¼ inv�ð�Þ ð28Þ

Therefore, the effective stress in the elastic phase

�D ¼ RD expð��DÞ ð29Þ

If the random microstresses �D and microstrengths RD are not correlated,
the logarithmic coefficient of variation of the random plasticity factor (25)
will be equal to the geometric sum of the coefficients of variation of the
microstress and the microstrength,

�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� þ �

2
R

q
ð30Þ

where vs and vR are logarithmic coefficients of variation of the effective
microstress �D and microstrength RD.

Once the distribution parameters RD, �D of the deviatory component of
microstress are specified, the strains can be evaluated for any stress state
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from Equation (21) or (22). The conventional yield strength fy and the ulti-
mate strength fu occur with values of yielding ratio �y and �u, respectively.

The log-normal probability may give a simpler and more realistic solution
than the truncated Gauss distributions of absolute random variables |�|>0
and |R|>0, which had been supposed for the non-negative stress invariant
�D and yield strength RD in earlier works (e.g., Murzewski, 1954).

The microstructure parameters RD, vD hardly can be verified in
laboratory tests. There is a gap between ideal continuum theory and
physical investigations of material aggregates like concrete and metal alloys.
A semi-empirical inverse method will be applied to specify the general
deformation law for elastic-nonlinearly plastic solids. Two parameters RD

and vD of the microstructure of the solid will be determined so that two
points of its empirical uniaxial �1–"1 curve will coincide with two points of
the theoretical curve defined by Equation (23) or (24). The involved yielding
ratio � is defined by Equation (27).

The advantage of the quasi-homogeneous model is that strength and
deformation of elastic-nonlinearly plastic solids can be predicted with the
aid of constitutive equation (21) or (22) at any state of stress taking only a
simple uniaxial stress–strain curve as the empirical basis. The microstrength
characteristics RD, vD are auxiliary parameters for calculations.

The ultimate strength fu and the rupture shall occur at a critical point �cr
of yielding, where � (�)¼max; however, it cannot be the local maximum
point �(")¼max of the Ramberg–Ogood curve because it is a monotone
curve. The critical point, �cr is calculated from the necessary condition of a
local extreme value

d�D �,�ð�Þð Þ

d�
¼ 0 ð31Þ

Equations (26) and (29) define the same value "D. Differentiation of the
implicit function �D(�,�(�)) gives the equation

d�D
d�
¼ 1� expð�pl�Þ � 1�

�pl 1� �ð Þ

’ �ð Þ

� 	
RD ¼ 0 ð32Þ

where ’ð�Þ ¼ ð1=
ffiffiffiffiffiffi
2�
p
Þ expð��2=2Þ is the Gauss function and � ¼ inv�ð�Þ.

Equation (32) has been derived using Equations (13), (29), and (28):

�D ¼ 1� �ð Þ�D þ �RD �D ¼ RD exp �D�ð Þ and
d�

d�
¼

1

’ �ð Þ

The ultimate strength fu should be reached for the critical yielding ratio
�cr, such that �(�cr)¼max. If the stress � still increased, the internal
equilibrium of the quasi-homogeneous material would not be possible.
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The yielding ratio � (�) will jump to the trivial solution �¼ 1 and the plastic
rupture will occur. Thus, the critical point is associated with an unstable
state of microstresses.

NUMERICAL EXAMPLES

The Ramberg–Osgood �–" curve is applied to numerical examples. There
are three parameters: E, R02, and n

"RO �ð Þ ¼
�

E
þ 0:002 �

�

fy

� �n

ð33Þ

Mechanical properties of an exemplary aluminum alloy AlMgSi are as
follows: E¼ 70GPa, �¼ 1/3 are the elastic constants, n¼ 12 is the parameter
of the Ramberg–Osgood stress–strain relation, fy¼ 240MPa is the conven-
tional plastic strength for 0.2% permanent strain, and fu¼ 270MPa is the
ultimate strength in uniaxial tensile test. ð1� 2�Þ=3 � 1=9, 2ð1þ �Þ=3 � 8=9
are the coefficients used in the three-dimensional stress–strain relations.

Elastic-plastic strains relative to the strength limits fy and fu are derived
from Equation (33):

"y ¼ "ROð240Þ ¼ 0:00543, "u ¼ "ROð270Þ ¼ 0:0121:

The yielding probabilities �y, �u and relative microstrength parameters in
tension Rpl, vpl will be determined from a set of nonlinear equations. They
are derived in such a way that collocation of the empirical curve and
theoretical curve are done at two points: fy, "y and fu, "u. The yielding ratio
�y¼ constant is supposed to define the characteristic strength at any stress
state. The yielding ratio �u is presumably equal to the critical value �cr,
where �(�)¼max.

Example 1. This concerns the quasi-homogeneous solid in uniaxial stress
state

j�1j > 0, �2 ¼ 0, �3 ¼ 0

First, two theoretical models defined earlier are taken into account.

Model 1: Equations (23) and (27) are taken at the points fy and fu, after
rearrangements

70000 � 0:0054 � 1� �y
� �

¼
1

9
� 240 � ð1� �yÞ þ

8

9
� 240� �y � Rpl

� �

70000 � 0:0121 � 1� �uð Þ ¼
1

9
� 270 � ð1� �uÞ þ

8

9
� 270� �u � Rpl

� �
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�pl� �y
� �
¼ lnð240� �yRplÞ � ln 1� �y

� �
Rpl

� �
�pl� �uð Þ ¼ lnð240� �uRplÞ � ln 1� �uð ÞRpl

� �
where Rpl ¼ RD

ffiffiffiffiffiffiffiffi
3=2
p

, �pl¼ �D, �ð�Þ ¼ inv�ð�Þ – plasticity index.
Solution of theModel 1 equations:Rpl¼ 176.8MPa, vpl¼ 1.437, �y¼ 0.714,

and �u¼ 0.874.

Model 2: Equations (24) and (27) are taken at the same two points of
the �–" curve:

70000 � 0:0054 � 1� �y
� �

¼
1

9
� 240 � ð1� �yÞ

2
þ
8

9
� 240� �y � Rpl

� �

70000 � 0:0121 � 1� �uð Þ ¼
1

9
� 270 � ð1� �uÞ

2
þ
8

9
� 270� �u � Rpl

� �

�pl� �y
� �
¼ lnð240� �yRplÞ � ln 1� �y

� �
Rpl

� �
�pl� �uð Þ ¼ lnð240� �uRplÞ � ln 1� �uð ÞRpl

� �
Solution of the Model 2 equations: Rpl¼ 171.9MPa, vpl¼ 1.493, �y¼ 0.724,
and �u¼ 0.873.

The solutions have been derived with the aid of Mathcad computer
program.

Verification: The chi-square test is taken to select the more likely
theoretical model

Model 1: 	2M1 ¼

Z 0:9

0

"M1ð�Þ � "ROð�Þð Þ
2

"ROð�Þ
d� ¼ 41:19� 10�6

Model 2 : 	2M2 ¼

Z 0:9

0

"M2ð�Þ � "ROð�Þð Þ
2

"ROð�Þ
d� ¼ 46:96� 10�6

The Model 1 with the compressible plastic phase appears to be better than
the incompressibility assumption of the uniform component of the plastic
strain tensor, provided that the Ramberg–Osgood curve accurately renders
the experimental data for the aluminum alloy. Stress �M and strain "M in
Figure 3 will refer to Model 1.

Now, the critical value �cr where �eff (�)¼max is determined as the root of
Equation (32):

�cr ¼ root 1� exp 1:437� �crð Þð Þ � 1�
1:437 1� �crð Þ

’ � �crð Þð Þ

� �
, �cr

� 	
¼ 0:894

with �ð�crÞ ¼ 1:245
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The maximum effective stress �cr¼ �(�cr) is determined from Equations (13)
and (29)

�cr ¼ 1� 0:894ð Þ exp 0:894 � 1:245ð Þ þ 0:894½ � � 176:8

¼ 270:6MPa � fu ¼ 270MPa

The strain "cr relative to the critical stress �cr from Equation (24).

"cr ¼
270:6 1� 0:894ð Þ þ 8 270:6� 0:894 � 176:8ð Þ

9 � 70000 � ð1� 0:894Þ
¼ 0:0138>"u ¼ 0:0121

The �M(�) curve is presented in Figure 4. It confirms that the ultimate
strength fu will coincide with the critical stress �cr, which will cause rupture
unless the loading �Q falls down; but the strain is 14% more at imminent
rupture than the Ramberg–Osgood formula predicts.

Example 2. This concerns the quasi-homogeneous solid in simple shear,

�1 ¼ 
, �2 ¼ �
, �3 ¼ 0:

The cylindrical invariants in the case of the simple shear follow from
Equations (7), (13), and (19)

�A ¼ 0, �D ¼
ffiffiffi
2
p

, !� ¼

��

6

The shear stress 
(�) is derived from Equation (32)


ð�Þ ¼
RDffiffiffi
2
p 1� �ð Þ expð�D� �ð ÞÞ þ �½ � ð34Þ

with �ð�Þ ¼ inv�ð�Þ – plasticity index, Equation (27).

0 100 200 300

0.005

0.01

sM(κ)

eM(κ)

eRO(κ)

Figure 3. Theoretical curves �M (�)–"M (�) and empirical one �RO (�) related to coordinate
of state � .
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The value RD ¼ 174:5
ffiffiffiffiffiffiffiffi
2=3
p

¼ 140:4MPa is the strength limit for the
effective microstress and �D¼ �pl¼ 1.493 are equal coefficients of variation
for the proportional variables RD/Rpl. The parameters RD, �D have been
specified in Example 1 as constants of the elastic phase. The yielding
probabilities �y¼ 0.725 and �u¼ 0.873 are taken for the characteristic shear
strength 
y and the ultimate shear strength 
u, respectively. These values
have been also determined in Example 1.

The permanent part of the shear strain is derived from Equations (21)
and (17)

�plð�Þ ¼
1þ �

E


ð�Þ
ffiffiffi
2
p
� �RD

1� �
�
1þ �

E

 ¼

1þ �

E

� � 
ð�Þ � Rpl=
ffiffiffi
3
p� �

1� �
ð35Þ

The characteristic shear strength 
y is determined from Equation (34) for
�y¼ 0.725


y ¼
140:4ffiffiffi

2
p 1� 0:725ð Þ � exp 1:435�ð Þ þ 0:725½ � ¼ 138:6MPa

with �y ¼ inv�ð0:725Þ ¼ 0:597:

The shear strength 
y satisfies the H–M–H criterion exactly fy=
ffiffiffi
3
p
¼

240=
ffiffiffi
3
p
¼ 138:6MPa. The plastic shear strain �pl relative to the shear

strength 
y is determined from Equation (34)

�plð�yÞ ¼
4

3 � 70000 �
ffiffiffi
2
p

0:725 � 138:6
ffiffiffi
2
p
� 140:4

� �
1� 0:725

¼ 0:00197 � 0:002

The plastic strain �y is insignificantly lower than the conventional value 0.2%.

0 0.5 1

100

200

300
300

0

10 k

sQ(κ)

sM(κ)

Figure 4. The tensile stress � (�) and increasing probability of yielding � .
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The ultimate shear stress 
u is determined from Equation (34) for the
yielding ratio �u¼ 0.873 and the strain �u is from Equation (17) with
�D ¼

ffiffiffi
2
p

, "D ¼

ffiffiffi
2
p
�:


u ¼
140:4ffiffiffi

2
p 1� 0:873ð Þ � exp 1:435�uð Þ þ 0:873½ � ¼ 155:9MPa

with �u ¼ inv�ð0:873Þ ¼ 1:143

�u ¼
4

3 � 70000 �
ffiffiffi
2
p

155:9
ffiffiffi
2
p
� 0:873 � 140:4

1� 0:873
¼ 0:0104

The critical yielding ratio �cr¼ 0.894 in shear is the same as it has been
in tension since the parameters in �D¼ �pl in Equation (30) are equal.
Maximum shear stress 
cr and relative values �cr and �cr are determined for
the critical yielding ratio �cr¼ 0.894 from equations


cr ¼ 156:5MPa, �cr ¼ 1:245, �cr ¼ 0:0121

The maximum shear stress 
cr is approximately equal to the ultimate shear
strength 
u, which corresponds to the constant yield ratio �u like the
ultimate strength fu in the tension, but the shear strain �cr at the maximum
shear stress 
cr is 16% more at imminent rupture than the ultimate strain �u
coherent with the Ramberg–Osgood curve.

CONCLUSIONS

. The Huber–Mises–Hencky yield criterion is proper to check the limit
states of elastic-perfectly plastic solids; but the Huber–Hencky and the
Huber–Mises yielding measures may be different for elastic-nonlinearly
plastic solids. A scalar probability-based yielding ratio �(�eff) may give
a unique measure of damage at any state of stress unless microcracks
would occur.

. A simple uniaxial tension test is sufficient to specify probability
distribution parameters RD, �D of random microstrengths of a quasi-
homogeneous solid. Log-normal probability functions are acceptable for
the plastic microstrengths and effective microstresses �eff. The probability
of yielding � is a function of the parameters of random plasticity factor
Rpl/� in the elastic phase of the solid.

. A yielding ratio �pl which is attributed to the characteristic plastic
strength fy, is constant at any state of stress for elastic-nonlinearly
plastic solids. The characteristic plastic strain in shear is close to the
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conventional value 0.2% in tension test. The rupture will occur at a
critical value �cr when �(�)¼max, but not necessarily �(")¼max. The
critical strain "cr appears more than the value "u relative to ultimate
strength fu.
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