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Constitutive Relationships for Laminates
with Ply Cracks in In-plane Loading

P. LUNDMARK AND J. VARNA*

Luleå University of Technology
SE-97187 Luleå, Sweden

ABSTRACT: A theoretical framework which allows determining the whole set of
2-D thermomechanical constants of a damaged laminate as a function of crack
density in different layers is presented. In this approach, closed-form expressions,
which contain thermoelastic ply properties, laminate layup, and crack density as the
input information are obtained. It is shown that the crack opening displacement
(COD) and crack face sliding displacement, normalized with respect to a load
variable, are important parameters in these expressions influencing the level of the
properties degradation. They are determined in this paper using generalized plain
strain FEM analysis results for noninteractive cracks. The strong dependence of the
COD on the relative stiffness and thickness of the surrounding layers, found in this
study, is described by a power law. The methodology is validated and the possible
error introduced by the noninteractive crack assumption is estimated by comparing
with the 3-D FEM solution for a cross-ply laminate with two orthogonal systems of
ply cracks. Experimental data and comparison with other models are used for further
verification.

KEY WORDS: homogenization, intralaminar cracks, laminate stiffness.

INTRODUCTION

C
OMPOSITE LAMINATES UNDER service loading undergo complex combi-
nations of thermal and mechanical loading, leading to microdamage

accumulation in the plies. The first mode of damage is usually intralaminar
cracking with the crack plane transverse to the laminate middle-plane,
spanning the whole width of the specimen. The density of cracks in a ply
depends on layer orientation with respect to the load direction, temperature
change, number of cycles in fatigue, laminate layup, ply thickness and,
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certainly, material fracture toughness. Relative displacements of crack
surfaces during loading reduce the average strain and stress in the damaged
layer, thus reducing the laminate stiffness. Many papers have been written
on this subject, covering a broad range from micromechanics based to
continuum damage mechanics (CDM)-based models (see review for example
in Nairn and Hu (1994), Nairn (2000), and Talreja (1994)).

Most of the research has, however, been focused on cross-ply laminates
which are excellent for academic studies of phenomena but are seldom used
in practical applications. Laminates with a general layup containing cracks
in several layers of different orientation are, therefore, a challenge for any
constitutive model.

A two-dimensional shear-lag analysis is a simplest way to describe a
doubly periodic matrix cracking in cross-ply laminates. It is used in Henaff-
Gardin et al. (1996), where parabolic shape of the crack face is assumed to
model the crack profile. It means that no distinction has been made between
crack shape in the internal and the external layers. A model for general
in-plane loading is derived for [0m, 90n]s laminates averaging the equilibrium
equations and obtaining second-order differential equations in a usual way.
Unfortunately, there is no comparison with experimental data or with other
models in this paper.

Hashin (1987) generalized his model (Hashin, 1985) to the case when
cracks are in both 0- and 90-layers of a cross-ply laminate. Solution for an
orthogonally cracked cross-ply laminate under tension was found con-
structing a simple admissible stress field in the context of the principle of
minimum complementary energy. The chosen stress field satisfies equili-
brium equations and all boundary and interface conditions in tractions.
The assumed constant in-plane normal stress distribution over each layer
thickness leads to linear and parabolic through-the-thickness distributions
of out-of-plane shear and normal stresses, respectively. The principle of
minimum complementary energy (which for approximate stress distri-
butions is equivalent to satisfying the displacement continuity equations
in average) is used to calculate the stress distributions. Expressions for
damaged laminate E-modulus and Poisson’s ratio were derived. This model
does not involve any fitting parameters and is simple to use. Since Hashin’s
model renders a lower bound of the stiffness, its accuracy could be improved
by more refined assumptions regarding the thickness coordinate dependence
of stresses. The assumptions used are oversimplified and give too low
stiffness of the damaged laminate.

McCartney (1992) applied his model, which is based on the same stress
distribution assumptions as Hashin’s model (Hashin, 1987) but the
governing equations are obtained from Reissners principle, to doubly
cracked cross-ply laminates assuming that the in-plane normal stress
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dependence on the two in-plane coordinates is given by two independent
functions.

A model of similar accuracy as Hashin’s and McCartney’s models was
developed by Abdelrahman and Nayfeh (1999) to analyze stiffness of doubly
cracked cross-ply laminates. In addition to the assumptions of a linear shear
stress distribution across each layer, which is the same as in Hashin’s model,
authors assume linear distribution of out-of-plane displacements. These
assumptions allow for exact satisfaction of all displacement and traction
interface and boundary conditions. Since in derivations only the stress–strain
relationships averaged over the layer thickness are used, the constitutive
relationships are not satisfied pointwise. The governing equations are a
system of two fourth-order partial differential equations with constant
coefficients. Unfortunately, predictions and comparison with test data and
other models are presented only for the case of one crack system.

The most accurate local stress state comparable with a very fine FE
solution and, therefore, also accurate stiffness prediction can be obtained
using semianalytical McCartney (1995), and Schoeppner and Pagano (1998)
models. In the McCartney model, each layer in the laminate is divided into a
certain number of thin sublayers and in each sublayer, the stress assump-
tions are as in Hashin’s variational model (Hashin, 1985). All displacement
and stress continuity conditions at sublayer interfaces are satisfied as are
the stress–strain relationships, except one, which is satisfied in an average
sense. It has been shown that this ‘satisfying in average’ is identical to
minimization of the Reissner energy functional in the used approximation of
the stress–strain state. The Schoeppner–Pagano model (1998), which is also
based on Reissners principle, considers a system of hollow concentric sub-
cylinders with a large radius instead of laminate divided into sublayers. Each
layer is divided into a number of cylinders. In order to simulate interface
cracks, these cylinders may also be connected in parallel. Shape functions
for each subcylinder in this model are different than in McCartney’s model
but the results converge with increasing number of sublayers (subcylinders)
(McCartney et al., 2000). However, the calculation routines in these models
are extremely complex which limits the application.

Neither of these models can be directly used for laminates containing
several systems of cracks. However, considering these crack systems as
noninteracting, one can first introduce crack system in 90-layer only and
back calculate the effective stiffness of the damaged layer from the damaged
laminate stiffness. Then the intralaminar cracks are introduced in the 0-layer
only and similar problems as described above is solved in a system of
coordinates rotated by 90�. Finally the effective properties of all damaged
layers may be used in laminate theory to calculate the stiffness of laminate
with cracks in both layers. The Schoepner and Pagano model has been
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used in this way to predict the reduction of thermal expansion coefficients
of cross-ply laminates with cracks in both 0- and 90�-layers in (Kim et al.,
2000).

Generally speaking, the CDM approaches (Allen et al., 1987; Ladeveze,
1990; Talreja, 1994) may be used to describe the stiffness of laminates with
intralaminar cracks in off-axis plies of any orientation. The damage is
represented by internal state variables (ISV) and the laminate constitutive
equations are expressed in general forms containing ISV and a certain
number of material constants. These constants must be determined for each
considered laminate configuration either experimentally measuring stiffness
for a laminate with a certain crack density or using FE analysis for the same
reason. This limitation is partially removed in synergistic damage mechanics
suggested by Talreja (1996), which incorporates micromechanics informa-
tion to determine the material constants. For the same [� �, 902]s class of
laminates as in theoretical assessment (Talreja, 1996), Varna et al. (1999a)
used experimentally measured crack opening displacement (COD) to
identify the constraint parameter in CDM and to make stiffness predictions.
For these measurements, a special device was designed and measurements
were performed using optical microscopy on loaded specimens (Varna,
1993). The same technique was later applied to measure COD for cracks in
off-axis plies of [0/��4/01/2]s laminates and to perform CDM predictions
(Varna et al., 1999b).

An extensive FE parametric analysis in plane stress formulation was
performed by Joffe et al. (2001) to identify the main geometrical and
stiffness parameters affecting the COD. It was found that average COD
normalized with respect to the far field stress in the layer and the layer
thickness is a very robust parameter: variation of shear moduli and
Poisson’s ratios has a negligible effect on the normalized COD. Only the
stiffness and thickness ratios of the cracked to uncracked neighboring layers
have a significant effect. Based on numerical results, the numerical COD
values were fitted by power law. The main conclusion was that increasing
stiffness and thickness of the constraint layer leads to significant reduction
of the average normalized COD.

This power law for COD was used in the synergistic CDM predictions of
stiffness reduction in [��, 904]s laminates (Varna et al., 2001) with cracks in
90�-layers only. Recently, it was demonstrated using micromechanics that
all material parameters in CDM for this layup depend only on the material
properties of the layer, not on the laminate layup (Varna et al., 2003). This
finding was not proven for laminates with cracked layers other than 90�

because analytical micromechanics solution for a general case does not exist.
Gudmundson and coworkers (1992, 1993) considered laminates with

general layup and used the homogenization technique to derive expressions

238 P. LUNDMARK AND J. VARNA



for stiffness and thermal expansion coefficient of laminates with cracks in
layers of 3-D laminates. These expressions in an exact form correlate
damaged laminate thermoelastic properties with parameters characterizing
crack behavior: the average COD and crack face sliding. These parameters
follow from the solution of the local boundary value problem and their
determination is a very complex task. Gudmundson and coworkers suggested
to neglect the effect of neighboring layers on crack face displacements and
to determine them using the known solution for a periodic system of cracks
in an infinite homogeneous transversely isotropic medium (90�-layer). The
application of their methodology by other researchers has been rather limited
due to the fairly complex form of the presented solutions.

In the present paper an attempt, similar to that performed by
Gudmundson, is presented in the framework of the laminate theory. The
biggest advantage is the transparency of derivations and the simplicity of
application. Stiffness or compliance matrices and thermal expansion
coefficients of an arbitrary symmetric laminate with damage in certain
layers are presented in an explicit form. Derivation of constitutive relation-
ships follows the same route as in the classical laminate theory. As an input
from the homogenization theory, the relationships between volume-averaged
and boundary surface-averaged quantities are used. The differences between
undamaged and damaged laminate cases are indicated in each step of
derivation. The damaged laminate stiffness and thermal expansion coeffi-
cients are calculated from the undamaged laminate stiffness and the crack
face displacements normalized with respect to the far field stress in the layer.

In contrast to Gudmundson’s approach (Gudmundson and Östlund,
1992; Gudmundson and Zang, 1993), the normalized COD and crack face
sliding are considered as dependent on the position of the cracked layer
(outside or inside cracks) and on the constraint of the surrounding layers in
terms of their stiffness and thickness. These dependences are analyzed using
FEM calculated COD profiles in generalized plane strain formulation and
presenting the results in the form of power laws.

In a special case of balanced laminates with cracks in 90�-layer only,
expressions for thermoelastic properties are presented in an explicit and
compact form.

STRESS–STRAIN RESPONSE OF DAMAGED LAMINATES

Problem Formulation

In this derivation, a symmetric laminate subjected to general in-plane
loading is considered. To exclude bending effects, the laminate is assumed
to be symmetric also in the damaged state (crack density is the same in
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layers with symmetric location with respect to the midplane). Only in-plane
loading is considered and the intralaminar cracks are assumed to run
parallel to fibers with a crack plane transverse to the laminate midplane and
to span the whole cross section of the layer. Laminate of thickness h contains
N layers of which the kth layer is characterized by stiffness [Q]k, thickness tk,
and fiber orientation angle, which determines the stress transformation
matrix [T ]k between global and local coordinates. The overbar on the matrix
and vectors denotes quantities in the global coordinate system. The crack
density in a layer is �kn¼½lk and normalized crack density �kn is defined as
�kn¼ tk�k. The geometry of the problem for the particular case of a doubly
cracked cross-ply laminate can be seen in Figure 1.

The thermoelastic relation between applied stresses and strains experi-
enced by the damaged laminate can be written in the following way:

f�gLAM ¼ ½Q�
LAM

f"gLAM � f�gLAM�T
� �

ð1Þ

where,

�T ¼ T � Tref ð2Þ

In (1) {�}LAM and {"}LAM are macroscopic stress and strain vectors applied
at the boundary of the representative volume element (RVE), [Q]LAM and
{�}LAM are the unknown stiffness matrix and thermal expansion coefficient
vector of the damaged laminate to be determined.

Homogenization Relationships

Introducing volume-averaged stresses and strains as in (Allen and Yoon,
1998) and using superscript a to denote average quantities, we have,

�a
ij ¼

1

V

Z
V

�ij dV "aij ¼
1

V

Z
V

"ij dV ð3Þ

Figure 1. Schematic view over [0, 90]s laminate with two orthogonal systems of cracks.
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Here V is the volume of averaging, which may be one layer or the whole
laminate volume, as needed. The average stress–strain relationships for a
kth layer in the global coordinate system are:

f ���gak ¼ ½ �QQ�k f �""gak � f ���gk�T
� �

ð4Þ

Using the divergence theorem, it may be shown (Allen and Yoon, 1998;
Varna, 2002) that stresses applied to the laminate boundary are equal to the
stresses averaged over the volume of the whole laminate. Expressing the
volume integral as a sum of integrals over volume of individual layers, we
obtain

f�gLAM ¼ f ���ga ¼
XN
k¼1

f ���gak
tk

h
ð5Þ

Using the divergence theorem, it can also be shown (Allen and Yoon, 1998;
Varna, 2002) that the volume average strains in each layer are equal to
boundary-averaged strains defined as:

Eij ¼
1

V

Z
S

1

2
ðuinj þ ujniÞdS ð6Þ

Definition (6) is written for tensorial boundary-averaged strains. Using
this definition, one can easily check that average strains at the external
boundary of a layer are equal to the applied macroscopic strains, which are
the same for all layers in the damaged laminate (isostrain condition in
laminate theory).

Since the integration in (6) involves the total boundary including the crack
surface, the above mentioned equality of volume-averaged and boundary-
averaged strains for the kth layer may be written as:

�""1
�""2
���12

8<
:

9=
;

a

k

¼

"1
"2
�12

8<
:

9=
;

LAM

þ

���11
���22

2 ���12

8<
:

9=
;

k

ð7Þ

Here f ���gkis the Vakulenko–Kachanov tensor defined by

���ij ¼
1

V

Z
Sc

1

2
ðuinj þ ujniÞdS ð8Þ

The engineering strains and engineering form of the Vakulenko–
Kachanov tensor f ���gk are used in this paper. In layers with no cracks,
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�ij is zero. Sc is the total surface of cracks in the layer, ui are displacements
of the points on the crack surface, ni is outer normal to the crack surface,
and V is the volume of the layer.

Crack Face Relative Displacements and Vakulenko–Kachanov Tensor

Considering (8) in the local coordinate system related to fiber orientation
in the kth layer, it is seen that the only nonzero components are �12 and �22
(1 is the fiber direction and 2 is in-plane orientation transverse to the fiber
direction), given by,

�k
12 ¼ ��ku

k
1a �k

22 ¼ �2�ku
k
2a ð9Þ

Here uk1a and uk2a are the average crack face sliding displacement and average
crack face opening displacement, respectively defined as:

uk1a ¼
1

2tk

Z tk=2

�tk=2

�u1ðx3Þdx3 uk2a ¼
1

2tk

Z tk=2

�tk=2

�u2ðx3Þdx3 ð10Þ

Here �ui are the separation distances of the two crack faces. Normalizing
the displacements with respect to thickness of the cracked layer (length of
the crack) and the far field (CLT) stresses in the layer corresponding to the
same load applied to undamaged laminate (indicated by subscript 0) gives:

uk1an ¼ uk1a
G12

tk�k
120

uk2an ¼ uk2a
E2

tk�k
20

ð11Þ

Using Equation (11) in Equation (9) provides expressions for components
of Vakulenko–Kachanov tensor through normalized displacements and
far field stresses:

�k
12 ¼ ��knu

k
1an

�k
120

G12
�k
22 ¼ �2�knu

k
2an

�k
20

E2
ð12Þ

Introducing the displacement matrix U makes it possible to express the
Vakulenko–Kachanov tensor in the Voigt notation as a matrix product.

U½ �k¼ 2

0 0 0

0 uk2an 0

0 0
E2

G12
uk1an

2
6664

3
7775 ð13Þ
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�
� �

k
¼ �

�kn
E2

U½ �k �0f gk ð14Þ

From here on, the vectorial representation of the Vakulenko–Kachanov
tensor is used.

Transforming Equation (14) to global coordinates is the same as engi-
neering strain transformation in CLT.

���
� �

k
¼ T½ �

T
k �
� �

k
ð15Þ

The far field stress components in the cracked layer required in
Equation (14) can be expressed using CLT.

f�0gk ¼ ½T �k½
�QQ�k f"0g

LAM � f ���0gk�T
� �

ð16Þ

Substituting Equations (16) and (14) in Equation (15) gives:

f ���gk ¼
��kn
E2

½T �
T
k ½U �k½T �k½

�QQ�k f"0g
LAM � f ���0gk�T

� �
ð17Þ

Constitutive Relationships for Damaged Laminates

Substituting expression (7) in the averaged stress–strain relationships
(4) and using Equation (5) gives the following expression for laminate
stresses.

f�gLAM ¼ ½Q0�
LAM

f"gLAM �
1

h

XN
k¼1

½ �QQ�kf ���gk�Ttk þ
1

h

XN
k¼1

½ �QQ�kf
���gktk ð18Þ

The second term on the right-hand side of (18) can be identified with the
‘thermal force’ per unit thickness, f�gLAM

th known in laminate theory. Since it
can be related to the strain response of undamaged laminate as:

�f gLAM
th ¼ Q0½ �

LAM "0f gLAM
th ð19Þ

Equation (18) can be rewritten as

f�gLAM ¼ ½Q0�
LAM "f gLAM � "0f gLAM

th

� �
þ
1

h

XN
k¼1

�QQ
� �

k
���

� �
k
tk ð20Þ
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Here [Q0]
LAM is the stiffness matrix of the undamaged laminate calcu-

lated as in the classical laminate theory (CLT). {"0}
LAM is the strain in the

undamaged laminate corresponding to the same applied load.
Substituting Equation (17) in Equation (20) gives the final form for

damaged laminate thermomechanical stress–strain response:

f�gLAM ¼ ½Q0�
LAM "f gLAM � "0f gLAM

th

� �
�

1

hE2

XN
k¼1

�kn �QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
"0f gLAM� ���0f gk�T

� �
tk

ð21Þ

Stiffness and Compliance Matrices of the Damaged Laminate

Assuming only mechanical loading (�T¼ 0) in Equation (21) and using

"0f gLAM¼ S0½ �
LAM �f gLAM ð22Þ

gives

�f gLAM ¼ Q0½ �
LAM "f gLAM

�
1

hE2

XN
k¼1

�kn �QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
S0½ �

LAM �f gLAMtk
ð23Þ

Expressing laminate stress from Equation (23) gives:

�f gLAM¼ ½I �þ
1

hE2

XN
k¼1

�kn �QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
S0½ �

LAMtk

 !�1

Q0½ �
LAM "f gLAM

ð24Þ

where [I ] is the identity matrix.
Comparing (24) with Equation (1), with �T¼ 0, the stiffness matrix and

corresponding compliance matrix for the damaged laminate are found to be:

Q½ �
LAM

¼ ½I � þ
1

hE2

XN
k¼1

�kn �QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
S0½ �

LAMtk

 !�1

Q0½ �
LAM

ð25Þ

S½ �
LAM

¼ S0½ �
LAM

½I � þ
1

hE2

XN
k¼1

�kn �QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
S0½ �

LAMtk

 !

ð26Þ
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These expressions may be used to calculate the degradation of mechanical
properties for the damaged laminate.

Thermal Expansion Coefficients of the Damaged Laminate

If the reductions in thermal properties are of interest, a derivation based
on thermal loading only has to be done. Applying thermal loads only, the
global laminate stresses are equal to zero, and Equation (20) allows
determining the thermal expansion strains of the damaged laminate.

"f gLAM¼ "0f gLAM
th � S0½ �

LAM 1

h

XN
k¼1

�QQ
� �

k
f ���gktk ð27Þ

Applying Equation (17) in (27), the following relationship can be
obtained:

"f gLAM ¼ "0f gLAM
th þ S0½ �

LAM 1

hE2

XN
k¼1

�kn �QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
"0f gLAM

th tk

� S0½ �
LAM 1

hE2
�T

XN
k¼1

�kn �QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
f ���gktk

ð28Þ

By dividing Equation (28) by �T, the final expression for the thermal
expansion coefficient for the damaged laminate is obtained.

�f gLAM¼ I½ � þ
XN
k¼1

tk

h
�kn D½ �k

 !
�f gLAM

0 �
XN
k¼1

tk

h
�kn D½ �k ���f gk ð29Þ

where,

D½ �k¼ S½ �
LAM
0

1

E2

�QQ
� �

k
T½ �

T
k U½ �k T½ �k

�QQ
� �

k
ð30Þ

Thermoelastic Properties of Laminates with Cracks in 90�-layers

In balanced and symmetric laminates with cracks in 90�-layers only, the
matrix relationships for stiffness and thermal expansion coefficients may be
simplified and expressed in the explicit form. We consider a particular case
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often used in research when the 90�-layer with crack density �n is in the
middle of the laminate. The set of layers surrounding the 90�-layer on either
side may be considered as a sublaminate with thermoelastic properties
calculated using CLT and denoted by upper index s. Using 90�-layer
properties in the local system and denoting thickness of the sublaminate and
90�-layer by ts and t90, respectively, we obtain, after tedious work, the
following relationships for engineering constants of the damaged laminate.

Ex

Ex0
¼

1

1�Q22 1� �12�xy0
� �

g3k�nu2an
ð31Þ

Ey

Ey0
¼

1

1�Q22 ðð�12 � �yx0Þ
2=ð1� �12�xy0ÞÞð�xy0=�yx0Þ

� �
g3k�nu2an

ð32Þ

�xy
�xy0

¼
1þQ22 ð�12 � �yx0Þ=�yx0

� �
g3k�nu2an

1�Q22 1� �12�xy0
� �

g3k�nu2an
ð33Þ

�yx
�yx0

¼
1þQ22 ð�12 � �yx0Þ=�yx0

� �
g3k�nu2an

1�Q22 ðð�12 � �yx0Þ
2=ð1� �12�xy0ÞÞð�xy0=�yx0Þ

� �
g3k�nu2an

ð34Þ

�x

�x0
¼ 1�Q22

�x0 � �2 þ �12 �y0 � �1

� �� �
�x0

g3k�nu2an ð35Þ

�y

�y0
¼ 1�Q22

�x0 � �2 þ �12 �y0 � �1

� �� �
�y0

�
�12 � �yx0
1� �12�xy0

	 

�xy0
�yx0

	 

g3k�nu2an

ð36Þ

where,

g3 ¼
t90

2 ts
Ss
xy

S12 ts þSs
xyt90=2

S11 ts þSs
yyt90=2

� Ss
xx

 !
ð37Þ

1

k
¼

E2 t90

4Es
x ts

1þ
2S22 ts

Ss
xx t90

�
2 Ss

xyt90=2þ S12 ts

� �2
Ss
xx t90 Ss

yyt90=2þ S11 ts

� �
2
64

3
75 ð38Þ
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In (37) and (38), Sij are elements of the compliance matrices. In the
particular case of cross-ply laminate, the sublaminate is the 0�-layer, and,

Ss
xx ¼ S11, Ss

yy ¼ S22, Ss
xy ¼ S12, Es

x ¼ E1 ð39Þ

FINITE ELEMENT CALCULATIONS

Finite element calculations were used (a) to perform parametric analysis
of the main factors governing the value of the normalized crack opening;
and (b) to render data for validation of the developed analytical model. For
all FE calculations, the commercial code ANSYS 6.1 was used. In order to
model the repeating volume element (see Figure 2), a 3-D model was
created. The SOLID185 elements were used in all calculations. The main
reason for choosing a 3-D model was to use the same elements for 3-D
calculations (two orthogonal crack systems) and for generalized plain strain
case (one system of cracks).

Two geometrical configurations were considered; see Figure 2 for
geometry and boundary conditions modeled. In the first configuration,
the cracked layer is in the middle of the laminate (inside crack) and
in the second case, the crack is in the surface layer (outside crack). The
upper boundary of the laminate was always traction free. Analyzing the
COD, the crack density was always chosen small enough to get
noninteracting cracks (2l0=t90 ¼ 5 for inside cracks) and the number
of elements was 6400. The stiffness ratio between the sublaminate and
90�-layer as well as the layer thickness ratio were varied. Figure 2
represents a quarter of the RVE defined in Figure 1. For a more detailed
analysis and parameter study using plane stress formulation, see Joffe
et al. (2001). For outside crack, the sublaminate and the 90-layer have
interchanged places.

Figure 2. Load cases used for determination of average crack face opening displacement.
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Power Law for Crack Opening Displacement

Expressions for thermoelastic constants of the damaged laminate
presented in the previous section can be applied only if the normalized
crack opening and sliding displacements introduced in Equations (10) and
(11) are known functions of laminate configuration and material properties.
In this paper, we consider only laminates and properties with negligible
sliding leaving the sliding effects for a separate paper. It has to be
emphasized that Equations (10) and (11) are defined in the coordinate
system where the cracked layer has a 90� orientation with respect to x0.
Hence, an appropriate model to study the normalized COD is a cross-ply
type symmetric laminate containing cracked 90-layer which is supported by
a sublaminate.

A series of FEM calculations were performed and the displacement in
x0-direction for the nodes at the crack surface was used to calculate the
average value of the crack face displacement, u2a. That value was then
normalized with respect to thickness of the cracked layer and the far field
stress in the layer transverse to the crack plane according to Equation (11).

Results were fitted by a power law as follows:

u2an ¼ Aþ B
E2

Es
x0

	 
n

ð40Þ

The obtained constants in the two power laws for inside and outside
cracks, respectively are presented here.

For inside crack:

A ¼ 0:52

B ¼ 0:3075þ 0:1652
t90 � 2ts

2ts

	 


n ¼ 0:030667
t90

2ts

	 
2

� 0:0626
t90

2ts

	 

þ 0:7037 ð41Þ

For outside crack:

A ¼ 1:2

B ¼ 0:5942þ 0:1901
t90 � 2ts

2ts

	 


n ¼ �0:13073
t90

2ts

	 
2

þ 0:4437
t90

2ts

	 

þ 0:2576 ð42Þ
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The normalized CODs for inside and outside cracks versus layer stiffness
ratio in case of [S,90]s laminate is shown in Figure 3. Both, directly
calculated by FEM and from the power law are in a very good agreement:
the power law gives a very good description of the CODs for both crack
systems. The normalized COD of the outside crack is significantly larger
and both crack types show a strong dependence of COD on the surrounding
layer thickness. The increasing constraint due to stiffer surrounding layers
may lead to 30% reduction of the COD as compared to crack surrounded
by an isotropic medium. The values corresponding to solution for a periodic
system of cracks in an infinite transversally isotropic medium used in
(Gudmundson and Zang, 1993) are also shown for comparison. Obviously,
they do not depend either on the relative stiffness of layers nor on their
thickness. The thickness of the constraint layer has a similar effect as its
stiffness: increase leads to smaller normalized COD.

Elastic Properties of Damaged Laminate

The calculation of elastic properties for cross-ply laminates with cracks
in 90�-layer using FEM was performed for 2l90=t90¼5. The number of
elements was 6400. The stiffness of [0, 90]s cross-ply laminate with cracks in
both 90- and 0�-layers was calculated assuming the same crack density in
both layers and the number of elements was same in x, z- and y, z-plane. The
total number of elements used was 36,000 and for one particular case, it was
80,000. The number of elements in the mesh was varied to find the most
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Inside crack, Power Law
Outside crack, Power Law
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Figure 3. The dependence of the normalized crack face opening displacement u2an on the
layer stiffness ratio for both inside([S, 90]s 2ts¼ t90) and outside crack([90, S]s ts¼ t90). Fitting
by power law. ‘‘Ref’’ is the prediction according to Gudmundson et al. (1993).
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suitable mesh, taking both the calculation time and the accuracy into
consideration.

RESULTS AND DISCUSSION

The expressions in matrix form for damaged laminate stiffness (25) and
thermal expansion coefficients (29) and (30) were used along with power law
expressions (40)–(42) in predictions for damaged cross-ply laminates.
Predictions for laminates with cracks in 90�-layer only are validated
comparing with results from direct FEM calculations and further verified
comparing with experimental data obtained in our laboratory (Varna and
Krasnikovs, 1998; Joffe et al., 2001; Varna et al., 2001). Comparison is made
for different types of glass fiber/epoxy and carbon fiber/epoxy systems and
different laminate layups. The five materials used are defined in Table 1.
Since no stiffness data for laminates with two orthogonal systems of cracks
are available, comparison in this case is made with Hashin’s model and with
3-D FEM calculations with a very fine mesh. Experimental data from (Kim
et al., 2000) for reduction of thermal expansion coefficients of cross-ply
laminates containing cracks in 90�-layer and for laminates with two crack
systems are used.

Validation of the Analytical Approach using FEM

First, laminates with one crack system only were considered. The goal
was (a) to validate the developed general expressions for calculation of all
thermoelastic constants of the damaged laminate and (b) to study the crack
interaction effects in order to establish the crack density region, where the
concept of noninteractive cracks and the obtained power law can be used.
Predictions of properties degradation were compared with direct FEM
results. Considering cross-ply laminate with cracks in 90�-layer only, the
axial modulus Ex, the Poisson’s ratio �xy and the thermal expansion

Table 1. Material properties for materials used for calculations
and validation.

Materials
E1

(GPa)
E2

(GPa)
G12

(GPa)
�12 �1

(10�6 1/�C)
�2

(10�6 1/�C)
Lamina

Thickness (mm)

GF/EP-1 46.50 22.82 8.60 0.30 10.00 20.00 0.150
GF/EP-2 41.70 13.00 3.40 0.30 – – 0.150
GF/EP-3 44.73 12.76 3.50 0.30 – – 0.138
GF/EP-4 44.73 12.76 3.50 0.30 – – 0.148
CF/EP 138.00 10.30 5.50 0.30 0.43 25.87 0.125
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coefficient �x were calculated using Equations (31), (33), and (35). The
general expressions (25) and (29) were also used and the results were
identical. Predictions presented in a normalized form for [0, 90]s GF/EP-1
laminate are shown in Figure 4. Results of direct FE calculations in
generalized plane strain formulations are also presented in the figure.
Obviously, model predictions have very high accuracy for noninteractive
cracks. Since the high accuracy of the power law for COD was already
established, this proves the validity of the used relationships between global
material response and local field parameters. With increasing crack density,
deviations can be noticed: model, which uses CODs of noninteractive
cracks, predicts too large change of thermoelastic properties. Noticeable
deviations for the considered laminate start at crack density larger than
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Figure 4. Thermoelastic properties degradation in GF/EP-1 [0, 90]s cross-ply laminate due
to cracks in 90�-layer.
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1.5 cr/mm. The attempt to improve predictions using the crack interaction
function for system of cracks in an infinite medium suggested by
Gudmundson and Zang (1993) failed, the interaction using his model is
significantly overestimated.

Second, cross-ply laminates with two orthogonal systems of cracks were
investigated, see Figure 1. Here one of the goals was to investigate the
interaction effects between cracks belonging to different crack systems. This
is of importance because equations in Section ‘‘Stress–strain response of
Damaged laminates’’ are valid also for interactive cracks but the power law
for COD is established neglecting any interaction. From the analysis
presented above, we know the interaction distance between cracks belonging
to the same crack system. The same crack density 2l90=t90¼ l0=t0¼5
corresponding to the noninteractive case was used in both layers.
Considering the interaction between a crack in 90�-layer and a crack in
0�-layer, we can expect that crack in, for example, 0�-layer will slightly
reduce the average stiffness of this layer. According to performed COD
analysis, this will result in a slightly higher opening of the crack in the other
layer, which implies that the stiffness using a very fine 3-D mesh should be
slightly lower than that predicted by power law. Calculations were
performed using very fine mesh with 36,000 elements to eliminate the
effect of the artificially increased rigidity due to rough mesh.

The reduction in elastic properties for laminates with cracks in both layers
is summarized in Table 2. At first, the difference between results is about
0.1% for E-moduli and thermal expansion coefficients, and about 2% for
Poisson’s ratios. The second observation is that a very fine mesh leads
to systematically slightly lower values than that obtained by using the
analytical model. That may indicate an interaction effect between these two
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Figure 4. Continued.
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orthogonal cracks but may also be due to the mesh refinement or the
approximate nature of the power law. Since the difference is small, we
conclude that the interaction effects between cracks in 90�-layer and 0�-layer
may be neglected. Using mesh with 80,000 elements led to further decrease
of normalized E-modulus from 0.9151 to 0.9144.

The comparison between the developed model and Hashin’s variational
model (Hashin, 1987) is based on results for GF/EP-2 [0,90]s laminate with
the same number of cracks in both layers is presented in Figure 5. The
Young’s modulus predicted by Hashin’s model is significantly lower than
that according to our model which we believe is more accurate. The too low
modulus predicted by Hashin’s model is a consequence of the very simple
stress approximations used in combination with the principle of comple-
mentary energy which gives lower bound to the exact solution. Hashin’s
predicted Poisson’s ratio is incorrect because of his wrong definition of
the average transverse strain in the corresponding expression for Poisson’s
ratio: the average value over the 90�-layer should be taken instead of the
whole laminate including the 0�-layer.

Validation of the Model using Experimental Data

The model is also compared with experimental data for different layups
and materials. Considering stiffness of laminates with cracks in 90�-layer
only, shown in Figures 6–8, we see that the predictions are in good
agreement with test data. Observed deviations may serve for more detailed
analysis of the model and of the features of the phenomena. For example,
in Figure 6 the reduction of the modulus and the Poisson’s ratio of the
damaged [02, 902]s laminate at large crack densities is slowing down as
compared with the model which is a clear indication of the interaction
between cracks. Similar plots for [0, 902]s laminate in Figure 7 shows the
opposite trend: at high crack density the experimental values start to go

Table 2. Comparison between FEM and the
present model for GF/EP-1 [0, 90]s cross-ply
laminate with cracks in both 0- and 90�-layer.

FEM Model

Ex/Ex0 0.9151 0.9162
Ey/Ey0 0.9076 0.9072
�xy/�xy0 0.7982 0.8195
�yx/�yx0 0.7935 0.8114
�x/�x0 0.9557 0.9576
�y/�y0 0.9521 0.9534
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down faster. We explain this trend by local delaminations at the tip of
transverse cracks which start at high loads and which is more pronounced in
laminates with large ratio of damaged and supporting layer thickness. So the
different layer thickness ratio makes the difference between laminates in
Figures 6 and 7. The model also seems to predict the stiffness reduction
for off-axis sublaminate in a good agreement with experimental data, see
Figure 8.

Finally, the thermal expansion coefficients were compared with data and
predictions given in Kim et al. (2000). For CF/EP cross-ply laminates with
one system of cracks, Figure 9, our predictions are in a very good agreement
with experimental data and coincide for low crack densities with predictions
based on model in Schoeppner and Pagano (1998). At large crack densities,
the difference between predictions increases. However, even if conceptually
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Figure 5. Elastic properties degradation in GF/EP-2 [0,90]s cross-ply laminate due to cracks
in 0- and 90�-layers.

254 P. LUNDMARK AND J. VARNA



incorrect for high crack density, our noninteractive COD-based predictions
are approximately as good compared to test data as the results of the
interactive model (Schoeppner and Pagano, 1998). Data and predictions
according to both the models compared for double-cracked cross-ply
laminate are presented in Table 3. Even in this case, our predictions are
rather good and closer to the experimental data than the model (Schoeppner
and Pagano, 1998).

CONCLUSIONS

The stiffness matrix and the thermal expansion coefficients of a laminate
with intralaminar cracks in layers may be predicted with confidence using
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Figure 6. Reduction in elastic properties for GF/EP-3 [02, 902]s cross-ply laminate.
Experimental data compared with model predictions.
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the exact expressions obtained in this paper. Relationships, expressing
the laminate thermoelastic properties dependence on density of cracks in
layers in a matrix form, depend on thermoelastic properties of layers,
geometrical parameters characterizing laminate architecture and the
normalized COD.

The normalized COD is load independent and depends only on the
constraint of the surrounding layers. Analysis of noninteractive cracks by
FEM showed that COD is a robust parameter which has a power law
dependence on layer stiffness and thickness ratio, the effect of other stiffness
constants being negligible.

The thermoelastic properties predictions based on the developed
analytical method are in excellent agreement with direct 2-D FEM
calculations for cross-ply laminates with one system of cracks.
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Figure 7. Reduction in elastic properties for GF/EP-3 [0, 902]s cross-ply laminate.
Experimental data compared with model predictions.

256 P. LUNDMARK AND J. VARNA



The applicability of the power laws, obtained analyzing noninteractive
cracks (only one system of cracks present and the distance between cracks is
large), in problems with several crack systems and large crack density was
inspected comparing predictions with direct 3-D FEM calculations. Three-
dimensional FEM calculations for cross-ply laminates with two orthogonal
crack systems showed that the interaction between cracks belonging to
layers with different orientation is negligible, but the interaction between
cracks of the same system is significant at large crack densities and must be
included in the approximate expressions for normalized displacements.

The model is also in a good agreement with experimental data. However,
agreement at large crack densities could be improved, introducing a
function accounting for crack interaction. To be able to predict the reduced
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Figure 8. Reduction in elastic properties for GF/EP-4 [30,�30, 904]s laminate. Experimental
data compared with model predictions.
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elastic properties for a more complex laminate, the crack face sliding
displacement has to be analyzed, which is left for a separate paper.
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