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ABSTRACT: The general behavior of self-healing materials is modeled including
both irreversible and healing processes. A constitutive model, based on a continuum
thermodynamic framework, is proposed to predict the general response of self-
healing materials. The self-healing materials’ response produces a reduction in size
of microcracks and voids, opposite to damage. The constitutive model, developed in
the mesoscale, is based on the proposed Continuum Damage-Healing Mechanics
(CDHM) cast in a consistent thermodynamic framework that automatically satisfies
the thermodynamic restrictions. The degradation and healing evolution variables
are obtained introducing proper dissipation potentials, which are motivated by
physically based assumptions. An efficient three-step operator slip algorithm,
including healing variables, is discussed in order to accurately integrate the coupled
elastoplastic-damage-healing constitutive equations. Material parameters are identi-
fied by means of simple and effective analytical procedures. Results are shown in
order to demonstrate the numerical modeling of healing behavior for damaged
polymer-matrix composites. Healed and not healed cases are discussed in order to
show the model capability and to describe the main governing characteristics
concerning the evolution of healed systems.

KEY WORDS: continuum damage-healing mechanics, self-healing composites,
internal variable methods.
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INTRODUCTION

S
TRUCTURAL MATERIAL BEHAVIOR is dominated by irreversible process
development, such as damage and residual strain release, which reduces

the structural integrity and service life.
Damage and irreversible deformation phenomena affect the integrity of

the material, by the creation and coalescence of microcracks, fiber breaks,
fiber matrix debond, etc. The evolution of internal defects produces struc-
tural degradation, with consequent stiffness and strength reduction (Dvorak,
2000). Once microcrack development reaches the critical state, no further
stress redistribution occurs, and the material rapidly reaches the failure con-
dition (Aboudi, 1991; Pindera, 1992; Herakovich, 1998; Piggott et al., 2000).

During the last decade, modeling of dissipative phenomena have received
much attention and several numerical models have been developed, which
describe in various ways the inelastic response of materials. Continuum
theories in a thermodynamic framework describe material degradation as
stiffness and strength reduction by means of microscopic or macroscopic
variables (Chow and Wang, 1987; Murakami, 1988; Chaboche, 1988;
Ladeveze and Le Dantec, 1992; Voyiadjis and Deliktas, 2000). In particular,
elastoplastic theories describe the slips of the material at the microscale,
whereas the Continuum Damage Mechanics (CDM) provides a macroscopic
representation of the microcrack and void distribution in terms of stiffness
reduction. Contrary to dissipative phenomena, recent experimental obser-
vations and procedures have shown the possibility of healing several classes
of materials (Miao et al., 1995; Kessler and White, 2001; Ando et al.,
2002a,b; Brown et al., 2002). The healing effects can be caused by chemical,
physical or biological phenomena leading to a progressive reduction of
internal material defects. Experimental evidence reveals that materials can
be repaired or healed in various ways and consequently the structure can be
rehabilitated.

A brief literature review reveals that different healing processes have
been analyzed, mainly from a phenomenological point of view, such as
geological rock densification (Miao and Wang, 1994), autogenous healing
of concrete or ceramic materials (Jacobsen and Sellevold, 1996; Jacobsen
et al., 1996; Ramm and Biscoping, 1998; Ando, 2002a,b), microcrack
regeneration in the skeleton of a biological system and so on. Numerical
modeling of these processes has not been sufficiently investigated. Different
models related to biological healing behavior for bone remodeling or wound
skin regeneration have been developed for relatively simple cases (Adam,
1999; Simpson, 2000), but to the authors’ knowledge, only a constitutive
model for compaction of crushed rock salt has been proposed in a rigorous
thermodynamic framework (Miao et al., 1995).
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Recently, a novel material processing technique was reported by Kessler
and White (2001), White et al. (2001), and Brown et al. (2002), which
describes the ability of composite materials with a polymeric-matrix to heal
autonomically. Such materials are able to reduce material degradation with
the aid of a healing agent by means of chemical interactions. Healing pro-
cesses can be considered opposite to damage. Consequently, the system can be
rehabilitated and the integrity of the material is recovered to a certain extent.

In polymer-matrix composites, the autonomic healing procedure occurs
as follows. Healing agents stored in microcapsules are uniformly dispersed
in the matrix material. Once a microcrack breaks a microcapsule, the
healing agent is released and distributed by capillary action. The healing
agent then contacts the catalyst, which is uniformly distributed in the
matrix, and adhesive bonding takes place. The efficiency of the repair
depends on the density of the catalyst and the microcapsules. Therefore, the
microcracks evolution and the degradation processes can be controlled, and
consequently, the material is self-repaired. More details about the technique
and material characteristic of the healing agent can be found in the literature
(Kessler and White, 2001; White et al., 2001; Brown et al., 2002; Barbero
and Lonetti, 2003; Barbero et al., 2004).

The main purpose of the present paper is to generalize CDM includ-
ing healing processes and consequently Continuum Damage-Healing
Mechanics (CDHM) is proposed. The model is developed in a consistent
thermodynamic framework and is based on the method of internal
variables. The proposed constitutive model is quite general and capable
of simulating different healing processes. The constitutive equations are
obtained by a phenomenological thermodynamic approach using the method
of internal variables. Then, an application to composite healing behavior is
proposed and a numerical model is developed to predict damage and
irreversible deformation processes for a self-healing fiber-reinforced lamina.

Damage and inelastic mechanisms have been discussed previously and
experimentally validated (Barbero and DeVivo, 2001; Barbero and Lonetti,
2001, 2002; Lonetti et al., 2003), whereas the coupled healing-damage and
irreversible deformations constitutive model is the main contribution of
this paper. The proposed model predicts the distributed damage and the
unrecoverable deformation in a mesoscale lamina representation, which
refers to a single lamina. The orthotropic nature of composite lamina leads
to a tensorial description of the healing variables, which control void and
microcrack healing along different directions. An effective damaged–healed
configuration is introduced, in which the body is considered without
discontinuities. In order to describe the internal variable evolution, different
dissipation potentials for damage, healing, and irreversible deformations
(plasticity, residual strain recovery, etc.), are introduced. Coupling among
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various dissipation phenomena could be further refined as shown by Abu
Al-Rub and Voyiadjis (2003). In the context of convex analysis, and
supported by experimental observations, different limit thresholds related to
damage, plasticity, and healing domains are derived. One basic assumption
of the model, motivated by experimental observations, is that the healing
agent acts when a sufficiently large microcrack density affects the material.
In the model this occurs when the damage domain reaches the critical
surface and at the same time the healing thermodynamic forces reach the
healing domain. Healing is tracked by means of a thermodynamic potential
that describes the evolution of healing agent.

The constitutive relationships and evolution equations define a nonlinear
differential problem, which is solved by means of a proper numerical
algorithm. The main equations are integrated by the Euler-backward
technique, which is a stable numerical procedure to determine the actual
solution by an incremental/iterative method. In particular, an elastic-
predictor and Damage-healing-plasticity corrector integration scheme is
used to solve the incremental nonlinear constitutive equations.

Damage and plasticity potentials are identified by means of simple but
effective procedures described in Barbero and DeVivo (2001), Barbero and
Lonetti (2001, 2002), and Lonetti et al. (2003). These are based on available
data, which can be easily obtained by standard experimental procedures. In
addition, a similar identification procedure is proposed here to identify the
healing potential. Due to a lack of experimental data, the effect of allowable
healing values is investigated by conducting a parametric study. A sensitivity
analysis in terms of healing variables is presented in order to show the
suitability of the model to predict mechanical behavior of self-healing
material systems. Results are also shown in order to validate the numerical
model with available experimental data for damaged polymer-matrix com-
posites. Healed and not healed cases are discussed in order to show the
capability of the model to describe the possible evolution of the self-healing
composite system.

THERMODYNAMIC FORMULATION

The proposed formulation is based on generalized thermodynamics
(Coleman and Gurtin, 1967; Lubliner, 1972), in which internal variables are
introduced in the thermodynamic constitutive relationships to describe the
inelastic processes at the current material state. The constitutive equations
are thermodynamically consistent with the Clausius-Duhem inequality

r : _ee� � _  þ s _TT
� �

�
q

T
� rT � 0 ð1Þ
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where r and e are the stress and strain tensors, �, , s,T , and q are mass
density, specific Helmholtz free energy (HFE), specific entropy, tempera-
ture, and heat flux, respectively. A purely mechanical theory and infini-
tesimal deformations are assumed in the proposed model. Without loss of
generality the additive strain decomposition is considered consistently with
the small deformation hypotheses, by which the total deformation strain is
a linear function of both elastic and plastic terms, i.e. " ¼ "e þ "p. Moreover,
a set of internal variables are introduced to describe both degradation
and healing effects

ud ¼ ud D, �ð Þ 2 =d , up ¼ up e p, pð Þ 2 =p, uh ¼ uh H ,�ð Þ 2 =h, ð2Þ

where D, ep,Hð Þ and �, p,�ð Þ are the tensorial and scalar variables related
to damage (d ), plasticity ( p) and healing (h) mechanisms and =i with
i¼ (d, p, h) are the corresponding domain spaces. It is worth noting that
chemical effects related to the healing processes are only introduced from
a mesoscopic point of view by means of internal variables, which describe
the stiffness variation during the evolution phenomena without considering
any diffusion process.

The actual thermodynamic state can be described by the HFE,  : C�

=d � =p � =h ! R, which is a function of both observable and internal
variables

 ¼  ee,ud ,up,uh
� �

ð3Þ

with ee 2 C being the admissible elastic deformation set. Substituting
Equation (3) into Equation (1) and introducing the thermodynamic
associated driving forces, the following constitutive equations hold

r ¼ ��
@ 

@ee
, Vd ¼ ��

@ 

@ud
, Vp ¼ ��

@ 

@up
, Vh ¼ �

@ 

@uh
; ð4Þ

with Vd ¼ Vd YD, �
� �

,Vp ¼ Vp e��,Rð Þ and VH ¼ VH YH ,�
� �

, where e�� is the
stress in the effective configuration and YD,YH are the thermodynamic
forces related to damage and healing, respectively. The dissipation potential
� is a positive defined function

� ¼ Vd : _uud þ Vp : _uup � Vh : _uuh

mechanical dissipation
� 0 ð5Þ

where the minus sign of the Vh term is due to the undissipative nature of the
healing process.
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The Helmholtz Free Energy is assumed to be separable as follows

 ¼  ee,ud ,up,uh
� �

¼ F ee, ep,D,Hð Þ þ� �, p,�ð Þ ð6Þ

where F : C � =d � =h � =p ! R is the elastic deformation function, which
depends on both damage and healing tensor components; whereas
� : R ! R is a scalar function, which expresses the evolution of inelastic
variables. The functional F depends on the actual value of the internal
variables

F ee, ep,D,Hð Þ ¼
1

2
e� epð Þ : E D,Hð Þ : e� epð Þ ð7Þ

where E is the fourth-order damaged–healed stiffness tensor. The irrevers-
ible nature of healing and damage processes leads to a monotonically
increasing evolution function. Without loss of generality, they are expressed
in the following uncoupled forms

� �, p,�ð Þ ¼ �d �ð Þ þ�p pð Þ þ�h �ð Þ ð8Þ

in which

�d �ð Þ ¼ �

Z �1

�0

@ 

@�
� d� ¼ cd1�� cd1c

d
2 exp �=c

d
2

� �� �����1
�0
, � 2 =d, cd1 , c

d
2

� �
2 R

�p pð Þ ¼ �

Z p
1

p0

@ 

@p
� dp ¼ c

p
1

1

2
p2
����p1
p0

, p 2 = p, c
p
1 2 R

þ
ð9Þ

The damage and plasticity potentials �d and �p described by Barbero
and Lonetti (2001, 2002), Lonetti et al. (2003), are used in order to obtain a
good correspondence between the numerical and experimental data. Next,
in lack of experimental data, a healing potential is assumed which is similar
to the damage potential but in the corresponding thermodynamic space

�h �ð Þ ¼ �

Z �
1

�0

@ 

@�
� d� ¼ ch1 ch2 exp �=c

h
2

� �
� �

� �� ��1

�0
, � 2 =H, ch1, c

h
2 2 R,

ð10Þ

This expression is motivated by intrinsic conditions of the phenomenon,
in accordance with the experimental evidence, which shows that for the
self-healing composite the process is basically primed by the damage
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evolution. Future developments are needed in order to completely validate
Equation (10).

The material constants ðcd1 , c
d
2 , c

p
1, c

h
1, c

h
2Þ introduced in Equations (9)

and (10) are identified in terms of available data as shown in ‘‘Identification
of Material Parameters.’’ The complementary laws related to the dissipa-
tion process can be expressed by homogeneous and convex potentials in
terms of the associated thermodynamic forces (Hansen and Schreyer, 1994)

�� Vd ,Vp,Vh
� �

¼ ��d Vd
� �

þ��p Vpð Þ þ ��h Vh
� �

ð11Þ

The principle of maximum dissipation in the effective reference frame
defines an equilibrium thermodynamic solution, which corresponds to
a constrained optimization problem. The Lagrangian multiplier method
(LMM ) can be used to solve the problem, where the functionalY

¼ � �ð Þ þ _��p��
P VP
� �

þ _��d��
D VD
� �

þ _��h��
H VH
� �

ð12Þ

depends on ð _��p, _��d , _��hÞ which are the Lagrangian multipliers related to
plasticity, damage, and healing, respectively. In order to extremize

Q
, the

following necessary conditions must be satisfied

@
Q
@VD

¼ 0,
@
Q
@VP

¼ 0,
@
Q

@VH
¼ 0 ð13Þ

which correspond to the plastic strain rate, damage, and healing evolution
laws. The kinematic internal variables grow along the direction normal to
the corresponding potential surface

_’’p ¼ _��P
@��

p

@VP
, _’’D ¼ _��D

@��
D

@VD
, _’’H ¼ _��H

@��
H

@VH
: ð14Þ

DAMAGE AND HEALING REPRESENTATION

When distributed damage controls the mechanical behavior, many
materials, including polymer-matrix composites, usually exhibit a quasi-
brittle macroscopic behavior. For example, experimental observations on
polymer-matrix composite prior to failure show a continuous distribution
of microcracks in the matrix. During loading, the total energy of the system
is dissipated mainly into new surface formation, whereas a minor fraction
is used to nucleate existing microcracks.
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The healing behavior is generated by distributed agents, which can be
assumed to be uniformly distributed in the body. For example, in composite
materials the microencapsulated healing agent is embedded along with a
catalyst into a polymeric-matrix. The healing occurs when the microcrack
path in the matrix reaches the microcapsule, and by rupture, the healing
agent locally triggers a chemical polymerization reaction, leading to
microcrack healing. Since the healing agent is continuously distributed, it
can be analytically described by a continuous function. The same model can
be applied to different materials such as crushed rock salt or bone.

Damage and healing phenomena are described at the mesoscale by
internal state variables, which represent microcrack formation and healing,
respectively. Two sets of tensor- and scalar-valued variables are introduced
in the constitutive equations. In particular, D and H tensors describe the
area change produced by microcracks and healing evolution, respectively,
and scalar-valued variables � and � control the evolution phenomena.
Lacking experimental observations to justify a more complex behavior, the
evolution of the damage and healing surfaces are assumed to be isotropic.

In composite materials, microcracks and voids have preferential growth
directions which coincide with the material directions. Therefore the princi-
pal directions of the damage and healing tensors are assumed to coincide
with the material coordinates. In the principal reference frame, they are
expressed by the following equations

D ¼
X3
i¼1

dini�ni H ¼
X3
i¼1

hini�ni ð15Þ

where � represents the dyadic product; whereas di, hi, and ni are the
eigenvalues and the eigenvectors of the tensors D and H, respectively.

Damage and healing tensors represent the net area change due to three-
dimensional void and microcrack distributions developed during the loading
history. In the context of continuum mechanics, physical interpretation of
damage and healing can be shown in Figure 1. A representative volume
element of arbitrary orientation is shown in different configurations
(C0,CDH, eCCF ) initial, actual (damaged-healed), and effective, respectively.
Moreover, eCC�

F and C�
DH represent the effective and damage-healed

configurations free of elastic deformation, respectively. In Figure 1, Fe

represents the elastic deformation gradient. The deformation gradients vDH

and v�DH describe the following transformations: vDH : CDH ! eCCF and
v�DH : C�

DH ! eCC�
F , where vDH and v�DH have the eigenvectors coinciding with

ni and n�i , respectively. The deformation of an arbitrary segment dxi to fdxidxi
between damaged–healed and effective configurations is expressed by
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introducing a transformation tensor as

fdxidxi ¼ vDHdxi, with i ¼ 1, 2, 3 ð16Þ

From Nanson’s Theorem (Ogden, 1983) specialized to the principal refere-
nce system nif g, a generic area element is transformed by the following
equations

ennfdSdS ¼
1

2
edxdx� edydy ¼

1

2
vDH � dx
� �

� vDH � dy
� �

¼ det vDH

� �
v
�1=2
DH

� �T
v
�1=2
DH

� �
ndS

ð17Þ

where �ð Þ denotes vector product. The area reduction along the principal
directions can be expressed in terms of the eigenvalues of the H and D
tensors as

1� dið Þ 1þ hið Þ½ � nidSi ¼ennifdSdSi with i ¼ 1, 2, 3 ð18Þ

Here di and hi are the eigenvalues of the damage and healing tensors along
different planes and define the net area change due to degradation or
healing phenomena. From an irreversible thermodynamic point of view, the
evolution is based on a positive unilateral variation. From Equation (17)

F

χ
dx3

dx1
dx2OO*

*

CDH
*

n dA 
* *

*

t dA* *

OO

CF
t dA*

*

n dA 
* *

*

*

χ
dx3

0
dx1

A

X

dx1

e

Y

0

Bdx2
0
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n0 dA0 F
dx3

dx2O

n dA 

ZC0
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CDH

dx1

dx3

O dx2
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Figure 1. Clockwise from top left: undamaged, damaged–healed, effective, effective without
elastic deformations, damaged–healed without elastic deformation.
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and (18), the transformation tensor vDH in the principal reference frame
assumes the following expression

�DH11
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2ð Þ 1þ h2ð Þ 1� d3ð Þ 1þ h3ð Þ

1� d1ð Þ 1þ h1ð Þ

s

�DH22
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d1ð Þ 1þ h1ð Þ 1� d3ð Þ 1þ h3ð Þ

1� d2ð Þ 1þ h2ð Þ

s

�DH33
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d1ð Þ 1þ h1ð Þ 1� d2ð Þ 1þ h2ð Þ

1� d3ð Þ 1þ h3ð Þ

s ð19Þ

The effective stresserr represents the stress associated with eCCF by the same
loading related to the CDH configuration and corresponds to a fictitious first
Piola-Kirchhoff tensor referred to eCCF :

err ¼ det vDH

� ��1
v
1=2
DH : r : v1=2DH ¼ M�1 : r ð20Þ

where M is the effective damage tensor and corresponds to the stress tensor
transformation between eCCF and CDH. In view of Equations (19) and (20), M
is a diagonal fourth-order tensor

M ¼ diag �D
1 �

H
1 ; �D

2 �
H
2 ; �D

3 �
H
3 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

2 �
D
3 �

H
2 �

H
3

p
2

;

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

1 �
D
3 �

H
1 �

H
3

p
2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D

1 �
D
2 �

H
1 �

H
2

p
2

)
ð21Þ

with

�D
i ¼ 1� dið Þ, �H

i ¼ 1þ hið Þ, i ¼ 1, 2, 3 ð22Þ

where err is represented in contracted (Barbero, 1999), whereas the effective
stress is

e��11 ¼ 1

det vDH

� ��DH11
�11 ¼

�11
1� d1ð Þ 1þ h1ð Þ

e��22 ¼ 1

det vDH

� ��DH22
�22 ¼

�22
1� d2ð Þ 1þ h2ð Þ

e��33 ¼ 1

det vDH

� ��DH33
�33 ¼

�33
1� d3ð Þ 1þ h3ð Þ
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e��12 ¼ 1

det vDH

� � �DH11

� �1=2
�12 �DH22

� �1=2
¼

�12ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p

e��13 ¼ 1

det vDH

� � �DH11

� �1=2
�13 �DH33

� �1=2
¼

�13ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h3

p

e��23 ¼ 1

det vDH

� � �DH22

� �1=2
�23 �DH33

� �1=2
¼

�23ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h3

p

ð23Þ

In view of Equation (21), and according to the Principle of Equivalent
Elastic Energy (Cordebois and Sidoroff, 1977), the stiffness tensor is defined
by the following expression

EðD,HÞ ¼ M : eEE : MT ð24Þ

or in component form:

Eij ¼

eEE11 �D
1 �

H
1

� �2 eEE12�
D
1 �

D
2 �

H
1 �

H
2

eEE13�
D
1 �

D
3 �

H
1 �

H
3eEE22 �D

2 �
H
2

� �2 eEE23�
D
2 �

D
3 �

H
2 �

H
3eEE33 �D

3 �
H
3

� �2
2664

3775, i, j ¼ 1, 3

Eij ¼

eEE44�
D
2 �

D
3 �

H
2 �

H
3

2
0 0

0
eEE55�

D
1 �

D
3 �

H
1 �

H
3

2
0

0 0
eEE66�

D
1 �

D
2 �

H
1 �

H
2

2

266666664

377777775, i, j ¼ 4, 6

Eij ¼ 0 i ¼ 1, 3 and j ¼ 4, 6 or i ¼ 4, 6 and j ¼ 1, 3

ð25Þ

CONSTITUTIVE EQUATIONS

The internal variables used in the thermodynamic constitutive equations
are listed in Table 1 with their associated driving forces. The Helmholtz Free
Energy potential is expressed by

 ¼
1

2
e� epð Þ : E : e� epð Þ þ cd1�� cd1c

d
2 exp �=c

d
2

� �� �
þ
1

2
c
p
1p

2 þ ch1c
h
2 exp �=c

h
2

� �
� ch1�

� �
, ð26Þ
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whereas the thermodynamic forces are defined by Equation (4)

r ¼ ��
@ 

@ee
¼ E : e� epð Þ ð27Þ

err ¼ M�1 : r ð28Þ

YD ¼ ��
@ 

@D
¼ �

1

2
e� epð Þ :

@E

@D

	 

: e� epð Þ ð29Þ

YH ¼ �
@ 

@H
¼

1

2
e� epð Þ :

@E

@H

	 

: e� epð Þ ð30Þ

R ¼ ��
@ 

@p
¼ �c

p
1p ð31Þ

� ¼ ��
@ 

@�
¼ cd1 � exp �=cd2

� �
� 1

� �
ð32Þ

� ¼ �
@ 

@�
¼ ch1 � exp �=ch2

� �
� 1

� �
ð33Þ

The healing thermodynamic forces concept can be illustrated for a simple
tensile stress cycle by considering the balance of dissipated energy. A generic
stress–strain curve is shown in Figure 2, in which damage and healing
are assumed to increase with increasing stress. The total energy dissipated
during a cycle is the area dOABCEOABCE. The recovery energy due to healing
effects and the dissipation energy due to damage and plasticity are defined
by areas dCDECDE, dBDEBDE, and dOAFEOAFE, respectively. The healing phenomena is
generated by internal energy production, which is obtained by spending
chemical energy stored in the healing agent or provided externally by a

Table 1. Observable, kinematic, and conjugate variables.

Internal state variables

Quantity
Observable
variables

Kinematic
variables

Thermodynamic
forces

Strain "

Temperature T
Damage D YD

Damage evolution � �

Plastic strain "p �

Hardening p R
Healing H YH

Healing evolution � �
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sinterization process or biological bone repair. The healing process increases
the stiffness of the material. In view of Equation (5), for a uniaxial stress
state, damage and healing energies are dissipated during BCD and CD
paths, respectively and they are mathematically written as

�D ¼

Z d

0

YD
��
h¼0

dD ¼ C11�
2 �

1

2
þ

1

2 1� dð Þ
2

� �
� 0

�H ¼

Z h

0

YH
��
d¼const

dH ¼
C11�

2

1� dð Þ
2

1

2
�

1

2 1� hð Þ
2

� �
� 0

ð34Þ

Equations (34) represent areas dBCDEBCDE and dDCEDCE in which uncoupled damage
and healing growth are assumed. Damage energy production �D describes
material degradation and it is a strictly positive definite function. The heal-
ing phenomena generate internal energy production, which is opposite to
the damage dissipation.

In view of Equations (27)–(33) under the hypothesis of decoupling
between different processes and according to the Clausius-Duhem inequal-
ity, the thermodynamic dissipation function has to be necessarily positive

�P ¼ e�� : e_""_""p þ R � _pp � 0

�D ¼ Yd : _DDþ � � _�� � 0

�H ¼ �Yh : _HH � � � _�� � 0

ð35Þ

Pε

A

σ

E

F E
edp

ε

edp-h0
E

B
C

E
D

O

Figure 2. Stress–strain curve: Elasto-plastic-damage and elasto-plastic-damage-healing.
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where �P, �D, and �H are the dissipation functions related to plasticity,
damage, and healing processes, respectively, with � ¼ �P þ�D þ�H being
the total dissipation function. The total dissipation is always positive
because healing phenomena are activated only when the magnitude of the
microcrack distribution is significant (White et al., 2001) and the efficiency
of the healing mechanism is less than 100%. A 100% healing efficiency
would correspond to perfect healing, where all damage dissipation would be
recovered (i.e. �D ¼ �H).

According to the method of local state, the evolution laws can be derived
from dissipation potentials, whose existence is postulated a priori. Damage
and plasticity potentials previously proposed by Barbero and DeVivo
(2001), Barbero and Lonetti (2001, 2002), Lonetti et al. (2003), have shown
good correspondence between experimental data and numerical results.
These are

f d ¼ YD : JD : YD
� �1=2

�� �ð Þ � �0

f p errð Þ ¼ gpðerrÞ ¼ f1e��1 þ f2e��2 þ f11e��21 þ f22e��22 þ 2f12e��1e��2
þ f44e��24 þ f55e��25 þ f66e��26 � R pð Þ � R0 ð36Þ

where �0 and R0 are the plasticity and damage thresholds, JD is a fourth-
order damage characteristic tensor and fi are material parameters. For
healing, an evolution potential similar to the damage one is proposed

f H ¼ YH : JH : YH
� �1=2

�� �ð Þ � �0 ð37Þ

where �0 is the healing threshold and JH is a fourth-order healing tensor.
The previous assumptions will be clarified ‘‘Identification of Material
Parameters.’’ From Equation (14), the evolution vectors are assumed to
develop along the normal direction of the corresponding potential surface

_uud ¼
_��

_DD

" #
¼ _��dr,Vd f d ¼ _��d

�1

JD : YDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YD � JD : YD

� �q
264

375

¼ _��d

�1

1

�d

JD
11Y

D
1 0 0

0 JD
22Y

D
2 0

0 0 JD
33Y

D
3

264
375

26664
37775

_uup ¼
_ppe_""_""p

" #
¼ _��pr,Vpgp
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¼ _��p

�1

2f11e��1 þ f1 þ 2f12e��2 2f66e��6 2f55e��5
2f22e��2 þ f2 þ 2f12e��1 2f44e��4

sym 0

264
375

26664
37775

_uuH ¼
_��

_HH

� �
¼ _��Hr,VH f H ¼ _��H

�1

JH : YHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YH � JH : YH

� �q
264

375

¼ _��H

�1

1
�H

JH
11Y

H
1 0 0

0 JH
22Y

H
2 0

0 0 JH
33Y

H
3

264
375

26664
37775

with �D,H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JD,H
11 YD,H

1

� �2
þJD,H

22 YD,H
2

� �2
þJD,H

33 YD,H
3

� �2q
ð38Þ

Inelastic and Healing Domain

The main expressions from previous plasticity and damage formulations
are summarized here (Barbero and DeVivo, 2001; Barbero and Lonetti,
2001, 2002; Lonetti et al., 2003). Damage and plasticity were based on
experimental observations of acoustic emissions, which indicate marked
damage and plasticity thresholds (Liu et al., 1997; Gong et al., 2000). The
initial threshold values are represented by �0 and R0 for damage and
plasticity, respectively. An anisotropic damage criterion for polymeric
composite materials is written in terms of tensorial parameters

gd ¼ YD : JD : YD
� �1=2

þ HD � YD
�� ��� �1=2

�� �ð Þ � �0 ð39Þ

where, gd : =0d ! R
þ. Substituting Equations (29) and (27) in Equation

(39), the damage domain in the stress space has the same shape of the Tsai–
Wu surface, which is a widely accepted failure surface (Barbero, 1999).
The procedure for identification of the JD and HD tensors is based on
comparison of Equations (39) and (32) with the Tsai–Wu surface. The
plasticity domain is identical to the plasticity potential (second of Equation
(36)), but written in the effective Damage-Healing configuration in order to
recover the coupling between different modes (damage, healing, plasticity).
In Equation (36), R pð Þ is the isotropic evolution function and fi are material
parameters that depend on experimental values obtained from testing a
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single composite lamina. Analogous to damage processes, a healing domain
is introduced that is similar in expression to the damage one, but written in
different thermodynamic force space

gH ¼ YH : JH : YH
� �1=2

þ HH � YH
�� ��� �1=2

�� �ð Þ � �0 ð40Þ

where JH and HH are tensor-valued variables that define the healing
shape surface and �(�) is the healing evolution function (Equation (33)).
The healing surface is motivated by experimental evidence. In particular,
healing phenomena start when significant microcrack distribution is
observed. Subsequently, the material is rehabilitated with a finite efficiency
depending on microcapsule and catalyst density. Therefore, �0 controls the
beginning of healing, and the healing surface defines the limit space related
to possible healing production. Moreover, the analogy with the gd surface is
motivated by experimental observations that show how healing phenomena
depend on microcrack and void distribution. Therefore, the proposed model
predicts healing evolution by introducing a healing surface, which is
obviously similar to the damage surface. Healing processes start at those
points at which a considerable damage value is observed. In the model this
occurs when the healing thermodynamic forces reach the corresponding
healing surface.

Evolution Equations

The kinematic evolution laws are derived using the principle of maximum
dissipation in a consistent and generalized thermodynamic approach.
The solution is obtained by solving a nonlinear system equation using
an incremental, iterative process. For a generic thermodynamic state, the
Kuhn–Tucker Optimality (KTO) conditions must be satisfied

gD VD
� �

¼ dgD VD
� �

¼ 0, gP VP
� �

¼ dgP VP
� �

¼ 0, gH VH
� �

¼ dgH VH
� �

¼ 0

ð41Þ

Substituting Equations (27)–(33) and (38) in (41), a system of linear
equations in the unknown quantities _��d , _��p, and _��h is obtained

A½ � �
� �

þ b½ � ¼ 0,

A ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

264
375, k ¼

_��d

_��p

_��h

264
375, b ¼

b11

b22

b33

264
375 ð42Þ
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with

a11 ¼
@gd

@YD

@YD

@D
r,YDf d þ

@gd

@�

@�

@�
r, �f

d

	 

,

a12 ¼
@gd

@YD

@YD

@e p
M�1r, ~�� g

p

	 

,

a13 ¼
@gd

@YD

@YD

@H
r,YH f h

	 

b11 ¼

@gd

@YD

@YD

@e
de

	 

,

a21 ¼
@gp

@err @

@D
½M�1r�r,YDf d ,

a22 ¼
@gp

@err M�1 @r

@"p
M�1r

,e��gp þ @gp@R @R@p r,Rg
p

	 

,

a23 ¼
@gp

@err @

@H
½M�1r�r,YH f h,

b22 ¼
@gp

@err M�1 @r

@e
de,

a33 ¼
@gh

@YH

@YH

@H
r,YH f h þ

@gh

@�

@�

@�
r,�f

h

	 

,

a32 ¼
@gh

@YH

@YH

@ep
M�1r

,e��gp	 

,

a31 ¼
@gh

@YH

@YH

@D
r,YDf d

	 

,

b33 ¼
@gh

@YH

@YH

@e
de

	 

:

ð43Þ

Moreover, substituting Equations (43) into Equation (42), it is possible
to derive the incremental relationships

dD

dep

dH

264
375 ¼ diag

r,YDf d

r
,e��gp

r,YH f d

264
375 d�d

d�p

d�h

264
375

¼ diag

r,YDf d

r
,e��gp

r,YH f h

264
375 A½ �

�1

@gd

@YD

@YD

@e
@gp

@err M�1 @r

@e

@gh

@YH

@YH

@e

26666664

37777775d" ¼
@d

@p

@h

264
375 d"½ � ð44Þ
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where @i, with j¼ d, p, h, represent the stiffness tensor contributions related
to damage, plasticity, and healing mechanisms. Using Equations (24), (27)
and (28), the incremental stress in the effective configuration can be
expressed in the following form

derr ¼ dM�1 : rþM�1 : dr ¼
dM

dD
: dDþ

dM

dH
: dH

� ��1

: rþM�1 : dr,

ð45Þ

where

err ¼ eEE : eee�eeepð Þ, dM ¼
dM

dD
: dDþ

dM

dH
: dH : ð46Þ

Substituting Equations (46) and (24) in Equation (45), the incremental
stress–strain relationship in the actual configuration is written as

dr ¼ Eedph
T : de ð47Þ

with

E
epdh
T ¼ E

ep
T þ Edh

T

E
ep
T ¼ M : E : MðI � @pÞelasto-plasticity

Edh
T ¼ M : E :

dM

dD
: @d þ

dM

dH
: @h

	 
	
�M :

dM�1

dD
: @d : Dþ

dM�1

dH
: @h : H

	 


damage-healing

ð48Þ

where E
ep
T and Edh

T represent the elastoplastic and healing-damage
contributions.

INTEGRATION PROCEDURE

The solution is obtained by an incremental-iterative procedure based on a
return-mapping algorithm (Ju, 1989; Crisfield, 1991; Luccioni et al., 1996).
In particular, a predictor-corrector scheme is used. The initial deformation
increment is considered perfectly elastic or elastic-damaged, so that the
stress variation is a function of the initial elastic-damaged stiffness tensor, as
ri ¼ ri�1 þ Ee

T�e. The total deformation increment is divided into an elastic
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and a plastic term. Subsequently, the stiffness matrix is transformed by
degradation and/or healing variables. The solution at step nþ 1 is subjected
to the following evolution restrictions for damage, plasticity, and healing
effects

_��d � 0 _��d � gd YD
nþ1, �nþ1

� �
� 0 gd YD

nþ1, �nþ1

� �
� 0

_��p � 0 _��p � gp errnþ1,Rnþ1ð Þ � 0 gp errnþ1,Rnþ1ð Þ � 0
_��h � 0 _��h � gh YH

nþ1,�nþ1

� �
� 0 gh YH

nþ1,�nþ1

� �
� 0

ð49Þ

which correspond to Kuhn–Tucker Optimality conditions. The initial
Lagrangian Multipliers solution obtained by Equation (42) corresponds to
a thermodynamic state that does not necessarily satisfy Equation (49).
Therefore, an iterative procedure is needed to solve the nonlinear problem.
Using the constitutive equations, the surface domain at the iþ 1th iteration
can be expressed to the first order by Taylor expansion and the nonlinear
system is reduced to the following linearized equations

r

gd

gd

gh

264
375 ��d

��p

��h

264
375þ

gd

gp

gh

264
375

iþ1

¼ 0 ð50Þ

in which ��i are the unknown quantities (see Appendix I). Between the n
and nþ 1 steps, the kinematic and thermodynamic forces are updated by the
following incremental relationships

rnþ1 ¼ rknþ1 þ�rkþ1
n

�rkþ1
n ¼

"eEE �M�1��p
@gp

@err
	 


þ
@ M�1eEEh i

@D
��d

@f d

@D
þ
@ M�1eEEh i
@H

��h
@f h

@H

0@ 1A e� epð Þ

35������
kþ1

n

Dnþ1 ¼ Dk
nþ1 þ�Dkþ1

n ¼ Dn þ��d
@f d

@D

����kþ1

ne��nþ1 ¼ M�1 Dnþ1ð Þrnþ1

eeepnþ1 ¼eeepðkÞnþ1 þ�eeepðkþ1Þ
nþ1 ¼eeepðkÞnþ1 þ��p

@gp

@err
����kþ1

n
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Hnþ1 ¼ Hk
nþ1 þ�Hkþ1

n ¼ Hn þ��h
@f h

@H

����kþ1

n

�nþ1 ¼ �k
nþ1 þ��kþ1

nþ1 ¼ �k
nþ1 þ��h

�nþ1 ¼ �knþ1 þ��kþ1
nþ1 ¼ �knþ1 þ��d

pnþ1 ¼ pknþ1 þ�pkþ1
nþ1 ¼ p

p
nþ1 þ��p

ð51Þ

IDENTIFICATION OF MATERIAL PARAMETERS

The material parameters in the constitutive equations are determined in
terms of experimentally observed material behavior. The identification is
done by solving a nonlinear system of equations obtained by comparing the
healing domain (Equation (40)) and a classical Tsai–Wu surface (Barbero,
1999) in stress space. The identification of the healing parameters is shown
here, whereas damage and plasticity parameter identification is described by
Lonetti et al. (2003), Barbero and Lonetti (2001, 2002).

As shown by experimental observations, healing starts only when a
significant microcrack distribution occurs in the matrix. Moreover, it is
well known that healing processes are generated by microcrack evolution.
Therefore, the basic idea is to assume a healing surface similar in expression
to the damaged one. The healing potentials described by Equations (40) and
(37) involve two characteristic tensors JH and HH that define the domain
shape and the evolution of kinematic variables (Equation (33)). The healing
scalar function � represents isotropic growth of the healing domain, where the
scalar �0 corresponds to the initial healing threshold. Damage and healing
surfaces in the corresponding thermodynamic force spaces are shown in
Figure 3, with healing and damage hardening given by �0 þ �, �0 þ �ð Þ.

Identification of the characteristic healing tensors is provided by the
following nonlinear system of equations. Considering a uniaxial ultimate

γ 0

=T.W.Dg

0γ +γ=1d
.

 Y11

D

Y22

D

g

0φ

.

h

H

Y
H

22

 Y11

φ+φ=10

H

Figure 3. Schematic healing-damage domain and thresholds.
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stress state for tension/compression loading ð�1 ¼ F1t, cÞ and substituting
Equation (30) in (40), with eCC ¼ ½eEE��1 the following equations hold

JH
11

� �1=2 eCC11

1� d1j
� �2

1þ h1j
� �3 F2

1i þ HH
11 �

eCC11

1� d1j
� �2

1þ h1j
� �3 F2

1j

�����
�����

 !1=2

¼ 1, j ¼ t, c ð52Þ

in which �0 þ � ¼ 1ð Þ is assumed to match the Tsai–Wu criterion at failure,
t and c stand for tension and compression, respectively, ðd1j, h1jÞ represent
the damage and healing parameters at failure. Equation (52) represents
a nonlinear system from which JH

11 and HH
11 are determined in terms of

experimental data ðF1, d1j, h1jÞ with j¼ t, c.
Analogously, for transverse tension perpendicular to the fiber orientation,

the following equation holds at failure load �2 ¼ F2tð Þ

JH
22

� �1=2 eCC22

1� d2tð Þ
2 1þ h2tð Þ

3
F2
2t þ H2 �

eCC22

1� d2tð Þ
2 1þ h2tð Þ

3
F2
2t

�����
�����

 !1=2

¼ 1 ð53Þ

which provide a relationship between the transverse components JH
22

and HH
22 of the characteristic healing tensor. Along the in-plane and out-

of-plane shear directions �4 ¼ F4, �5 ¼ F5, �6 ¼ F6ð Þ, the healing surface
projected at failure into the stress space leads to the following equations

JH
11

�H
1s

� �2 þ JH
22

�H
2s

� �2
 !1=2 eCC66F

2
6

�D
1s�

D
2s�

H
1s�

H
2s

þ
HH

1

�H
1s

þ
HH

2

�H
2s

���� ���� eCC66F
2
6

�D
1s�

D
2s�

H
1s�

H
2s

 !1=2

¼ 1

JH
11

�H
1s

� �2 þ JH
33

�H
3s

� �2
 !1=2 eCC55F

2
5

�D
1s�

D
3s�

H
1s�

H
3s

þ
HH

1

�H
1s

þ
HH

3

�H
3s

���� ���� eCC55F
2
5

�D
1s�

D
3s�

H
1s�

H
3s

 !1=2

¼ 1

JH
22

�H
2s

� �2 þ JH
33

�H
3s

� �2
 !1=2 eCC44F

2
4

�D
2s�

D
3s�

H
2s�

H
3s

þ
HH

2

�H
2s

þ
HH

3

�H
3s

���� ���� eCC44F
2
4

�D
2s�

D
3s�

H
2s�

H
3s

 !1=2

¼ 1

ð54Þ

in which the components of the integrity tensor are �H
js ¼ ð1þ hjsÞ and

�D
is ¼ ð1� djsÞ with j¼ 1,3. Here djs, hjs, represent the damage and healing at

shear failure. Since shear strength are independent of the shear stress,
Equations (54) have to be sign independent. Therefore, the linear terms have
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to be zero

HH
1

�H
1s

þ
HH

2

�H
2s

���� ���� ¼ 0,
HH

1

�H
1s

þ
HH

3

�H
3s

���� ���� ¼ 0,
HH

2

�H
2s

þ
HH

3

�H
3s

���� ���� ¼ 0, ð55Þ

which introduce relationships between the in-plane and out-of-plane H
components. Moreover, introducing scalar parameters rjsH with j ¼ 12,ð

13, 23Þ, Equation (55) can be written as

H2 ¼ �r12sHH1, H3 ¼ �r13sHH1, H2 ¼ �r23sHH3 ð56Þ

with

r12sH ¼
1þ h2sð Þ

1þ h1sð Þ
; r13sH ¼

1þ h3sð Þ

1þ h1sð Þ
; r23sH ¼

1þ h3sð Þ

1þ h2sð Þ
ð57Þ

The rjsH terms represent the scalar ratio between principal healing
eigenvalues. Physically, they represent the availability of healing agent and
mathematically, the ultimate shape of the healing domain. The stress–
strain relationships at failure in the effective reference frame CDH is
described by Equation (28). In particular, the shear components can be
written as

e��6e��6ult ¼ Gult
12

k12sDk
12
sH

,
e��5e��5ult ¼ Gult

13

k13sDk
13
sH

,
e��4e��4ult ¼ Gult

23

k23sDk
23
sH

ð58Þ

with

k12sD ¼ 1� d1sð Þ 1� d2sð Þ, k12sH ¼ 1þ h1sð Þ 1þ h2sð Þ

k13sD ¼ 1� d1sð Þ 1� d3sð Þ, k13sH ¼ 1þ h1sð Þ 1þ h3sð Þ

k23sD ¼ 1� d2sð Þ 1� d3sð Þ, k23sH ¼ 1þ h2sð Þ 1þ h3sð Þ

ð59Þ

For example, kijsH with j ¼ 12, 13, 23ð Þ represent the ratio between
damaged–healed stiffness at failure and damaged (not healed) stiffness
at failure GHealed

iz =GDamaged
R . These parameters are related to the density

of microcapsules and catalyst. Numerical evaluation is obtained by simple
shear tests, which yield the product of healing and damage values
at failure, simply as the ratio between ultimate to virgin shear modulus
(Equations (58)). Introducing Equations (59) in Equations (54) the
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following equations holdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JH
11r

12
sH

k12sH
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JH
22 r12sH
� �

k12sHr
12
sH

s eCC66

k12sHk
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sD
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6 ¼ 1
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11r
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sH

k13sH
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33 r13sH
� �

k13sHr
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s eCC55

k13sHk
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sD

F2
5 ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JH
22r
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þ
JH
33 r23sH
� �

k23sHr
23
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s eCC44

k23sHk
23
sD

F2
4 ¼ 1

ð60Þ

Finally, Equations (53), (60), and Equation (56) describe a nonlinear system
of equations in the unknown quantities rjs j ¼ 12, 13, 23ð Þ and HH

2 ,HH
3 ,

�
JH
22, J

H
33Þ, from which healing characteristic tensors are completely identified

in terms of experimental data.

RESULTS AND DISCUSSION

The identification procedure for damage and plasticity at the mesoscale
level requires experimental data based on the single composite lamina
behavior (Barbero and Lonetti, 2001, 2002; Lonetti et al., 2003). The
strength values for different directions (longitudinal, transverse, in-plane/
out-of-plane shear) and the critical damage values yield a nonlinear system
in which the unknown parameters are the damage characteristic tensor
components, JD

ij and HD
i . Basically, the same procedure is proposed here to

identify the healing domain. The central assumption is that the gh-function
has the same analytical expression of the damage one. Therefore, the surface
shape is mainly controlled by healing critical values and the characteristic
tensors JH and HH .

From the experimental point of view, damage develops into microcracks.
Subsequently, these cracks reach the microcapsules and the healing agent is
released. Numerically, the process is described by a healing domain, which
controls the onset of healing. The evolution of such domain is defined by the
normality rule, triggered when the driving thermodynamic healing forces
reach the gh-surface.

Healing and damage are shown schematically in Figure 4, in which gd

with � þ �0 ¼ 1 and gh with � ¼ 0 represent the damage and healing surfaces
at failure and at the beginning of the process, respectively. The healing
threshold �0 defines when the process starts and it is dependent on the
density of microcapsules and catalyst. Moreover, the healing critical
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eigenvalues h1c, h2c, h3c, represent the maximum allowable values of healing,
which are to be obtained by experimental procedures. From the experimental
point of view, microcapsule and catalyst density control two different
phenomena: the beginning and the efficiency of the healing process. The
critical healing values and the healing threshold controls both phenomena.
From the numerical point of view, the latter control the beginning of the
process, whereas the former defines the maximum size of the healing surface
and the allowable values of the healing tensor. Only numerical results in
terms of sensitivity analysis are shown in this work, but an experimental
investigation has been initiated (Barbero et al., 2004) to properly define both
values.

Lacking experimental data for the healing process, the model has been
used to demonstrate the effect of healing on Carbon-Epoxy T300-5208
(Herakovich, 1998) for which the damage behavior is well documented. The
material parameters determined by the identification procedure described
in ‘‘Identification of Material Parameters’’ are shown in Table 2. In Figures
5–7, the solid line represents the actual behavior without healing and the
dotted line the predicted behavior with the healing turned off by setting a
high value of healing threshold �0. The material properties are shown in
Table 1. The damage evolution parameters cD1 , c

D
2 , �0, and damage

Hg
0

Healing 

production

=T.W.Dg

,Y22Y
D

22

H

,YY11

D

11

H
φ

γ +γ=1
0

0

Figure 4. Healing and damage surfaces.

Table 2. Healing parameters.

Parameters T300-5208

JH11, J
H
22 0.3885e-15, 0.3522e-11

HH
1 , H

H
2 0.4255e-7, �0.1046e-6

ch1,c
h
2,� 0.15, �0.1eþ 05, 0.4

h1c, h2c¼h3c 0.1, 0.5
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characteristic tensors JD, HD are identified in terms of available data for
a single lamina as explained in Barbero and Lonetti (2001), using the
material properties reported in the same reference. Subsequently, the healing
phenomenon is evaluated assuming ðch1 ¼ 0:15, ch2 ¼ �0:1E5,�o ¼ 0:4Þ as
reference values.
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The in-plane shear stress–strain curve, as shown in Figures 5–7, highlights
the stiffness improvement due to the healing effects. The sensitivity
to healing of T300-5208 versus the healing threshold �0 is shown in
Figure 5 for an in-plane shear test under monotonic loading. The curve
labeled ‘‘no healing’’ represents the prediction using actual material
property data. It predicts accurately the experimental data because the
T300-5208material had no healing agent in it. The addition of healing
clearly increases the shear stiffness and strength of the material. The
sensitivity of T300-5208 versus evolution parameter ch1 is shown in Figure 6.
The sensitivity of T300-5208 versus evolution parameter ch2 is shown in
Figure 7. The parameters ch1 and ch2 control the evolution (hardening) of the
healing domain. Increasing ch1 makes it harder to heal the material because
the domain grows rapidly. This translates into less healing in Figure 6. The
absolute value of ch2 controls the exponential decay in Equation (10) with
larger absolute values resulting in more healing, as shown in Figure 7.

CONCLUSIONS

Continuum Damage Mechanics has been extended for the first time to
incorporate healing process into what is called Continuum Damage Healing
Mechanics (CDHM). Furthermore, the theory has been used to develop a
specific model for fiber-reinforced polymer-matrix composites experiencing

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2

Experimental

No Healing

0.0025

0.005

0.075

0.1

σ xy [Mpa]

εxy

ch
2

cd
2

σXY

σXY

Figure 7. T300-5208 sensitivity of healing to healing evolution parameter ch2=c
d
2 for an

in-plane shear monotonic loading test with damage.

76 E. J. BARBERO ET AL.



damage, plasticity, and healing. Expressions are given for the various
domains, potentials, and evolution equations based on insight gained from
experimental observations. A procedure for identifying the healing param-
eters is outlined. The procedure for integration of the evolution equations
is given. Finally, the applicability of the theory and particular composite
model is demonstrated by performing a parametric study of the effect of
healing evolution parameters on the shear response of a material for which
the nonhealing response is well known.

APPENDIX I

For a generic (iþ 1) load step and k iteration, the damage, plasticity, and
healing functions at the first term of the Taylor expansion are written as
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Using Equations (27)–(33), the thermodynamic forces ðYD, �,err,R,YH ,�Þ
can be expressed as a function of internal kinematic variables D, �, ep, p,ð

H ,�Þ as
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Moreover, the incremental expressions of the kinematic variables using
Equations (38) are expressed as
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Finally, introducing Equations (A8)–(A10) and (A2)–(A7) into Equations
(A1), a system of equations is obtained, in which ��i are the unknown
quantities
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