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Abstract. The coercivity and energy losses in superparamagnetic magnetite and
FePt nanoparticle composites subjected to an external, alternating magnetic field have
been calculated as a function of the mean particle-size and packing density. The effect
of interactions has been investigated by fitting the Sharrock law to the coercivity
results as a function of the field cycle frequency of the magnetic field. This fitting
leads to effective parameters for the anisotropy field Heff

K and βeff = KV/kBT ,
which are themselves dependent on the interaction strength. The increase or decrease
of the coercivity with interactions depends upon the relative change of Heff

K and βeff ,
thus demonstrating the complex effect that interactions have in these nanoparticle
composites. The interparticle interactions have a non-trivial effect on the energy loss
per cycle. The energy loss is reduced for systems with larger particles since the
reduction in coercivity together with a corresponding reduction in the remanence
dominates. For small particle sizes, the energy loss is increased. The primary
mechanism here seems to be an enhancement of the energy barrier due to interactions,
which changes the nature of the particles from superparamagnetic to being thermally
stable.
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1. Introduction

Hyperthermia has been shown to be a promising adjuvant cancer treatment, which in

combination with standard cancer treatments, such as radiotherapy and chemotherapy,

increases both the control of the disease and also the overall patient survival rate [1]–

[4]. Medical hyperthermia involves heat treatment of malignancies, which can be applied

both locally to the tumour, or to the whole body. For whole body hyperthermia, the

relative toxicity of normal tissue compared to tumour tissue is an important factor.

Therefore, to minimise the risk of toxicity, chemotherapy or radiotherapy with localized

hyperthermia would seem to offer the better option for a safe and effective treatment

[1, 3].

A recently developed method of local hyperthermia is magnetic fluid hyperthermia,

which involves the injection of magnetic nanoparticles that are suspended in a fluid either

intravenously, or directly into the tumour site [5]. Once the magnetic nanoparticles are

in place at the tumour site, an alternating magnetic field is then applied to the local

area. Through hysteresis loop sweeping, energy is then dissipated from the magnetic

nanoparticles into the tumour site, thereby heating the local area and destroying the

tumour cells.

A number of theoretical approaches, for example Ref. [6], focus on the intrinsic

losses in superparamagnetic particles, often considered in colloidal form. However,

it should also be possible to generate heat via hysteresis losses in ferromagnetically

stable particles, especially if they were deposited from the ferrofluid in a higher density

non-colloidal state [7]. Eddy current losses are also possible, but should be a small

contribution for particles in the 10 nm size range as determined by R. Ramprasad et. al

[8]. In practice, probably both mechanisms contribute, but no overall model currently

exists. Here, we focus on the hysterestic mechanism, specifically taking account of the

interparticle interactions. Because of the possibility of non-colloidal states we study and

require packing densities beyond that achievable for a ferrofluid.

The strength and frequency of the applied ac magnetic field are important

considerations in local hyperthermia treatment. Using a stronger field, or increasing

the frequency, should both increase the heat output, however, there are limitations as

to what can be safely tolerated by the human body. The frequency and the product of

the frequency and the magnetic field strength should be such that fmax < 1.2MHz and

Hmaxf < 6.10× 106Oes−1, otherwise stimulation of the patient’s nerves will cause pain

[4].

The type of magnetic material that is selected for hyperthermia treatment is also

an important consideration, as more heat will be generated by a material that has a

greater magnetic anisotropy and/or saturation magnetisation. In addition, there are

many magnetic materials that are highly toxic to the human body. Magnetite is one

magnetic material that has been proven to be biocompatible [9]. Another possibility

is to use a stronger magnetic material, for example, Fe or FePt, that has been coated

with an inert, biocompatible substance such as gold [10, 11]. In this work, we consider



Energy losses in interacting fine-particle magnetic composites. 3

both magnetite and FePt nanoparticle composites as candidate systems in a model

study of hyperthermia treatment. Specifically, we investigate the role of interactions

in determining the magnetic hysteresis properties and energy losses of these systems,

therefore exploring their potential for hyperthermia applications.

The paper is organised as follows. First we describe the basic physics of the

dynamic magnetic properties of the magnetite and FePt composite systems, taking

into account the magnetostatic interactions, which might be of particular importance

for high-moment materials. Next we consider the hysteresis losses as a function of the

frequency, concluding with a calculation of hysteresis loss, which takes into account the

maximum available field as a function of frequency.

2. Theoretical Method

The superparamagnetic (SPM) nanoparticle composite is modelled using a kinetic

Monte-Carlo (MC) approach, which takes into account the behaviour of both the

thermally stable and SPM particles, and is described in detail in [12]. We define the

composite system as a cubic cell of interacting single-domain nanoparticles, with the

particle sizes and the anisotropy fields generated according to a log-normal distribution

function, and the value of the anisotropy constant (K) having a 0.1 standard deviation.

A random three-dimensional distribution of the anisotropy easy-axes is also used,

thereby making the composite comparable to a granular system.

Interactions between the particles, which are responsible for coupling the SPM and

thermally stable particle fractions, have been included via the calculation of a local field.

The local field acts on each particle i and is the vector sum of the dipolar interaction

field produced by the neighbouring particles j and the applied field Happ, such that,

Hloc =
∑

j 6=i

3(µj · rij)

r5
ij

− µj

r3
ij

+ Happ. (1)

Here, the summation is carried out over all particles within a range r < rmax, where rmax

is five times the median diameter. Contributions from particles outside of this range

have been calculated using a mean-field approximation. This depends on the sample

shape, which have assumed is spherical.

We define a thermally stable particle as one that satisfies KV > kBT ln(tmf0),

where V is the volume of the particle, kB is the Boltzmann constant, T is the

temperature, tm is the measurement time and f0 = 10−9s−1 is the attempt frequency.

The equilibrium position of the moment of such a particle in the local field is calculated

using the Stoner-Wohlfarth (SW) model [16]. If the SW model gives two equilibrium

positions in the energy landscape, the moment can then jump between these positions

with a reversal probability,

Pr = 1− exp(tm/τ), (2)

that is given by the Arrhenius-Néel law [17], where τ is the relaxation time, which

depends on the T , V and K of the particle. The energy barrier to reversal, ∆E(ψ, Hloc),
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where ψ is the orientation of the easy-axis relative to the local field, is calculated using

a numerical approximation due to Pfeiffer [18], such that,

∆E(ψ, Hloc) = KV [1− |Hloc|/g(ψ)]κ(ψ), (3)

with g(ψ) = [cos2/3 ψ + sin2/3 ψ]−3/2, and κ(ψ) = 0.86 + 1.14g(ψ). Note that the local

field Hloc is dependent on the interparticle interactions, which thus have an effect on

the energy barrier and hence the dynamic properties.

SPM behaviour occurs up to large energy barriers, which for a measurement time of

100s can typically be up to 25kBT . Persistence in the SPM behaviour creates difficulties

for standard MC approaches due to the unreasonably large number of MC steps that are

necessary to achieve equilibrium. By considering the SPM particles with large energy

barriers (> 3kBT ) as a two-state system, an improved computational approach can

therefore be derived [12]. This approach leads to the condition that, if the reversal

transition is allowed, the moment is then assigned to either energy minimum with a

probability,

p = e−Ei/(e−E1 + e−E2), (4)

with i = 1, 2 labelling the minima. This condition ensures that the population of the

two states obeys the Boltzmann distribution in thermal equilibrium [12]. For smaller

energy barriers (∆E < 3kBT ), a standard Metropolis algorithm is used, with the angles

of the magnetic moment θ and φ being modified randomly [19]. In this case, the

energy difference ∆E between the new energy state and the previous one is calculated

and the moment is then allowed to remain in its new position with the probability

p = min(1, e−∆E/kBT ). For thermally stable particles (after determining the relevant

minimum), we use standard MC moves to model the thermal equilibrium distribution

about the energy minimum.

The model described here has been previously applied to a cubic computational cell

in which particles have been placed at random [12]. This approach, however, fails for

high densities of particles due to an increasing probability of overlap with an existing

particle in the computational cell. To resolve this problem, a computational approach

has been developed whereby an initial low density configuration (obtained by random

placement of the particles) is compressed isothermally to the required density. The

particles are given a log normal size distribution with a standard deviation of 0.1 [13].

The compression algorithm is defined by the following steps:

(i) Each particle is assigned a volume according to a lognormal distribution.

(ii) The particle is placed randomly in the cubic computational cell at low density.

(iii) The cell is shrunk until 2 particles touch.

(iv) 100 MC moves are carried out to equilibrate the system.

(v) Steps 3 and 4 are repeated until the required packing density is reached.

(vi) 100 MC moves are carried out to equilibrate the final configuration.
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This algorithm efficiently produces configurations for particle packing densities up to

50% that of the composite cell volume. The configurations that are generated are then

used as inputs into the hysteresis loop model, and allow the study of the effects of

interactions as a function of the particle packing density.

3. Results and Discussion

The model described in Section 2 is used to study the effects of interparticle

magnetostatic interactions on the dynamic properties, and in particular, the energy

losses as a function of the field cycle frequency for an SPM fine-particle composite

consisting of magnetite and FePt. The interaction effects are investigated by varying

the packing fraction of the composite systems. We assume a temperature T = 310K, and

values of K and the saturation magnetisation (MS) of 5x106 erg/cc [14] and 1700 emu/cc

for FePt and 5x105 erg/cc [15] and 400 emu/cc for magnetite, respectively.

3.1. Sweep rate dependence of magnetic properties
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Figure 1: Magnetisation curves for various field cycle frequencies for an FePt nanoparticle composite
with 5% packing density. The magnetisation curves are consistent with that which is expected for
SW particles with randomly orientated easy-axes, namely, the coercivity and remanence increases as a
function of the increasing field cycle frequency (hence sweep rate) [16].

A series of magnetisation curves for FePt particles as a function of the field cycle

frequency is shown in Fig. 1. The particle packing density is low (5% that of the

composite cell volume), hence the interactions are relatively weak. The magnetisation

curves have the form expected for a system consisting of SW particles with randomly

oriented easy-axes in that the coercivity Hc increases as a function of the field cycle

frequency (hence sweep rate) [16]. The hysteresis loss is determined by both the
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Figure 2: Field cycle frequency dependence of the coercivity for the composite systems consisting of
(a) FePt particles between 5 and 20 nm and (b) magnetite particles between 7.5 and 30nm at packing
densities of 5% and 40%, thereby demonstrating the effects of the interparticle interactions. Note that
larger magnetite particles are used in order to magnify the interaction effects in this weakly interacting
system.

coercivity Hc and the remanent magnetisation Mr, hence we initially concentrate on

the effect of the interactions and field cycle frequency on these parameters.

The effect of the interactions on the field cycle frequency dependence of Hc is

shown in Fig. 2 for various particle sizes and for packing densities of 5% and 40%.

The field cycle frequency dependence for the fully non-interacting cases are also shown.

The particle density is represented by a volume fraction, i.e., (magnetic volume)/(total

volume), expressed as a percentage, and the non-interacting case was realised by setting

the interaction field contribution to zero.

Fig. 2 shows the overall effects to be rather complex. The FePt composite system

with a packing density as low as 5% and the magnetite composite systems, which have a
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Figure 3: Field cycle frequency dependence of the coercivity for FePt particles of particle sizes (a) 7.5nm
and (b) 20nm as a function of the packing density, demonstrating the different effects of interparticle
interactions for low and high Hc systems.

low saturation magnetisation, can in most cases be considered as non-interacting. The

effect of the interactions on Hc is seen to strongly depend upon the particle diameter.

With respect to the FePt particles, the smallest diameter particles considered here (5nm)

are clearly SPM in the absence of interactions. At a packing density of 40%, however,

the 5nm FePt system develops a significant coercivity (and, hence, energy loss) due

to the magnetostatic interactions. Conversely, larger FePt particles of 20nm diameter

exhibit a decrease of Hc and therefore a reduction in overall energy loss as a consequence

of the interactions.

To understand further the effect of the interactions, we consider in detail the

behaviour of the FePt particles where the magnetostatic interaction is strong. Fig. 3

shows the field cycle frequency dependence of Hc for FePt particles with diameters of

7.5nm (low Hc) and 20nm (high Hc) as a function of the packing fraction, ε. The effects
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of the interactions is seen to be dramatically different in both of these cases. For the

low diameter case at low field cycle frequencies (Fig. 3(a)), Hc is seen to increase as a

function of ε, whereas for the 20nm diameter particles (Fig. 3(b)), Hc decreases as a

function of increasing ε. The higher Hc (20nm) system has a high remanence, which

would tend to result in a demagnetising effect, thereby lowering the coercivity. In the

absence of interactions, the 7.5 nm sample has close to zero remanence at low field cycle

frequencies. In this case, the interactions appear to increase the Hc value, which is

consistent with the expected increase in energy barrier that is predicted by the model of

Dormann et al. [24]. Thus, for low coercivity (close to SPM) systems, the prediction of

increased energy barrier is borne out by our hysteresis calculations, with the situation

being rather more complex for higher coercivity systems.

To model the coercivity as a function of the field cycle frequency, we start by

considering a simple model in which the anisotropy easy-axes of the particles are aligned.

The magnetisation of the system can be modelled by taking into account a volume

distribution, such that,

M/Ms =

∫ Vc

0

L(V, H)f(V )dV −
∫ Vc(H)

Vc

f(V )dV +

∫ ∞

Vc(H)

f(V )dV, (5)

where L(V,H) is the Langevin function and f(V ) is the volume distribution function.

The first integral on the right-hand-side of this equation represents the SPM particles,

and the second and third integrals represent the reversed and non-reversed fractions of

the thermally stable particles, respectively. Vc and Vc(H) are the critical volumes in a

zero-field and in an applied field H, respectively.

In Ref. [21] it is shown that as long as the SPM fraction is negligible, the coercivity

can be given by the so-called Sharrock law [22], where,

Hc = Hk

[
1−

(
kBT ln(tf0)

KVm

)1/2
]

, (6)

and Vm is the median volume of the distribution. In our case, a comparison with Eq. 6

must be used with care since the systems in general are comprised of a mixture of SPM

and thermally stable particles. Consequently, we might expect that eq. 6 will only be

applicable for systems in which the particle size and size distribution have values which

give rise to a small SPM fraction.

In order to better understand the effect of interactions, we have fitted the Sharrock

law (eq. 6) to our computational results, with f0 fixed at 109s−1. The aim of this fit is

to consider the extent to which the interactions are reflected in the values of the main

parameters, β = KV/kBT and HK . Prior to the fitting, however, some modification is

required since eq. 6 is derived under the assumption of a time-dependent magnetisation

in a static field, whereas the calculations presented here assume a swept field.

It has previously been shown that the stepped field and swept field processes are

related by the expression,

teff =
R−1HK

2β(1−Hc/HK)
, (7)



Energy losses in interacting fine-particle magnetic composites. 9

 0

 500

 1000

 1500

 2000

 2500

 3000

10−3 10−2 10−1 100 101 102 103 104 105 106 107

C
o

e
rc

iv
it

y
 (

H
c)

 [
O

e
]

Field Cycle Frequency [Hz]

(a) calculated for 20 nm
calculated for 15 nm
calculated for 10 nm
calculated for 7.5 nm

calculated for 5 nm
Fitted for 20 nm
Fitted for 15 nm
Fitted for 10 nm
Fitted for 7.5 nm

Fitted for 5 nm

 0

 500

 1000

 1500

 2000

 2500

10−3 10−2 10−1 100 101 102 103 104 105 106 107

C
o

e
rc

iv
it

y
 (

H
c)

 [
O

e
]

Field Cycle Frequency [Hz]

(b) calculated for 20 nm
calculated for 15 nm
calculated for 10 nm
calculated for 7.5 nm

calculated for 5 nm
Fitted for 20 nm
Fitted for 15 nm
Fitted for 10 nm
Fitted for 7.5 nm

Fitted for 5 nm

Figure 4: Fitting of the Sharrock law (eq. 6) to the coercivity as a function of the field cycle frequency
for the FePt nanoparticle composite at packing densities of (a) 5% and (b) 40%.

where teff is the effective time to be used in eq. 6 and R is the field cycle frequency

[23]. The fit of eq. 6 (with t replaced by teff ) to the computational results is carried out

using a Levenberg-Marquardt algorithm, which minimises the least squares deviation

between the modified Sharrock law and the calculated Hc values.

The results of the fitting procedure (Fig. 4) indicate that eq. 6 provides a good

representation of the field cycle frequency dependence of Hc within the constraint of

predominantly SPM behaviour. Such a good comparison is perhaps surprising, since

the Sharrock law is derived for a system of aligned particles, whereas our calculations

assume a 3-D random dispersion of easy-axis directions. The random alignment of the

easy-axes are expected to affect the exponent of 1/2 in eq. 6, with Victora suggesting

that an exponent of 2/3 as being more appropriate [25]. It would seem, however, that

the fit that we have achieved is not sensitive to the exponent. Interestingly, the fit to the
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particle composite as a function of packing density.

Sharrock law is also acceptable at the higher packing density of 40%, except for the case

of the lowest diameter, where we recall that the coercivity is determined predominantly

by the interparticle interactions.

The fit to eq. 6 gives rise to fitting parameters, which are found to be dependent

on the interparticle interactions. Figs. 5(a) and (b) show the effective parameters Heff
K

and KV/kBT (βeff ) as a function of the packing fraction, respectively. In the case of

βeff , each value is normalised with respect to the value for the non-interacting case.

The fitting parameters demonstrate an interesting dependence on the packing fraction.

Specifically, Heff
K , which represents the intrinsic coercivity, i.e., in the absence of thermal

effects, is seen to decrease monotonically with increasing packing fraction. For the larger

particles there also appears to be no significant dependence of Heff
K on the particle size.

A complex and subtle dependence of the parameter βeff , which represents the degree

of enhancement of the thermal stability on the packing density and particle size, also
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exists (Fig. 5(b)). Overall, there is an enhancement of KV/kBT (βeff > 1) due to the

interactions, which increases with increasing particle diameter. This effect is particularly

noticable for the particle diameter of 7.5nm, which shows a pronounced increase in βeff

as a function of the packing fraction. These trends suggest that the enhancement of the

energy barrier is perhaps greatest for particles close to the SPM limit.

Overall, we can conclude that the effects of interactions on the energy barrier are

complex, but can be represented in terms of an effective energy barrier of the form,

Eb =

(
KV

kBT

)eff
[
1− H

Heff
K

]2

. (8)

Clearly one cannot necessarily state that the energy barrier is increased or decreased by

interactions. Instead, the effect of interactions on the energy barrier and coercivity is

dependent on the relative values of effective stability and intrinsic coercivity, which are

determined by the packing density and particle size. In the following, we investigate

the effect of interactions on the net hysteresis loss of the system, concentrating on the

variation of the energy loss as a function of the field cycle frequency.

3.2. Field cycle frequency dependence of the energy loss

We commence this investigation by considering the energy loss per hysteresis cycle. To

emphasise the dual role of the packing density, ε, we write E = εMs

∫
MreddH where the

integral is taken over a single cycle. In this equation, Ms is the saturation magnetisation

and Mred is the reduced magnetisation (relative to the saturation magnetisation εMs)

of the system at a given packing density. Clearly the effect of increasing the packing

density is a complex convolution of the increase due to the increased magnetic fraction

with the effects of the interactions on Mred – the latter being essentially determined

through the parameters Heff
K and βeff .

The energy losses per cycle at a field cycle frequency of ∼100Hz are shown in

Fig. 6 for (a) FePt and (b) magnetite as a function of the packing density and the

particle size. The difference in magnitude of the energy loss between the materials is

predominantly due to the difference between their saturation magnetisation values. For

magnetite, this loss, is essentially linear with the packing density, as would be expected

for a non-interacting or weakly interacting dipolar system. At high packing densities,

the interactions in this system have only a minimal effect. In the case of FePt, the

comparison is more complex, with significant deviations from linearity that occur due

to the strong interactions. Enhancement of the energy barrier results in an increase in

the energy loss for small FePt particle sizes, whereas the reduction in Heff
K dominates

for large sizes leading to a reduction in the energy loss.

The effect of interactions on the field cycle frequency dependence of the energy

loss/cycle is shown in Fig. 7 for FePt particle sizes of (a) 7.5nm and (b) 20nm. The

enhancement of the loss/cycle due to increasing interactions (i.e., at higher packing

densities) for the smaller diameter system is pronounced at low field cycle frequencies.

However, the enhanced thermal stability factor βeff and reduced Heff
K resulting from
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Figure 6: Energy loss per cycle at a field cycle frequency of ∼100Hz for (a) FePt showing non-linearities
due to strong interactions, and (b) magnetite having linear behaviour as a function of the packing
density and particle size.

the interactions lead to a much weaker variation of the energy loss/cycle as a function

of the increasing field cycle frequency. In the case of the larger diameter systems, the

predominant effect is in the reduction in Heff
K with increasing interactions (i.e., packing

densities), leading to a reduction in the loss/cycle due to interaction effects.

Finally, we investigate the most important factor for hyperthermia applications,

which is the rate of hysteresis loss, i.e., R = fεMs

∫
MreddH, where f is the frequency

of the applied field. This factor is responsible for the degree of magnetic heating. As

the frequency increases, the field which can be brought to bear is reduced, not only for

the physiological reasons mentioned earlier, but also due to the physical difficulty of

producing high fields over large volumes at high frequencies. As a result, the magnetic

systems at high frequency are likely to be subjected to non-saturating magnetic fields

and will therefore be cycled around minor hysteresis loops with a consequent reduction
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Figure 7: Energy loss per cycle as a function of the field cycle frequency for FePt particles of diameters
(a) 7.5nm and (b) FePt 20nm for various packing fractions.

in the hysteresis loss.

In order to generate minor loops, the field must be applied to an initially

demagnetised sample. For a strongly interacting system, a demagnetised (ground) state

cannot be produced by a random assignment of the initial moment direction of the

particles since this would produce a relatively high energy state. The magnetic ground-

state was therefore first determined by a process of slow ac erasure, whereby fields of

increasing frequency and decreasing magnitude were applied to demagnetise the system.

The demagnetised system was then subjected to two field cycles to eliminate transient

behaviour and to attain reproducible minor loops, with the third loop being stored for

analysis.

Fig. 8 shows the power generated as a function of the frequency for FePt particles

at packing fractions of 5% and 40%, under the assumption that the maximum available
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Figure 8: Rate of energy loss per cycle as a function of the cycle frequency for an FePt particle composite
with packing densities of 5% and 40%.

field falls off at 10% per decade. The power generated increases non-linearly due to

the combined effect of the proportionality to frequency and the increased coercivity at

high frequencies. At a packing density of 40% there is a very rapid increase in the

power output at high frequencies, presumably due to the effect of interactions. We

also note the appearance of a peak in the power output at high frequencies as the

available field becomes insufficient to saturate the material. This may be due to the

demagnetised state being very stable for a strongly interacting system. The slope =

1 at low frequencies is a well known dependence of ‘hysteresis’ losses associated with

short length scales at which Barkhausen jumps occur (in our case, the switchings of

individual particles) [26]. In materials where eddy currents are present, for example,

there can in addition be quadratic and higher order contributions associated with other

relevant length scales in the system, such as the geometrical size of the system, domain

size, etc., with the resulting losses being a superposition of the contributions from these

different loss types. This remarkable observation is known as ‘magnetic loss separation’

[26, 27]. In the composite systems that we have studied, we do not have eddy currents,

however, there could still be some analogies. For example, in Fig. 8, the slopes change

due to the interactions. Thus, it could be very interesting to study the ‘loss separation’

(if it exists) and reasons for it – a factor which will be important in further studies of

these systems.
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4. Conclusion

We have developed a model of an interacting fine particle system, which takes into

account the dipolar interaction between the particles. The model has been applied to the

study of hysteresis losses as related to magnetically induced hyperthermia. Central to

the investigation are calculations of the field cycle frequency dependence of the coercivity

and the hysteresis (energy) loss. Firstly, the effects of interactions were investigated by

fitting the Sharrock law to the variation of Hc with field cycle frequency (hence sweep

rate). The Sharrock law describes the data remarkably well, given that it was derived

for a system of perfectly aligned, non-interacting particles. Importantly, however, we

find that the fitting leads to effective parameters Heff
K and βeff = KV/kBT , which are

themselves dependent on the interaction strength. The increase or decrease of Hc with

interactions depends upon the relative change of Heff
K and βeff .

The behaviour of the effective parameters demonstrates the complex effects of

interactions. The increase of βeff with packing density is certainly consistent with

the model of Dormann et. al. [24], which predicts increased energy barriers arising from

the dipolar interactions. This seems to be primarily responsible for an increase in the

coercivity and thermal stability for systems that are superparamagnetic at low densities,

and are also close to the SPM/thermally stable transition. The reduction of Heff
K with

increasing interaction strength, however, acts to lower the coercivity. In systems with

large particle size and consequently high Hc, this is the dominant effect leading to

a reduction in Hc. The distillation of interaction effects into two simple parameters is

clearly of interest and requires further investigation in order to determine the underlying

physics of the relationships, especially in relation to the effects of temperature and the

magnetic state of the system.

The interparticle interactions have a complex effect on the energy loss per cycle.

The energy loss is reduced for larger particles since the reduction in coercivity dominates,

along with a corresponding reduction in the remanence. For small particle sizes, the

energy loss is enhanced. The dominant mechanism here seems to be an enhancement of

the energy barrier due to interactions, which changes the nature of the particles from

SPM to thermally stable. This effect might be expected to be strongly dependent on

the particle size and also the size dispersion, since it relies on the presence of particles

close to the SPM limit. As expected, the hysteresis loss increases with frequency as

long as the applied field is sufficiently large to achieve magnetic saturation. At high

frequencies, the available maximum field is reduced, thereby leading to a peak in the

hysteresis loss at a given frequency for the strongly interacting FePt system.
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