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†Ceremade, Université Paris-Dauphine, Paris, France

‡U.N.I.C., Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France
∗Email: schmidt@ceremade.dauphine.fr

Abstract. This paper introduces a novel method to es-
timate the parameters of a linear dissipative wave model
from noisy observations. We focus on the case of constant
coefficients and an unknown localized source. These con-
straints are motivated by applications in computational
neuroscience and in particular separation of sources in the
visual cortex in optical imaging modality. The proposed
method takes advantage of the specificity of the model,
namely the small number of parameters and the knowl-
edge of the spatial support of the sources. It makes use
of a temporal dimensionality reduction performed using
a Laplace transform to drastically reduce the numerical
complexity of the method. A Green kernel representation
of the partial differential equation (PDE) solution exploit-
ing the locality of the sources allows us to recover the
parameters without the precise knowledge of the sources.
A numerical evaluation of the method on synthetic data
shows the strong robustness to noise of our method.

1 Introduction
Biological motivation. This work studies a particular
inverse problem in 2-D wave imaging, motivated by the
problem of neural sources separation in the visual brain.
Optical imaging with voltage sensitive dye (VSDOI) of-
fers the possibility to image with a high temporal and
spatial resolution the activity of the early visual area of
the cortex [5]. A challenging problem is to separate the
different activity patterns emerging over the cortex. In
some restricted experimental setups, it has been observed
that the activity is characterized by waves that propagate
over the 2-D cortical surface at approximately constant
speed [8], [2], [9]. In a previous work [10]we proposed to
model this activity using a simple wave equation with spa-
tially localized sources. Estimating the parameters of this
model (e.g. speed and diffusivity) is however challenging
because of the very large noise level that contaminates the
observations. In this paper, we propose a fast method to
achieve a robust estimation of these parameters.
Previous works. A large amount of work has been de-
voted in seismic imaging to estimate spatially varying
speeds when sources are fully known and the propagat-
ing waves are observed on the boundary of the domain,
see for instance [1] and the reference therein. This leads

to a non-convex inverse problem, that is challenging to
solve because of its high dimensionality. Specific meth-
ods can be developed in the case where the sources are
sparse and localized, see for instance [6]. Another class
of methods assumes some degree of randomness on the
(unknown) sources, and use a statistical analysis on the
recorded signals to estimate the parameters (e.g. travel
times or speeds), see for instance [11], [7], [4], [3]. In
this paper, we consider a different setup, where only the
spatial support of the sources are known.
Contribution . This paper introduces a novel imaging
paradigm, that might be relevant for some applications
in computational neuroscience. We stress the importance
of having some prior knowledge about the spatial local-
ization of the sources, and imposing a small number of
parameters (e.g. constant coefficients). We also provide
a numerical scheme that makes use of a representation
of the propagating wave over the Laplace domain. This
representation uses a reduced number of green kernels lo-
calized on the boundary of the source support. This leads
to a fast scheme that does not need repeated simulations
of the space/time wave propagations.

2 Wave Generation Forward Model
Linear PDE model. Biological considerations leaded us
to formulate a simple linear model for the propagation of
the information in the early areas of the visual cortex [10].
The measured observationX = u + w is assumed to be
composed of a signalu caused by the visual excitation
and an an additive noisew caused by the neural activity
and the imaging device. The signal is assumed to propa-
gate in time according to a linear wave equation parame-
terized by (unknown) coefficientsα0 = (a0, b0, c0) ∈ R

3

and an (unknown) sourcef0(t, x). It thus solves

a0
∂2u

∂t2
+ b0

∂u

∂t
+ c0u−∆u = f0 (1)

on R
2 × (0,+∞), with boundary conditions∂

ku
∂tk

= 0
at t = 0 for k = 0, 1. In the following, we denote
asu = Tα0

(f0) the propagating operator that maps the
sources to the signal. For positive values ofα0, this model
leads to propagating and dissipative waves that might be
useful to model certain neural activities. In this paper we



restrict our attention to this second order model, although
our method could be used for more general linear PDEs.
Source constraint. In accordance with some biological
observations [10], we consider a spatial constraint on the
support of the sources

Cx = {f \ ∀x /∈ Ω, ∀ t > 0, f(x, t) = 0}

whereΩ ⊂ R
2 is a known compact set. Figure 1 shows an

example of a typical propagation that is achieved with this
model using sources supported inside two small disks.

t = 2.5 t = 15 t = 30

Figure 1: Example of a 2-D waveu propagating
according to our model.

Inverse problem. The coefficient estimation problem re-
quires to estimateα = (a, b, c) ∈ R

3 in order for the ob-
servationsX to be well approximated by a propagating
waveX ≈ Tα(f) for some sourcef . An efficient method
should provide an estimateα close to the true valueα0

even in the presence of a large noisew contaminating the
observations. The following theorem asserts that the true
valueα0 can be uncovered in the absence of noise.

Theorem 2.1. If f0 ∈ Cx, thenTα0
(f0) = Tα(f) implies

(α, f) = (α0, f0).

This suggests to jointly estimateα andf by minimiz-
ing the deviation betweenX andTα(f). This is however
a difficult task because of the high dimensionality off
and the presence of a large noise which might lead to a
poor solution. We propose here to avoid estimating the
sourcef by exploiting the constraintCx. Onceα has been
computed, it is easy to recover the sourcesf by solving
the linear equationX = Tα(f), possibly with some reg-
ularization to remove the noise.

3 Green Representation of the Wave Model
This section details our main mathematical analysis

of the model. The resulting estimation procedure is de-
scribed in the next section.
Laplace transform. To reduce the computational com-
plexity of the method, we remove the temporal dimension

by performing a Laplace transform, given someβ > 0

Y (x) =

∫ +∞

0
e−βtX(t, x)dt (2)

where we have omitted the dependency onβ for the sake
of readability. The following proposition shows that the
original PDE (1) is projected to a 2-D Helmholtz equation
over the Laplace domain.

Proposition 3.1. If w = 0 andf0 ∈ Cx, Y satisfies

q0(β)Y −∆Y = 0 in R
2\Ω (3)

where the shape parameter isq0(β) = a0β
2 + b0β + c0.

Inspired by this proposition, our strategy is thus to es-
timate the value of the shape parameterq(β) for different
values ofβ in order to recover the value ofα0.
Green kernel extrapolation. For each value of the shape
parameterq ∈ R, the Green solution (or fundamental so-
lution) Gx,q at x ∈ R

2 of the Helmoltz equation (3) on
the whole domainR2 is given by

Gx,q(y) = K0(
√
q ||x− y||)

whereK0 is the modified Bessel function of the second
kind. At a pointy ∈ ∂Ω of the boundary ofΩ, we de-
note as∂~nGx,q(y) the derivative ofGx,q in the direction
normal to∂Ω.

Given a set of valuesA = (A(x))x∈∂Ω and derivative
valuesB = (B(x))x∈∂Ω defined on this boundary, one
obtains a function on the whole spatial domain by the fol-
lowing Green extrapolation

Hq(A,B)(x) =

− 1

2π

∫

∂Ω

(

A(y)∂~nGx,q(y)−B(y)Gx,q(y)
)

dy

where the integral is performed along the 1-D contour of
the boundary.
Dissipative wave reproducing formula. Our main re-
sult is the following theorem, that expresses the fact that
in the noiseless setting, the Laplace transform of the ob-
servations can be extrapolated to the whole domain given
only its values on the boundary∂Ω. We denote recep-
tively asAY andBY the restriction to∂Ω of Y and its
derivative normal to∂Ω.

Theorem 3.1. If w = 0, one has for allx /∈ Ω

Y (x) = Hq0(β)(AY , BY )(x)

whereq0(β) is defined in proposition 3.1.



4 Wave Model Fitting Algorithm
Fitting procedure. Our parameter estimation method
proceeds in two steps:

Step 1: for eachβ ∈ Σ, compute an estimate of the
shape parameter by solving

q(β) = argmin
q

Eβ(q) (4)

where Eβ(q) = min
A,B

||Y −Hq(A,B)||2L2(Ωc). (5)

Step 2: estimate the parameterα0 by computing the
optimalα solving

min
α=(a,b,c)∈R3

∑

β∈Σ

∣

∣aβ2 + bβ + c− q(β)
∣

∣

2
. (6)

Theorem 3.1 asserts that in the noiseless case,w = 0,
one hasq(β) = q0(β), and proposition (3.1) thus implies
thatα = α0 so that the estimation procedure succeeds.
Equality does not hold in the general case, but theL2 fit
(5) of a single parameter from data on the domainΩc =
R
2\Ω guarantees a strong robustness to noise.

Discrete algorithm. In a numerical scenario, the dataX
is sampled at discrete locations in space and time, so that
the L2 regression (5) is performed on the discrete grid
points lying outsideΩ.

In order to be able to compute accurately the Laplace
transformY of X we assume that the propagating wave
Tα0

(f0) is vanishing fort > t0, and the integral (2) is
estimated numerically from the available time samples.
The setΣ of testedβ values is an uniform discretization
of an interval[0, βmax] at |Σ| locations.

The resolution (4) corresponds to a minimization of a
non-convex function of a single variable. Each estima-
tion of this function requires a linear regression (5) where
the variablesA andB are sampled along the 1-D con-
tours∂Ω. The number of variables in this regression is
thus small so that we decided to perform a brute force
exhaustive search forq(β). More advanced optimization
schemes could be used as well to speed up the process.
The final polynomial fit (6) only requires the resolution
of a3× 3 linear system.

5 Numerical Results
We benched the efficiency of our method on a synthetic

model that is intended to be biologically plausible in term
of both the spatial and temporal dynamics of the source.
Signal model. We generate a smooth sourcef0 as a
space-time colored Gaussian noise. We restrict the sup-
port of the source by multiplying it with a smooth win-
dowing function in order to obtain a compact support in

Ω × [0, t0] wheret0 = 40, Ω is an union of two disks of
radius0.08, centered at(0.5, 0.2) and(0.5, 0.7).

The observationX = u + w with u = Tα0
(f0) is

generated by usingα0 = (a0, b0, c0) with

a0 =
1

s20
, b0 = 2

ρ0
s20

, c0 =

(

ρ0
s0

)2

wheres0 represent the biological speed of the propagat-
ing wave, andρ0 accounts for the dissipation of the prop-
agation. The noisew is a Gaussian white noise of stan-
dard deviationσ ||u||∞, whereσ > 0 controls the strength
of the noise. The wave propagationu is generated by
solving numerically the (1) with semi-implicit finite dif-
ference scheme in time, spectral discretization of the spa-
tial Laplacian, and absorbing boundary conditions using
a perfect matched layer (PML) scheme. In the numerical
experiments, we uses0 = 1 andρ0 = 1/10 for a square
domain of observations[0, 1]2 discretized using150×150
points on an uniform 2-D grid. Figure 2 shows a typical
signal used for the numerical experiments.

t = 2.5 t = 15 t = 30

Figure 2: Example of synthetic signalX considered in
our numerical experiment, hereσ = 0.1 (see Section 5).

Numerical evaluation. We measure the efficiency of
our fitting procedure according to three noise level corre-
sponding toσ = 0 (no noise),σ = 0.03 (low noise) and
σ = 0.1 (strong noise). We perform the fitting procedure
described in Section 4 usingβmax = 0.5 and |Σ| = 25.
q(β) is computed for our shape parameter by solving (4)
and then the polynomial fitβ 7→ aβ2 + bβ + c is ob-
tained by solving (6). After having computed the values
for (a, b, c), we estimate the relevant biological parame-
ters (speed and dissipation) ass = 1√

a
andρ = 2 c

b
.q(β)

is computed for200 realizations of the noisew. Then we
compute the relative errorqr(β) = q(β)−q0(β)

q0(β)
for each

realization. Figure 3 shows the expected valueEβ with
respect to realizations of the noisew (resp. standard de-
viation Stdβ) of qr(β) for 0 6 β 6 2βmax.

Table 5 shows statistics of speeds and dissipationρ
parameters. We observed in this table that estimation is
not perfect in the noiseless case (σ = 0) because of dis-
cretization error for both the signal generation and the



Figure 3: Display of the expected valueEβ (blue and
red solid lines) ofqr(β). The blue and red regions

corresponds to confidence intervals defined as the set of
(β, q) with |q − Eβ | 6 2Stdβ .

Table 1: Statistics of speeds and dissipationρ

σ Expected value Std. Deviation

ρ0 = 0.1
0 0.101

0.03 0.102 0.021
0.1 0.125 0.14

s0 = 1
0 0.99

0.03 1.001 0.026
0.1 1.011 0.084

Laplace transform. Our method is able to estimate the
value ofs0 even in the presence of a reasonable noise. In
the presence of a strong noise (σ = 0.1), our method is
more accurate for the estimation of the speeds0 than for
the dissipation parameterρ0.

6 Conclusion and Perspectives

In this paper we have proposed a fast and robust
method to estimate constant parameters in a linear PDE
model using only a constraint on the (known) support of
the sources. This method might be useful to calibrate bi-
ological models in computational neuroscience. We are
currently working on the application of our method to real
data from VSDOI experiments. This method is also quite
general and might be extended to other settings, such as
3-D propagations.
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