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THE K-MOMENT PROBLEM FOR CONTINUOUS LINEAR

FUNCTIONALS

JEAN B. LASSERRE

Abstract. Given a closed (and non necessarily compact) basic semi-algebraic
set K ⊆ Rn, we solve the K-moment problem for continuous linear functionals.

Namely, we introduce a weighted ℓ1-norm ℓw on R[x], and show that the ℓw-
closures of the preordering P and quadratic module Q (associated with the
generators of K) is the cone Psd(K) of polynomials nonnegative on K. We
also prove that P an Q solve the K-moment problem for ℓw-continuous linear
functionals and completely characterize those ℓw-continuous linear functionals
positive on P and Q (hence on Psd(K)). When K has a nonempty interior we
also provide an explicit form of the ℓw-projection gw

f
of a given polynomial f

on the (degree-truncated) preordering or quadratic module. Remarkably, the
support of gw

f
is very sparse and does not depend on K! This enables us to

provide an explicit Positivstellensatz on K. At last but not least, we provide
a simple characterization of polynomials positive on K, which is crucial in
proving the above results.

1. Introduction

This paper is concerned with basic closed semi-algebraic sets K ⊆ R
n and the

preordering P (g) and quadratic module Q(g) associated with the finite family of
polynomials (gj), j ∈ J , that generate K. In particular, when K = R

n then the
latter two convex cones coincide with the cone Σ[x] of sums of squares (s.o.s.) of
polynomials. The convex cones P (g) and Q(g) (which are subcones of the convex
cone Psd(K) of polynomials nonnegative on K) are of practical importance because
if on the one hand nonnegative polynomials are ubiquitous, on the other hand,
polynomials in P (g) or Q(g) are much easier to handle. For instance, and in
contrast with nonnegative polynomials, checking whether a given polynomial is
in Pd(g) (⊂ P (g)) or Qd(g) (⊂ Q(g)) (i.e., with an a priori degree bound d on its
representation) can be done efficiently by solving a semidefinite program, a powerful
technique of convex optimization.

The celebrated K-moment problem is concerned with characterizing all real se-
quences y = (yα), α ∈ N

n, which can be realized as the moment sequence of some
finite Borel measure on K. For such sequences y, the linear form Ly associated
with y is called a K-moment functional and Haviland’s theorem states that Ly is a
K-moment functional if and only if Ly(f) ≥ 0 for all f ∈ Psd(K). And so one says
that P (g) (resp. Q(g)) solves the K-moment problem if the K-moment functionals
are those which satisfy Ly(f) ≥ 0 on P (g) (resp. Q(g)). However, this is true if and
only if P (g) (resp. Q(g)) is dense in Psd(K) for the finest locally convex topology
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on R[x]. When K is compact, the K-moment problem was completely solved (with

P (g) = Psd(K)) in Schmüdgen [15] and soon refined to Q(g) = Psd(K) in Putinar
[13] for Archimedean quadratic modules Q(g).

Since then, there has been recent contributions to better understand (in even a
more general framework) the links between Psd(K) and closures (and sequential
closures) of preorderings and quadratic modules, one important goal being to extend
(or provide analogues of) Schmüdgen and Putinar’s Positivstellensatzë [15, 13] to
cases where K is not compact. In particular, Scheiderer [14] has shown rather
negative results in this direction. For more details on those recent results, the
interested is referred to e.g. Powers and Scheiderer [12], Kuhlmann and Marshall
[8], Kuhlmann et al. [9], and Cimpric et al. [5].

If one the one hand, all linear functionals are continuous in the finest locally
convex topology, on the other hand, the negative results of Scheiderer [14] suggest
that solving the K-moment problem via preorderings or quadratic modules is pos-
sible only in a few cases, and so this topology is not appropriate in general. So why
not rather consider other topologies on R[x] and the K-moment problem for linear
functionals Ly that are continuous in this topology? This is the point of view taken
in Ghasemi et al. [6] where the authors consider certain (weighted) norm-topologies
and show that the closure of the cone of sums of squares is Psd([−1, 1]n) as did
Berg [3] for the ℓ1-norm.

Contribution. In view of the negative results in Scheiderer [14], we also consider
the above mentioned viewpoint and look at the K-moment problem by using ℓ1-
weighted norms on R[x] (denoted ℓw for a certain sequence w ∈ N

n) rather than
the usual finest locally convex topology. In this framework we solve the K-moment
problem for basic closed semi-algebraic sets K ⊂ R

n with nonempty interior, in
the following sense. We prove that (a) the ℓw-closure of P (g) and Q(g) is exactly
Psd(K), and (b) P (g) and Q(g) solve the moment problem, i.e., the K-moment
(ℓw-continuous) functionals are those Ly that are ℓw-continuous and positive on
Q(g) (or P (g)). In fact, such linear functionals Ly are characterized by:

- Ly(h
2gj) ≥ 0 for all h ∈ R[x], and every generator gj of K.

- |yα| ≤ wα for all α ∈ N
n.

• Next, we provide an explicit expression for the ℓw-projection of a given poly-
nomial onto Pd(g) or Qd(g), where Pd(g) (resp. Qd(g)) denotes the subcone of
elements of P (g) (resp. of Q(g)) which have a degree bound d in their representa-
tion. It turns out that this ℓw-projection gf of a polynomial f takes a remarkably
simple and “sparse” form, and particularly when ℓw is the usual ℓ1-norm, in which
case

(1.1) gf = f + λ0 +
n∑

i=1

λi x
2d
i ,

for some nonnegative vector λ ∈ R
n+1. In other words, the support ‖gf‖0 of gf does

not depend on K and does not depend on d either! The dependence of gf on the
gj’s that define K is only through the coefficients (λ∗j ). In addition, the support is
very sparse since ‖gf‖0 ≤ ‖f‖0 + n+ 1. This confirms the property of the ℓ1-norm
with respect to sparsity, already observed in other contexts. Minimizing the ℓ1-
norm aims at finding a solution with small support (where ‖x‖0 = #{i : xi 6= 0}).
Finally, the vector λ in (1.1) is an optimal solution of an explicit semidefinite
program, and so can be computed efficiently.
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• We show that the ℓ1-projection of f onto P (g) ∩ R[x]2d is also of the form
(1.1), and use this result to characterize the sequential closure P (g)‡ of P (g) for
the finest locally convex topology. Namely,

P (g)‡ =

{

f ∈ R[x] : ∃ d s.t. ∀ǫ > 0, f + ǫ

(

1 +
n∑

i=1

x2di

)

∈ P (g)

}

,

and the same statement is true for the quadratic module Q(g). This latter result
exhibits the particularly simple form q := (1 +

∑n
i=1 x

2d
i ) for the possible polyno-

mials q in the characterization of P (g)‡ (and Q(g)‡) provided in e.g. [5, 9]; e.g., in
[9] it is stated that one may take the polynomial (1 + ‖x‖2)s for some s.

• Thanks to the characterization of ℓw-projection, we finally obtain a Positivstel-
lensatz on K of the following form: f ∈ Psd(K) if and only if for every ǫ > 0, there

is some d ∈ N such that the polynomial f + ǫ(1 +
∑n

i=1

∑d
k=1 x

2k
i /(2k)!) is in P (g)

(or Q(g)).
• At last but not least, and crucial for the above results, we prove a result

of self-interest, concerned with sequences y = (yα), α ∈ N
n, that have a finite

representing Borel measure µ. Namely, we prove that a polynomial is nonnegative
on the support of µ if and only if

∫
h2fdµ ≥ 0 for all h ∈ R[x].

The paper is organized as follows. In Section 2, and after introducing the nota-
tion and definitions, we present the intermediate result mentioned above. In Section
3 we show that P (g) and Q(g) solve the K-moment problem for ℓ1-continuous linear
functionals. In section 4, we provide explicit expressions for the ℓw-projection onto
P (g), Q(g) and their truncated versions. In Section 4 we characterize Q(g)‡ and
P (g)‡, as well as the ℓw-closures Q(g)‡ and P (g)‡. We end up with a Positivstel-
lensatz for K.

2. Notation, definitions and preliminaries

2.1. Notation and definitions. The notation B stands for the Borel σ-field of
R

n. Let R[x] (resp. R[x]d) denote the ring of real polynomials in the variables
x = (x1, . . . , xn) (resp. polynomials of degree at most d), whereas Σ[x] (resp.
Σ[x]d) denotes its subset of sums of squares (s.o.s.) polynomials (resp. of s.o.s. of
degree at most 2d). For every α ∈ N

n the notation xα stands for the monomial
xα1

1 · · ·xαn
n , |α| stands for the integer (α1 + · · ·+αn), and α! stands for the integer

(α1 + · · · + αn)!. For an arbitrary set S ⊂ R
n let Psd(S) denote the cone of

polynomials that are nonnegative on S.
For every i ∈ N, let Np

d := {β ∈ N
n :
∑

j βj ≤ d} whose cardinal is s(d) =
(
n+d
n

)
.

A polynomial f ∈ R[x] is written

x 7→ f(x) =
∑

α∈Nn

fα xα,

and f can be identified with its vector of coefficients f = (fα) in the canonical
basis (xα), α ∈ N

n. The support of f ∈ R[x] is the set {α ∈ N
n : fα 6= 0} and let

‖f‖0 := card {α : fα 6= 0}. Denote by ‖f‖1 the ℓ1-norm
∑

α |fα| of the coefficient
vector f . Similarly with w = (wα), α ∈ N

n, with wα := (2⌈|α|/2⌉)!, denote by
‖f‖w the ℓw-norm

∑

α wα|fα|. Both ℓ1 and ℓw also define a norm on R[x]d.
Let Sp ⊂ R

p×p denote the space of real p × p symmetric matrices. For any
two matrices A,B ∈ Sp, the notation A � 0 (resp. ≻ 0) stands for A is positive
semidefinite (resp. positive definite), and the notation 〈A,B〉 stands for traceAB.
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Let vd(x) = (xα), α ∈ N
n
d , and let B0

α ∈ R
s(d)×s(d) be real symmetric matrices

such that

(2.1) vd(x)vd(x)
T =

∑

α∈Nn
2d

xα B0
α.

Recall that a polynomial g ∈ R[x]2d is a s.o.s. if and only if there exists a real
positive semidefinite matrix X ∈ R

s(d)×s(d) such that

gα = 〈X,B0
α〉, ∀α ∈ N

n
2d.

Let gj ∈ R[x], j = 0, 1, . . . ,m, with g0 being the constant polynomial g0(x) = 1
for all x, and let K ⊆ R

n be the basic closed semi algebraic set:

(2.2) K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m},

For every J ⊆ {1, . . . ,m} let gJ :=
∏

k∈J gk, with the convention g∅ := 1, and let
vJ := ⌈(deg gJ)/2⌉.

Definition 2.1. With K as in (2.2), let Q(g) ⊂ R[x] and Qk ⊂ R[x]2k be the
convex cones:

P (g) :=







∑

J⊆{1,...,m}

σJ gJ : σJ ∈ Σ[x] J ⊆ {1, . . . ,m}






.(2.3)

Pk(g) :=







∑

J⊆{1,...,m}

σJ gJ : σJ ∈ Σ[x]k−vJ J ⊆ {1, . . . ,m}






.(2.4)

Q(g) :=







m∑

j=0

σj gj : σj ∈ Σ[x] j = 1, . . . ,m






.(2.5)

Qk(g) :=







m∑

j=0

σj gj : σj ∈ Σ[x]k−vj , j = 1, . . . ,m






.(2.6)

The set P (g) (resp. Q(g)) is a convex cone called the preordering (resp. the
quadratic module) associated with the gj ’s. Obviously, if h ∈ P (g) (resp. h ∈
Q(g)), the associated s.o.s. weights σJ ’s (resp. σj ’s) of its representation provide a
certificate of nonnegativity of h on K. The cone Pk(g) (resp. Qk(g)) is the subset
of elements h ∈ P (g) with a degree bound d certificate. Observe that Pk(g) ⊂
P (g) ∩ R[x]2k.

Moment matrix. With a sequence y = (yα), α ∈ N
n, let Ly : R[x] → R be the

linear functional

f (=
∑

α

fα xα) 7→ Ly(f) =
∑

α

fα yα, f ∈ R[x].

With d ∈ N, the d-moment matrix associated with y is the real symmetric matrix
Md(y) with rows and columns indexed in N

n
d , and defined by:

(2.7) Md(y)(α, β) := Ly(x
α+β) = yα+β , ∀α, β ∈ N

n
d .

Alternatively, Md(y) =
∑

α∈Nn
2d
yαB

0
α. It is straightforward to check that

{
Ly(g

2) ≥ 0 ∀g ∈ R[x]d
}

⇔ Md(y) � 0, d = 0, 1, . . . .
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A sequence y = (yα) has a representing measure if there exists a finite Borel measure
µ on R

n, such that yα =
∫
xαdµ for every α ∈ N

n. Moreover, the measure µ is said
to be determinate if it is the unique such measure. Notice that with the ℓw-norm
on R[x] is associated a dual norm ‖ · ‖∗w on the dual space R[x]∗ of ℓw-continuous
linear functionals on R[x], by ‖Ly‖

∗
w = sup{|yα|/wα : α ∈ N

n}.

Localizing matrix. With y as above, J ⊆ {1, . . . ,m}, and gJ ∈ R[x] (with
gJ(x) =

∑

γ gJγ x
γ), the localizing matrix of order d associated with y and gJ

is the real symmetric matrix Md(gJ y) with rows and columns indexed by N
n
d , and

whose entry (α, β) is just

(2.8) Md(y)(gJ y)(α, β) := Ly(gJ(x)x
α+β) =

∑

γ

gJγ yα+β+γ , ∀α, β ∈ N
n
d .

If BJ
α ∈ Ss(d) is defined by:

(2.9) gJ(x)vd(x)vd(x)
T =

∑

α∈Nn
2d+deg gJ

BJ
α xα, ∀x ∈ R

n,

then Md(gJ y) =
∑

α∈Nn
2d+deggJ

yα BJ
α. Alternatively, Md(gJ y) = Md(z) where

z = (zα), α ∈ N
n, with zα = Ly(gJ xα).

2.2. Multivariate Carleman’s condition. Let y = (yα), α ∈ N
n, be such that

Md(y) � 0 for all d ∈ N. If for every i = 1, . . . , n,

(2.10)

∞∑

k=1

Ly(x
2k
i )−1/2k = ∞,

then y has a finite representing Borel measure µ on R
n, which in addition, is

determinate; see e.g. Berg [3].

Closures. For a set A ⊂ R[x] we denote by A the closure of A for the finest locally
convex topology on R[x] (treated as a real vector space). With this topology, every
finite-dimensional subspace of R[x] inherits the euclidean topology, so that A also
denotes the usual euclidean closure of a subset A ⊂ R[x]d. Following Cimpric et al.
[5] and Kuhlmann et al. [9], we also denote by A‡ the set of all elements of R[x]
which are expressible as the limit of some sequence of elements of A, and so A‡ is
called the sequential closure of A, and clearly A ⊆ A‡ ⊆ A. If A ⊂ R[x] is a convex
cone

A‡ = {f ∈ R[x] : ∃ q ∈ R[x] s.t. f + ǫ q ∈ A, ∀ǫ > 0 },

and in fact, q can be chosen to be in A. Moreover, if A has nonempty interior
(equivalently, has an algebraic interior) then A‡ = A.

Semidefinite programming. A semidefinite program is a convex (more precisely
convex conic) optimization problem of the form infX {〈C,X〉 : AX = b; X � 0},
for some real symmetric matrices C,X ∈ Sp, vector b ∈ R

m, and some linear
mapping A : Sp → R

m. Semidefinite programming is a powerful technique of
convex optimization, ubiquitous in many areas. A semidefinite program can be
solved efficiently and even in time polynomial in the input size of the problem, for
fixed arbitrary precision. For more details the interested reader is referred to e.g.
[16].
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2.3. A preliminary result of self-interest. Recall that in a complete separable
metric space X, the support of a finite Borel measure µ (denoted suppµ) is the
unique smallest closed set K ⊆ X such that µ(X \K) = 0.

Theorem 2.2. Let f ∈ R[x] and µ be a finite Borel measure with all moments
y = (yα), α ∈ N

n, finite and such that for some M > 0 and all k ∈ N and all
i = 1, . . . , n, Ly(x

2k
i ) ≤ (2k)!M . Then:

f ≥ 0 on suppµ ⇐⇒

∫

h2 f dµ ≥ 0 ∀h ∈ R[x](2.11)

⇐⇒ Md(f y) � 0, ∀d = 0, 1, . . .

Proof. The implication ⇒ is clear. For the reverse implication, consider the signed
Borel measure ν(B) :=

∫

B fdµ, for all Borel sets B ∈ B, and let z = (zα), α ∈ N
n,

be its sequence of moments. By Lemma 5.1, the sequence z satisfies Carleman’s
condition (2.10). Next, recalling that Mk(f y) = Mk(z) for every k ∈ N,

(∫

h2f dµ ≥ 0 ∀h ∈ R[x]

)

⇐⇒ Mk(z) � 0, ∀ k ∈ N.

This combined with the fact that z satisfies Carleman’s condition yields that z

is the moment sequence of a finite Borel measure ψ on R
n, which in addition, is

determinate. Therefore,

(2.12) zα =

∫

xα f(x)dµ(x)
︸ ︷︷ ︸

dν(x)

=

∫

xα dψ(x), ∀α ∈ N
n.

Let Γ+ := {x : f(x) ≥ 0}, Γ− := {x : f(x) < 0} and let µ = µ+ + µ− with
µ+(B) = µ(B ∩Γ+), µ−(B) = µ(B ∩Γ−), for all B ∈ B. Similarly, let ν = ν+− ν−

with ν+ and ν− being the positive measures defined by ν+(B) =
∫

B
fdµ+ and

ν−(B) = −
∫

B fdµ
−, for all B ∈ B. Since µ+, µ− ≤ µ, one has

∫

x2ki dµ
+(x) ≤

∫

x2ki dµ(x) and

∫

x2ki dµ
−(x) ≤

∫

x2ki dµ(x),

for all i = 1, . . . , n and all k ∈ N. Therefore, again by Lemma 5.1, both ν+ and
ν− satisfy Carleman’s condition (2.10) so that both are determinate. On the other
hand, (2.12) can be rewritten,

∫

xα dν+(x) =

∫

xα dν−(x) +

∫

xα dψ(x), ∀α ∈ N
n,

and so ν+ = ν− + ψ because ν+ and ν− + ψ are determinate. But then 0 =
ν+(Γ−) ≥ ν−(Γ−) implies that ν− = 0, i.e., ν = ν+ = ψ, and so the signed Borel
measure ν is in fact a positive measure. This in turn implies that f ≥ 0 for all
x ∈ suppµ \ G, where G ⊂ suppµ and µ(G) = 0. Notice that by minimality of

the support , suppµ \G = suppµ. Hence let x ∈ suppµ be fixed, arbitrary. As

suppµ \G = suppµ, there is sequence (xℓ) ⊂ suppµ \ G such that xℓ → x as
ℓ→ ∞, and f(xℓ) ≥ 0 for all ℓ. But then continuity of f yields that f(x) ≥ 0. �

Interestingly, as we next see, Theorem 2.2 yields alternative characterizations of
the cone Psd(S) for an arbitrary closed set S ⊂ R

n.
For a finite Borel measure µ (with all moments finite) and a polynomial f ∈ R[x],

let µf be the finite signed Borel measure defined by µf (B) :=
∫

B
fdµ for all B ∈ B.

Let Θµ := {µσ : σ ∈ Σ[x]}, i.e., Θµ is the set of finite Borel measures absolutely



NONNEGATIVITY 7

continuous with respect to µ, and whose density (or Radon Nikodym derivative) is
a sum of squares.

Let Σ[x]∗ ⊂ R[x]∗ be the dual cone of the cone of Σ[x], i.e., the set of linear forms
Ly on R[x] such that Ly(h

2) ≥ 0 for all h ∈ R[x], and similarly, let Θ∗
µ ⊂ R[x] be

the dual cone of Θµ, i.e., Θ
∗
µ := {h ∈ R[x] :

∫
hdν ≥ 0, ∀ν ∈ Θµ}.

Corollary 2.3. Let S ⊂ R
n be an arbitrary closed set and let µ be any finite Borel

measure such that suppµ = S and x 7→ exp(|xi|) is µ-integrable for all i = 1, . . . , n.
Then with f ∈ R[x],

f ∈ Psd(S) ⇐⇒ µf ∈ Σ[x]∗(2.13)

Psd(S) = Θ∗
µ.(2.14)

Proof. Let y = (yα), α ∈ N
n, be the moment sequence of µ. Observe that for every

i = 1, . . . , n, and all k ∈ N,

Ly

(
x2ki
(2k)!

)

≤

∫

S

exp (|xi|)dµ(x) ≤ M,

for some M > 0. Moreover, suppµ = S and so by Theorem 2.2, f ≥ 0 on S if and
only if

∫

S
h2fdµ ≥ 0 for all h ∈ R[x]. Equivalently, if and only if

∫

S
σdµf ≥ 0 for

all σ ∈ Σ[x] (which yields (2.13)), or if and only if
∫

S
fdµσ ≥ 0 for all σ ∈ Σ[x],

which yields (2.14). �

3. The K-moment problem for ℓw-continuous linear functionals

We first show thatQ(g) (and P (g)) solve theK-moment problem for ℓw-continuous
linear functionals.

When equipped with the ℓw-norm, we may and will identify R[x] as the subspace
of sequences with finite support, in the Banach space of real infinite sequences
f = (fα), α ∈ N

n, that are w-summable, i.e., such that
∑

α wα|fα| < +∞.

Proposition 3.1. The dual of (R[x], ‖ · ‖w) is the space (R[x]∗, ‖ · ‖∗w) of lin-
ear functionals Ly associated with the sequence y = (yα), α ∈ N

n, which satisfy
‖Ly‖∗w <∞, where ‖Ly‖∗w := sup{|yα|/wα : α ∈ N

n}.

Proof. If Ly ∈ R[x]∗ satisfies ‖Ly‖∗w <∞, then

|Ly(f)| ≤
∑

α

|fα|wα
yα
wα

≤ ‖f‖w ‖Ly‖
∗
w,

and so Ly is bounded, hence ℓw-continuous. Conversely, if Ly is ℓw-continuous,
then consider the sequence of polynomials (fα) ⊂ R[x] with x 7→ fα(x) := xα/wα

for every α ∈ N
n. Then ‖fα‖w = 1 for every α ∈ N

n, and Ly(fα) = yα/wα for all
α ∈ N

n. And so, if Ly is ℓ1-continuous then sup{|yα|/wα : α ∈ N
n} < +∞. �

Theorem 3.2. Let K be as in (2.2) and let y = (yα), α ∈ N, be a given real
sequence such that Ly is ℓw-continuous. Then y has a finite representing Borel
measure µ on K if and only if Ly is positive on Q(g). Equivalently if and only if:

(3.1) Ly(h
2gj) ≥ 0 ∀h ∈ R[x], j = 0, . . . ,m; sup

α∈Nn

|yα|

wα
≤ M for some M .
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Proof. The necessity is clear. Indeed, if y has a representing measure µ on K then
Ly(h

2gj) =
∫

K
h2gjdµ ≥ 0 for all h ∈ R[x] and all j = 0, 1, . . . ,m; and so Ly(f) ≥ 0

for all f ∈ Q(g). Moreover, ‖Ly‖∗w < ∞ because Ly is ℓw-continuous; hence (3.1)
holds.

Sufficiency. Suppose that Ly is a ℓw-continuous linear functional, positive on
Q(g), i.e., suppose that (3.1) holds. In particular, Ly(x

2k
i ) ≤ M(2k)! for every

k ∈ N and every i = 1, . . . , n. Therefore, y satisfies Carleman’s condition (2.10)
and since Mk(y) � 0 for all k ∈ N, y has a representing finite Borel measure µ on
R

n, which in addition, is determinate. Next, using Ly(h
2gj) ≥ 0 for all h ∈ R[x],

and invoking Theorem 2.2, one may conclude that gj ≥ 0 on suppµ, for every
j = 1, . . . ,m. Hence suppµ ⊆ K. �

Theorem 3.2 states that Q(g) solves the K-moment problem for ℓw-continuous
functionals. Of course, Theorem 3.2 is also true if one replaces the quadratic module
Q(g) with the preordering P (g).

The ℓw-closure of Q(g) and P (g). Observe that Psd(K) is ℓw-closed. To see
this, notice that with every every x ∈ K is associated the Dirac measure δx, whose
associated sequence y = (xα), α ∈ N

n, is such that Ly is ℓw-continuous. Indeed,

let a := maxi |xi| so that |xα| ≤ a|α|, and let M := exp(a).

M−1 |yα| = exp(a)−1|xα| ≤ exp(a)−1 a|α| < α! ≤ (2⌈|α|/2⌉)! = wα,

and so ‖Ly‖∗w < M , i..e., Ly is ℓw-continuous. Therefore, let (fn) ⊂ Psd(K) be
such that ‖fn − f‖w → 0 as n → ∞. As Ly is ℓw-continuous one must have
0 ≤ limn→∞ Ly(fn) = Ly(f) = f(x). As x ∈ K was arbitrary, f ∈ Psd(K).

Theorem 3.3. Let K ⊂ R
n be as in (2.2) and recall that Psd(K) := {f ∈ R[x] :

f ≥ 0 on K}. Then clw(P (g)) = clw(Q(g)) = Psd(K).

Proof. As Psd(K) is ℓw-closed and Q(g) ⊂ Psd(K), clw(Q(g)) ⊆ Psd(K), and so we
only have to prove the reverse inclusion. Let f 6∈ clw(Q(g)). Since Q(g) is a convex
cone, by the Hahn-Banach separation theorem there exists an ℓw-continuous linear
functional Ly that strictly separates f from clw(Q(g)). That is, there exists y ∈ N

n

such that Ly is ℓw-continuous, Ly(f) < 0 and Ly(h) ≥ 0 for all h ∈ clw(Q(g)).
By Theorem 3.2, such a y has a representing finite Borel measure µ on K, and so
Ly(f) =

∫

K
fdµ < 0 yields that necessarily f(x0) < 0 for some x0 ∈ K. Hence

Psd(K) ⊆ clw(Q(g)), which in turn yields the desired result. �

For instance, from Berg [3], we know that ℓ1-closure of Σ[x] is Psd([−1, 1]n). On
the other hand, its ℓw-closure is now Psd(Rn), which is what we really want.

4. ℓw-projections onto Pd(g) and Qd(g)

As we next see, the ℓw- and ℓ1-norm have the nice feature that projections onto
various truncations of P (g) and Q(g) have a particularly simple expression. For
these projections to well-defined we assume that K has a nonempty interior. We
first provide an explicit form of the ℓ1- and ℓw-projection of a given polynomial f
onto Pd(g) and Qd(g) respectively, and analyze the limit as d → ∞. Then we will
consider the projections onto Pd(g)∩R[x]s for fixed s, d ∈ N, which, letting s→ ∞,

will permit to obtain the projection of f onto P (g) ∩ R[x]d, and so to characterize
the sequential closure P (g)‡.
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As in the previous section, for a polynomial in R[x]t we use indifferently the
notation h for both the polynomial and its vector of coefficients h ∈ R

s(t). The
context will make clear which one of the two is concerned.

Let K ⊆ R
n be as in (2.2), and consider the following optimization problem:

(4.1) pdw := inf
h

{ ‖f − h‖w : h ∈ Pd(g) }.

That is, one searches for the best ℓw-approximation of f by an element of Pd(g), or
equivalently, the ℓw-projection of f onto Pd(g). Of course, and even though (4.1)
is well defined for an arbitrary f ∈ R[x], such a problem is of particular interest
when f is nonnegative on K but not necessarily an element of P (g).

Theorem 4.1. Let K in (2.2) be with nonempty interior. Let f ∈ R[x] and let
2d ≥ deg f . The ℓw-projection of f onto Pd(g) is a polynomial gPw

f ∈ R[x]2d of the
form:

(4.2) x 7→ gPw
f (x) := f(x) +

(

λPw
0 +

n∑

i=1

d∑

k=1

λPw
ik

x2ki
(2k)!

)

,

for a nonnegative vector λPw ∈ R
nd+1 which is an optimal solution of the semidef-

inite program:

(4.3) inf
λ≥0

{

λ0 +

n∑

i=1

d∑

k=1

λik : f + λ0 +

n∑

i=1

d∑

k=1

λi
x2kik
(2k)!

∈ Pd(g)

}

,

and pdw = ‖f − gPw
f ‖w = λPw

0 +

n∑

i=1

d∑

k=1

λPw
ik .

Proof. Consider f as an element of R[x]2d by setting fα = 0 whenever |α| > deg f
(where |α| =

∑
αi), and rewrite (4.1) as the semidefinite program:

(4.4)

pdw := inf
λ,XJ ,h

∑

α∈Nn
2d

wα λα

s.t. λα + hα ≥ fα, ∀α ∈ N
n
2d

λα − hα ≥ −fα, ∀α ∈ N
n
2d

hα −
m∑

J⊆{1,...,m}

〈XJ ,B
J
α〉 = 0, ∀α ∈ N

n
2d

λ ≥ 0; h ∈ R[x]2d; XJ � 0, ∀J ⊆ {1, . . . ,m}.

The dual semidefinite program of (4.4) reads:

(4.5)







sup
u,v≥0,y

∑

α∈Nn
d

fα(uα − vα)

s.t. uα + vα ≤ wα ∀α ∈ N
n
2d

uα − vα + yα = 0 ∀α ∈ N
n
2d,

Md(gJ y) � 0, ∀J ⊆ {1, . . . ,m},

or, equivalently,

(4.6)







sup
y

−Ly(f)

s.t. Md(gJ y) � 0, ∀J ⊆ {1, . . . ,m}
|yα| ≤ wα, ∀α ∈ N

n
2d.
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The semidefinite program (4.6) has an optimal solution y∗ because the feasible set
is nonempty and compact. In addition, let y = (yα) be the moment sequence of the

finite Borel measure µ(B) =
∫

K∩B e−‖x‖2

dx, for all B ∈ B, scaled so that |yα| < wα

for all α ∈ N
n
2d. Then (y,u,v) with u = −min[y, 0] and v = max[y, 0], is strictly

feasible in (4.5). Indeed, asK has nonempty interior, then necessarilyMd(gJ y) ≻ 0
for all J ⊆ {1, . . . ,m}, and so Slater’s condition1 holds for (4.5). Therefore, by a
standard duality result in convex optimization, there is no duality gap between
(4.4) and (4.5) (or (4.6)), and (4.4) has an optimal solution (λ∗, (X∗

j ), g
P
f ). Hence

pdw = −Ly∗(f) for any optimal solution y∗ of (4.6).
Recall that with J := ∅, Md(g∅ y) = Md(y). Moreover, Md(y) � 0 implies

Mk(y) � 0 for all k ≤ d. Next, by [11, Lemma 1], Mk(y) � 0 implies that
|yα| ≤ max[Ly(1),maxi Ly(x

2k
i )], for every α ∈ N

n
2k, and all k ≤ d. Therefore, (4.6)

has the equivalent formulation

(4.7)







pd = − inf
y

Ly(f))

s.t. Md(gJ y) � 0, ∀J ⊆ {1, . . . ,m}
Ly(1) ≤ 1

Ly(x
2k
i ) ≤ (2k)!, k = 1, . . . , d; i = 1, . . . , n.

Indeed, any feasible solution of (4.7) satisfies |yα| ≤ max[Ly(1),maxi Ly(x
2k
i )] ≤

(2k)! = wα, for every α with |α| = 2k − 1. The dual of (4.7) is exactly the
semidefinite program (4.3). Again Slater’s condition holds for (4.7) and it has an

optimal solution y∗. Therefore (4.3) also has an optimal solution λPw ∈ R
nd+1
+

with pdw = λPw
0 +

∑n
i=1

∑d
k=1 λ

Pw
ik , the desired result. �

Of course, all statements in Theorem 4.1 remain true if one replaces Pd(g) with
Qd(g). Moreover, if w ≡ 1, i.e., if wα = 1 for all α (and so ℓw is the usual ℓ1-norm)
the polynomial gPw

f in (4.2) simplifies and is of the form:

(4.8) x 7→ gPf (x) := f(x) + (λP0 +
n∑

i=1

λPi x
2d
i ),

for some nonnegative vector λP ∈ R
n+1. If K = R

n then gPf is the ℓ1-projection of
f onto the cone of s.o.s. polynomials., as illustrated in the following example.

Example 1. Let n = 2 and K = R
2, in which case Pd(g) = Qd(g) = Σ[x]d for all

d ∈ N. Consider the Motzkin-like polynomial2 x 7→ f(x) = x21x
2
2(x

2
1+x

2
2−1)+1/27

of degree 6, which is nonnegative but not a s.o.s., and with a global minimum
f∗ = 0 attained at 4 global minimizers x∗ = (±(1/3)1/2,±(1/3)1/2). The results
are displayed in Table 1 for d = 3, 4, 5.

4.1. The ℓw-projection on P (g)t ∩R[x]2d and Q(g)t ∩R[x]2d. We now consider
the ℓw-projection of f on Pt(g) ∩ R[x]2d for given integers d, t ∈ N, i.e.,

(4.9) pdwt := inf
g
{ ‖f − g‖w : g ∈ Pt(g) ∩ R[x]2d }.

1Slater’s condition holds for the conic optimization problem P : infx{c′x : Ax = b; x ∈ K},
where K ⊂ Rn is a convex cone and A ∈ Rp×n, if there exists a feasible solution x0 ∈ intK. In
this case, there is no duality gap between P and its dual P∗ : sup

z
{b′z : c − A′z ∈ K∗}. In

addition, if the optimal value is bounded then P∗ has an optimal solution.
2Computation was made by running the GloptiPoly software [7] dedicated to solving the gen-

eralized problem of moments.
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d λ∗ pd

3 ≈ 10−3 (5.445, 5.367, 5.367) ≈ 1.6 10−2

4 ≈ 10−4 (2.4, 9.36, 9.36) ≈ 2. 10−3

5 ≈ 10−5 (0.04, 4.34, 4.34) ≈ 8. 10−5

Table 1. Best ℓ1-approximation for the Motzkin polynomial.

In other words, we are interested in searching for the polynomial of degree 2d
in Pt(g) which is the closest to f in ℓw-norm. For instance, if 2d = deg f , one
wishes to find the ℓw-projection onto Pt(g) of same degree as f . One may also
consider the analogue problem with the quadratic module, i.e., the ℓw-projection
on Qt(g) ∩ R[x]2d. We also analyze the limit as t→ ∞.

Theorem 4.2. Let K in (2.2) be with nonempty interior and let d ∈ N. Let
f ∈ R[x] and let 2t ≥ max[2d, deg f ]. The ℓw-projection of f onto Pt(g)∩R[x]2d is
a polynomial gPw

f ∈ R[x]2d of the form:

(4.10) x 7→ gPw
f (x) = f(x) +

(

λPw
0 +

n∑

i=1

d∑

k=1

λPw
ik

x2di
(2k)!

)

for a nonnegative vector λPw ∈ R
nd+1 which is an optimal solution of the semidef-

inite programs:

(4.11) pdwt = inf
λ≥0

{

λ0 +

n∑

i=1

d∑

k=1

λik : f + λ0 +

n∑

i=1

d∑

k=1

λik
x2di
(2k)!

∈ Pt(g)

}

,

and pdwt = ‖f − gPPwf‖w = λPw
0 +

n∑

i=1

d∑

k=1

λPw
ik .

Proof. The proof is almost a verbatim copy of that of Theorem 4.1 with a slight
difference. For instance, (4.4) is now replaced with

(4.12)

pdwt := inf
λ,XJ ,h

∑

α∈Nn
2d

wα λα

s.t. λα + hα ≥ fα, ∀α ∈ N
n
2d

λα − hα ≥ −fα, ∀α ∈ N
n
2d

hα −
m∑

J⊆{1,...,m}

〈XJ ,B
J
α〉 = 0, ∀α ∈ N

n
2t

λ ≥ 0; h ∈ R[x]2d; XJ � 0, ∀J ⊆ {1, . . . ,m}.

(where hα = 0 whenever |α| > 2d) and the dual (4.6) now reads

(4.13)







sup
y

−Ly(f)

s.t. Mt(gJ y) � 0, ∀J ⊆ {1, . . . ,m}
|yα| ≤ wα, ∀α ∈ N

n
2d.

Again with exactly the same arguments, (4.12) has a feasible solution and (4.13)
has a strictly feasible solution y, and so Slater’s condition holds for (4.13), which in
turn implies that there is no duality gap between (4.12) and (4.13), and (4.12) has
an optimal solution (λ, (XJ ), g

Pw
f ). However (and this is the only difference with
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the proof of Theorem 4.1) now one cannot guarantee any more that (4.13) has an
optimal solution because |yα| ≤ wα only for α ∈ N

n
2d and not for all α ∈ N

n
2t. �

Of course, an analogue of Theorem 4.2 (with obvious ad hoc adjustments) holds

for the ℓw-projection g
Qw
f onto Qt(g) ∩ R[x]2d. Also and again, if w ≡ 1, then the

polynomial gPw
f in (4.10) simplifies to the form in (4.8).

We next analyze the behavior of gPw
f as t → ∞ to obtain the projection of f

onto P (g) ∩ R[x]2d. Recall that

P (g) ∩ R[x]2d =




⋃

t≥0

Pt(g)



 ∩ R[x]2d =
⋃

t≥0

P d
t (g).

Corollary 4.3. Let K ⊆ R
n be as in (2.2) and with nonempty interior, f ∈ R[x]2d,

and let gPw
f (t) ∈ Pt(g) ∩ R[x]2d be an optimal solution of (4.9). Then the ℓw-

projection of f onto P (g) ∩ R[x]2d is a polynomial gwf ∈ R[x]2d of the form

(4.14) x 7→ gwf (x) = f(x) +

(

λ∗0 +

n∑

i=1

d∑

k=1

λ∗ik x
2d
i

)

,

for some nonnegative vector λ∗ ∈ R
dn+1. In particular, if K is compact and f ≥ 0

on K then λ∗ = 0 and gwf = f .

Proof. Let (pdwt ), t ∈ N, be the sequence of optimal values of (4.9), which is is non-
negative and monotone non increasing. Therefore it converges to some nonnegative
value pdw ≥ 0. For every t ∈ N, (4.9) has an optimal solution gPw

f (t) of the form

(4.15) x 7→ gPw
f (t)(x) = f(x) + λPw

0 (t) +

n∑

i=1

d∑

k=1

λPw
ik (t)

x2ki
2k!

, ∀x ∈ R
n,

with λPw(t) ≥ 0 and
∑

i,k λ
Pw
ik (t) = pdwt ≤ pdwt0 . Hence there is a subsequence

(tj), j ∈ N, and some nonnegative vector λ∗ ∈ R
nd+1
+ such that λPw(tj) → λ∗ as

j → ∞. In addition,

pdw = lim
j→∞

pdwtj = lim
j→∞

λPw
0 (tj) +

n∑

i=1

d∑

k=1

λPw
ik (tj) = λ∗0 +

n∑

i=1

d∑

k=1

λ∗ik.

Hence gPw
f (tj) → gwf ∈ R[x]2d as j → ∞ where gwf is as in (4.14). And of course,

as ‖gPw
f (t)− gwf ‖w → 0, gwf is in the closure P (g) ∩ R[x]2d of P (g) ∩ R[x]2d.

Next, suppose that the exists h ∈ P (g) ∩R[x]2d with ‖f − h‖w < ‖f − gwf ‖w.

Then there exists a sequence (ht) ⊂ R[x]2d, t ∈ N, with ht ∈ P (g)dt such that
‖ht − h‖w → 0 as t→ ∞. But then

‖f − h‖w = ‖f − ht + ht − h‖w ≥ ‖f − ht‖w
︸ ︷︷ ︸

≥‖f−gPw

f
(t)‖w

− ‖ht − h‖w
︸ ︷︷ ︸

→0 as t→∞

, ∀ t,

and so taking limit as t→ ∞ yields the contradiction

‖f − gwf ‖w > ‖f − h‖w ≥ lim
t→∞

‖f − gPw
f (t)‖w = ‖f − gwf ‖w.

Therefore ‖f − gwf ‖w = ming {‖f − h‖w : h ∈ P (g) ∩ R[x]2d}.
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The last statement (when K is compact) follows from Schmüdgen’s Positivstel-
lensatz [15] which implies that if f is nonnegative on K then f + ǫ ∈ P (g) for every
ǫ > 0. �

Of course there is an analogue of Corollary 4.3 with Q(g) in lieu of P (g). The
only change is concerned with the last statement where one needs that Q(g) is
Archimedean. And also, if w ≡ 1 then gwf in (4.14) simplifies to the form (4.8).

4.2. The sequential closures of P (g) and Q(g). Recall that for any convex cone
A ⊂ R[x]

(4.16) A‡ = {f ∈ R[x] : ∃ q ∈ R[x] s.t. f + ǫ q ∈ A, ∀ǫ > 0 }.

We have seen that P (g) ⊂ P (g)‡ ⊆ P (g), where A denotes the closure of A for
the finest locally convex topology. Therefore, it is of particular interest to describe
P (g)‡, which the goal of this section. We know that

(4.17) P (g)‡ =
⋃

d∈N

P (g) ∩ R[x]d,

and if for instance P (g) has an algebraic interior then P (g) = P (g)‡. (See e.g.
Kuhlmann and Marshall [9, Prop. 1.4] and Cimpric et al. [5, Prop. 1.3].)

Notice that Q(g)‡ =
⋃

d∈N
Q(g) ∩ R[x]d ([9]) and by [5, Prop. 1.3], we also have

Q(g) = Q(g)‡ if Q(g) is archimedean.

Theorem 4.4. Assume that K in (2.2) has a nonempty interior and let f ∈ R[x].
Then:

(a) f ∈ P (g)‡ if and only if there is some d ∈ N such that for every ǫ > 0, the
polynomial

(4.18) x 7→ f(x) + ǫ

(

1 +

n∑

i=1

x2di

)

is in P (g).

(b) The same statement as (a) also holds with Q(g) instead of P (g).
In other words, q ∈ R[x] in (4.16) for A = P (g) can be taken as x 7→ (1 +

∑n
i=1 x

2d
i ) independently of K. The dependence of q on f is through the power d

only.

Proof. (a) From (4.17) f ∈ P (g)‡ if and only if f ∈ P (g) ∩ R[x]2d for some d ∈ N.

Next, by Corollary 4.3, f ∈ P (g) ∩ R[x]2d if and only if the polynomial gwf ∈ R[x]2d
defined in (4.14) (and which simplifies to (4.8) with w ≡ 1) is identical to f . But
then this implies that the polynomial gPw

f (t) ∈ Pt(g)∩R[x]2d in (4.15) is such that
∑n

i=0 λ
Pw
i (t) → 0 as t → ∞ (recall that w ≡ 1). Let λ(t) := maxi[λ

Pw
i (t)] so that

λ(t) → 0 as t→ ∞, and the polynomial

x 7→ f(x) + λ(t)

(

1 +

n∑

i=1

x2di

)

belongs to Pt(g) ∩ R[x]2d because

f + λ(t)

(

1 +
n∑

i=1

x2di

)

= gPw
f (t) + λ(t) − λP0 (t)

︸ ︷︷ ︸

≥0

+
n∑

i=1

(λ(t) − λPf (t))
︸ ︷︷ ︸

≥0

x2di .
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Therefore, for every ǫ > 0, choosing tǫ such that λ(tǫ) ≤ ǫ ensures that the polyno-
mial f + ǫ(1 +

∑n
i=1 x

2d
i ) is in Ptǫ(g) ∩ R[x]2d, which implies the desired result in

(a).
The proof of (b) is omitted as it follows similar arguments. Indeed, it was

already mentioned that Theorem 4.2 and Corollary 4.3 have obvious analogues for
the quadratic module Q(g). �

Of course in (4.18) one may replace 1 +
∑n

i=1 x
2d
i with 1 +

∑n
i=1

∑d
k=1

x2k
i

(2k)! .

4.3. A Positivstellensatz for non compact K. As we know how to project with
the ℓw-norm, we are now able to obtain the following Positivstellensatz on K.

Corollary 4.5. Let K ⊆ R
n in (2.2) be nonempty interior. Then f ≥ 0 on K if

and only if for every ǫ > 0 there exists d ∈ N such that

(4.19) x 7→ f(x) + ǫ

(

1 +

n∑

i=1

d∑

k=1

x2ki
(2k)!

)

∈ P (g).

Proof. The only if part: Recall that P (g) =
⋃

d≥0 Pd(g), and from Theorem 3.3,

Psd(K) = clw(P (g)). Let gPw
f (d) ∈ R[x]d be the ℓw-projection of f onto Pd(g)

given in (4.2), where pdw = λPw
0 +

∑n
i=1

∑d
k=1 λ

Pw
ik . As f ∈ clw(P (g), we neces-

sarily have limd→∞ pdw = 0, because ‖f − gPw
f (d)‖w → 0. Hence given ǫ > 0, let

d be such that maxi,k λ
Pw
ik ≤ ǫ. Then

f + ǫ

(

1 +

n∑

i=1

d∑

k=1

x2ki
(2k)!

)

= gPw
f (d) + (ǫ− λPw

0 ) +

n∑

i=1

d∑

k=1

(ǫ− λPw
ik )

x2ki
(2k)!

︸ ︷︷ ︸

∈Σ[x]

,

and so f + ǫ(1 +
∑n

i=1

∑d
k=1

x2k
i

(2k)! ) ∈ P (g).

The if part. Let qd ∈ R[x] be the polynomial in (4.19), and let x ∈ K be fixed,
arbitrary. Then 0 ≤ qd(x) ≤ f(x) + ǫ

∑n
i=1 exp |xi|. Therefore, letting ǫ→ 0 yields

f(x) ≥ 0. �

5. Appendix

Lemma 5.1. Let µ a finite Borel measure whose sequence of moments y = (yα),
α ∈ N

n, is such that for all i = 1, . . . , n, and all k ∈ N, Ly(x
2k
i ) ≤ (2k!)M for

some M . Let f ∈ R[x] be such that Ly(x
2t
i f) ≥ 0 for all i = 1, . . . , n, and all t ∈ N.

Then the sequence zf = (zfα), α ∈ N
n, where zfα = Lzf (x

α) := Ly(x
αf) for all

α ∈ N
n, satisfies Carleman’s condition (2.10).

Proof. Let 1 ≤ i ≤ n be fixed arbitrary, and let 2s ≥ degf . Observe that whenever
|α| ≤ k, |x|α ≤ |xj |k on the subset Wj := {x ∈ R

n \ [−1, 1]n : |xj | = maxi |xi|}.
And so, |f(x)| ≤ ‖f‖1 |xj |2s for all x ∈ Wj . Hence,

Lzf (x
2k
i ) =

∫

f(x)x2ki dµ(x)

≤

∫

[−1,1]n
|f(x)|x

2(k)
i dµ(x) + ‖f‖1

n∑

j=1

∫

WJ

x
2(k+s)
j dµ(x)

≤ ‖f‖1 +Mn‖f‖1 (2(k + s))! ≤ 2Mn‖f‖1 (2(k + s))!,
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and so we have

Lzf (x
2k
i )−1/2k ≥ (2Mn‖f‖1)

−1/2k
(

(2(k + s))!)−1/2(k+s)
)(k+s)/k

≥
1

2

(

(2(k + s))!)−1/2(k+s)
)(k+s)/k

≥
1

2

(
1

2(k + s)

)(k+s)/k

,

where k ≥ k0 is sufficiently large so that (2Mn‖f‖1)−1/2k ≥ 1/2. Therefore,
∞∑

k=1

Lzf (x
2k
i )−1/2k ≥

1

2

∞∑

k=k0

(
1

2(k + s)

)(k+s)/k

= +∞.

where the last equality follows from ( 1
2(k+s) )

(k+s)/k = ( 1
2(k+s) )(

1
2(k+s) )

s/k and

( 1
2(k+s) )

s/k ≥ 1/2 whenever k is sufficiently large, say k ≥ k1. Hence the sequence

zf satisfies Carleman’s condition (2.10). �
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