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Abstract: A behavioral theoretical explanation of active fault tolerant control (FTC) problem
is proposed in this note. Precisely, we present the concept of canonical controller and unfalsified
control in behavioral context. The synergy of two control concepts re-configures the controller
such that the system is tolerant to unknown faults. The main feature of the resulting FTC
system is that it does not utilize any model-based fault detection and isolation procedure
on-line. Therefore, it relies solely on the time-valued trajectories generated by the unknown
plant in the closed-loop environment. In our approach to FTC, these trajectories formulate the
control specifications that characterize certain desired behavior. Consequently, the controller
re-designing process commence when this desired behavior is not satisfied.

Keywords: Fault tolerant control, canonical controller, unfalsified control

1. INTRODUCTION

In the past few years, the use of switching control is
highly experienced in the field of adaptive control. The
important trend in research is focused on the use of
multi-model techniques and switching supervisory control.
Therefore, a decision block and a bank of controller are
designed. The block adjudicates which controller is most
suitable for the current situation so that the closed loop
can achieve the performance specifications. Usually it is
seen that this concept pre-assumes the presence of at
least one right controller in the controller bank [Morse
(2008)]. Generally, this controller bank is constructed in
the analysis and development phase before the system goes
online. Switching control provides a descent formalization
of control problem when no information about the plant
is available. A widely used method which utilizes this
concept since a decade is referred as unfalsified control
[Safonov et.al. (1997)]. The underlying idea is to generate
a fictitious reference, which assist in choosing the right
controller for the current working mode of the plant. A
much similar kind of feedback control can be seen in
[Campi et.al. (2000)] but with an iterative procedure.
Further, the stability and convergence issue concerned
with adaptive switching control is discussed in [Stefanovic
et.al. (2008)].

The theory of logic based switching control relies heavily
on a bank of controllers. After its wider acceptability
for adaptive control, it has recently been used to deal
fault tolerant control [Blanke et.al. (2006)] problem. The
preliminary work [Yamé et.al. (2008)] made an analysis of
controller switching, which suggests an adaptive method
to re-configure the control law for the current system
state (faulty/normal). Generally, a fault is an unknown
variable that changes the behavior of the system such that
it no longer satisfies its purpose. The occurrence of fault

might lead to a degraded system performance or even
the complete loss of the system function. Therefore, the
goal of fault tolerant control is to respond to the after-
effects of faults such that the faulty system is still able to
achieve the desired behavior. In general, a fault tolerant
control system is composed of two parts: a diagnosis
part and a controller reconfiguration part. Various design
methods exist in the literature that achieves the fault
tolerance, see [Blanke et.al. (2006)] and the references
therein. The strong dynamical interaction between the
fault-diagnosis module and fault-accommodation module
motivates further to adopt the switching control [Yamé
et.al. (2008)] . The other issues are unavailability of exact
model, time constraints etc.

Considering the restriction of limited controllers in switch-
ing approach to FTC, the prime issue is to answer what
will happen if the right corrective controller is not available
in the controller bank. In this case, will it be possible to
maintain the fault tolerance property for the system ? This
paper deals with these questions. We assume that the plant
is linear time-invariant and the mathematical model (rep-
resentation based on state-space or transfer function) of
the plant is unknown. We collect the input-output trajec-
tory generated by the system in the finite horizon. It is also
assumed that a set of specification is given that character-
izes the desired behavior with its kernel representation.
Thus, the purpose is to design a right controller directly
based on these collected trajectories. Proceeding with the
unfalsified switching control, one can now easily relieved
the presence condition of right corrective correct controller
in the bank while utilizing our approach. Since any repre-
sentation of the plant is not known and we do not carry
any estimation process for plant, the proposed model-free
approach to FTC guarantees that the reconfiguration is
fast and reliable. The theory behind our methodology



is based on the mathematical framework of behavioral
systems. Here we make use of the canonical control [van
de Schaft (2003)] concept in behavioral setting.

In the last decade, behavioral system theoretic approach
has received an increasingly broader acceptance for mod-
eling dynamical systems [Polderman et.al. (1997)]. One
of the convincing reasons is that it does not start with
the input/output distinction for describing how a system
interacts with the environment rather, focuses on the set
of system trajectories. In behavioral approach, a math-
ematical model is simply viewed as any relation among
these time-valued trajectories (or system variables). Dy-
namically, these relations are constrained with the evolu-
tion of time. Therefore, the collection of time trajectories
that model declares possibly called the behavior of the
dynamical system.

2. CONTROL IN BEHAVIORAL CONTEXT

In this section, we brief the basic concepts of canonical
controller and unfalsified control followed by definitions
for robust feedback control and fault tolerant control
problem. The definition [Trentelman et.al (1996); Yamé
et.al. (2008)] of behavioral approach to dynamical systems
is given as

Definition 1: A dynamical system is a triple, ¥ =
(T, W,8B) with T C R the time axis, W, a set called the
signal space, and B C W7 the behavior (W7 is the set of
all W-valued time trajectories). The behavior consists of
functions w : T — W.

In behavioral setting, the control problem is viewed as an
interconnection of two dynamical sub-systems such that
the interconnected system must follow certain restrictions.
If 3, = (T,W,%81) and Xy = (T,W,B2) are two
dynamical systems with the same time axis and the same
signal space, then the interconnection of ¥; and Y3 shared
by variable ¢, denoted as Y7 A. X2, is defined as ¥ A,
Yo = (T, W,B1 A Ba), where ¢ is called the latent
variable of the system. Thus, the behavior defined by
Y1 A¢ Yo consists simply of those trajectories w : 7 — W
which are compatible with both the laws of ¥; (i.e., w
belongs to B1) and of Xz (i.e., w belongs to Bs), where w
is the manifest variable. The manifest and latent variables
are also termed as to-be-controlled and control variables
respectively.

Here, we consider an example to illustrate the control
problem in behavioral setting. Taking the advantage in
behavioral context, we omit the direction for the flow of
information as shown in Fig. 1 where symbols have their
usual meanings as in a classical feedback control.

For the brevity of explanation, consider the transfer func-
tion representation of plant is given by G(§) with its co-
prime polynomial R, and R, such that G = R, 'R,. The
behavior of plant is described as

Pr={(w,c) eRT™P | R(§)w = M(&)c} (1)

with appropriate matrices R € R**9(¢) and M € R**P(¢)
where R™*™(£) denote the set of polynomial matrices of
size p x ¢ with indeterminate &, w := (r, y) and ¢ := (e, u),
and
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Similarly, the controller is given by its transfer function
C(&) = C;tCywhere C, and C,, are the co-prime polyno-
mials. It is described as
C={ceR"[H(¢)c=0} (3)
with H € R**P(£). Now we will show how the intercon-
nection between P; and C results in a manifest controlled
behavior, I = (Py Ac C)y defined as
K ={w € R?| 3c € C such that (w,c) € Py} (4)
In that case, we say that IC is implemented by C which
in connection with the hidden behavior, N gives the
implementability condition [Belur et.al. (2002)]:

NcKcP (5)
where P is the manifest plant behavior and is given by
P = {w € R?| 3¢ € R? such that (w,c) € Py}  (6)

N ={weR?| (w,0) € Ps} (7)
Ezample  Given a plant G(s) = 5(55;4-11) and the controller
is given by C' = —22%%. Find the controlled behavior K ?
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For controller C'

(¢ 1)e+(§—|;2.6)u:0
-
C=[00&+16+26] Y] =0
u_.
1 -1 -1 0 "
Ki=108+¢ 0 —¢+1[ Y1 =0 (8
0 0 &+1&6+26] |,

Since K is a restricted behavior in P and I = (Pf A¢ C)w,
there must exist [(Polderman et.al., 1997, Sec 6.2.3)] an
unimodular matrix. The greatest common divisor between
R, (&) and C.(&) is 1. Using Bezout identity, there exists
polynomials a(§), b(£) such that a(§).R, (&) +b(£).C.(§) =
1. Define unimodular matrices Uy (), Uz2(§) as follows:

1 00 1 0 0
U =| 0 10|, 02(§) =10 a(§) b&) 1
€+101 06+26-1
Here a(§) = — 35, b(€) = 35. One casily checks that
1 -1 -1 0
Uo(Ur(E) [0 +¢6 0 —¢+1| =
0 0 E£+16+26
1 -1 -1 0
+1 (€+2)° £+0.8
=6 - 3 9)
E-1(E+nE+166+1) 0 0
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Figure 1. (a) Interconnection of subsystem; (b) Feedback control
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It follows that the relation between r and y is given by the
third row of above equation.

2.1 Canonical Controller

Here, we give a brief overview of the achievable behavior
and the canonical controller discussed in [van de Schaft
(2003)]. Given the manifest plant behavior P € R? ob-
tained by eliminating the variable ¢ from Py, let D € R?
be the desired behavior, which the interconnected system
is required to achieve, i.e. K C D. Here, we assume that
the desired behavior is always implementable. The kernel
representation of the desired behavior is represented by a
polynomial matrix D € R**9(¢) such that w € D is given
as

D(Ew =0 (11)
Given a kernel representation of desired behavior, we can
construct a canonical controller such that the intercon-

nected system satisfies the desired behavior D and is
defined as

Cean = {c € R? | 3 such that (@, c) € Py, @ € D} (12)

canonical controller

We see in previous example that the controlled behavior
is a restricted behavior in the manifest behavior, P.
Consequently, for D to be implementable, it also satisfies
D C P. Therefore, there must exist a polynomial matrix,

L such that

LER(E) = D(¢) (13)
Putting (1) in (13), we conclude

LM (§)e(t) =0 (14)

Eq.(14) induces the kernel representation of a canonical
controller acting only on the variable c.

2.2 Unfalsified Control Concept

The terminology unfalsified control was proposed in [Sa-
fonov et.al. (1997)] to the application in adaptive control
system. The formal definition of unfalsification and falsi-
fication is given as:

Definition 2: A controller is said to be falsified by
measurement information if this information is sufficient
to deduce that the performance specification (r,y,u) €
Tspee, V7 € R would be violated if that controller were in

the feedback loop. Otherwise, the controller is said to be
unfalsified.

Given C = {C1, (s, ...,Cn }, a finite, initial set of causally-
left-invertible control laws, the goal of unfalsified control
is to determine a C' € C such that for any unknown
plant G(&), representing the variations of the real system,
the closed-loop system response satisfies the performance
specifications involving the command signal r(t), the com-
mand input u(¢), and the measured output y(¢). Unfalsified
control concept uses real test data to determine C' € C
instead of any representation of plant. Let (7, u) denote a
set of closed-loop test data. Since a controller C; € C is
causally-left-invertible, it is possible to determine a unique
set of error signals, represented by €c, that will result in
the control signals @ if C}; is in the loop. The condition on C
to be causally-left-invertible is not very restrict [Stefanovic
et.al. (2008)]. It follows that the corresponding command
signals ¢, are given by
Tc, =€c, +Y (15)
Hence, 7¢, is the set of command signals that would have
yielded the signals w and 7 if the controller C; were in the
loop. Therefore, associated with each C;(i = 1,2,...,N)
is a triple (T¢,;,u,y). Based upon this triple, we assume
a cost functional J; : R? — R,i = 1,..., N and associate
performance specifications
Ji(Fe,,w,y) <o, Vi=1,.,N (16)
such that a controller is falsified if there exists i €
{1,2,..., N}, which satisfies
Hc,wy) > 7 (17)
where i and i are the indices of connected controller and
to-be-connected controller respectively. Note, performance
specifications are the control objectives that the intercon-
nected system should satisfy.

2.8 Feedback control and Fault tolerant control

As we have seen above that the desired behavior or the to-
be-achieved performance specifications play a very crucial
role to guarantee FTC for the system. For re-designing
the controller following section 2.1 and for selecting the
right controller from the bank as seen in section 2.2,
the information about the desired behavior is mandatory.
Earlier, we deal with only one performance functional that
characterizes a particular desired behavior. However, in
real-time environment, we often deal with a set of specifi-
cation so that if one of them is satisfiable or implementable
in behavioral sense, then the fault tolerance is guaran-
teed. Here, we analyze the importance of desired behavior
from the viewpoint of feedback control and fault tolerant
control. We broadly categorized the desired behavior as
the stable desired behavior and the performance desired
behavior, thus, (16) is modified as

Jj(TCivﬂvy)SEja jzla"'v(Ja ZzlvaN (18)



where j is the indices for a set of specifications. The
definitions and problem statements are given as follows:

Definition 3: Consider a plant, P; connected with an-
other subsystem, controller C such that the interconnection
results in a controlled behavior, K, given by K = Py A,
C. The controlled behavior must satisfy some constraints
imposed by performance specification known as desired
behavior, D such that I C D.

It is possible to combine a number of design specifications
as e.g. K C Dgapie N Dper formance Which means that the
interconnected subsystem must satisfy both, the stability
specification given by Dstapie and the performance specifi-
cation given by Dper formance- Here we say Dper formance 18
strictly stronger or more restricted behavior than Dg;apie
as if the interconnected system satisfy Dper formance, it will
also satiSfy Dstable- Therefore, Dperformance C Dstable-

Now we can define some problems concerned with feedback
control and fault tolerant control specifically in relation
with desired behavior.

Problem 1: The feedback control design problem for
closed loop stability of the system is given by

K= Dstable

where Dgiqapie 18 the stability specification.

Problem 2: The feedback control design problem for
performance of the system is given by

K= Dstable N Dperformance,l

where Dgiqpie is the stability specification, Dper formance,1
is the performance specification.

Problem 3: The feedback control design problem for
robust stability is given by

ICA = Dstable

where Ca is the controlled behavior as a function of the
model uncertainty given by A € A.

Problem 4: The feedback control design problem for
robust performance is given by

’CA = Dstable N Dperformance,l

Problem 5: The fault tolerant control problem for stabil-
ity is given by
IC(—) = Dstable

where Kg is the controlled behavior, which is subjected to
change when an unknown fault occurs as function of some
parameter given by © € ©.

Problem 6: The fault tolerant control problem for per-
formance is given by

’C@ = Dstable N Dperformance,?

In problem 6, it is assumed that Dper formance,1 is stronger
than Dper formance,2. It should be noted that the first
objective in fault tolerant control problem in connection
with problem 5 and 6 is the stability of the interconnected
system. The performance comes later, however, it might
be possible to design an FTC system such that any
degradation in performance can also be minimized, which
evokes to incorporate some redundancies.

The solution to the above problems can now be defined as:

Definition 4: The feedback controller is said to be sta-
bilizing if and only if the interconnected system Py A, C
satisfies the stability specification of problem 1.

Definition 5: The feedback controller is said to achieve
cost functional objective if and only if the interconnected
system P; A. C satisfies the stability and performance
specification of problem 2.

Definition 6: The feedback controller is said to be ro-
bustly stabilizing if and only if the interconnected system
Pa A C satisfies the stability specification of problem 3.

Definition 7: The feedback controller is said to satisfy ro-
bust performance if and only if the interconnected system
PaNC satisfies the stability and performance specification
of problem 4.

Definition 8: The feedback controller is said to be fault
tolerant if and only if the interconnected system Pg A. C
satisfies the stability specification of problem 5.

Definition 9: The feedback controller is said to be fault
tolerant with performance specification if and only if the
interconnected system Pg A. C satisfies the stability and
performance specification of problem 6.

3. FAULT TOLERANT CONTROL AND CANONICAL
CONTROLLER

The unfalsified control provides a powerful concept for
handling the fault tolerant control problem. However, the
scheme is effective if and only if a suitable controller exists
in the controller bank for every faulty situation. This
scenario seems to be impractical in many cases where the
faulty condition is hard to reckon. Here, we provide the
formulation of canonical control in terms of the system
trajectories and the desired behavior. Mathematically,
the design of canonical controller is proposed in [van de
Schaft (2003)]. The basic formulation uses the idea of
internal model principle (IMP). One of the applications
of canonical controller considering IMP is shown in [Jain
et.al. (2010)]. Later, in [Kaneko (2008)], the design is
explicitly formulated for the given input-output data and
the desired behavior.

3.1 Canonical Control using input-output data

Here, we assumed a plant to be single input single output
for the brevity of explanation. As we have seen earlier,
re-consider the co-prime polynomials of the plant given
by Ry (§) and R, (§). Given the control objectives, we can
deduce the kernel representation of the desired behavior
[Weiland et.al. (1997)]. Therefore, we write the kernel

r

representation (11) as [D, —D, ] y} = 0 Since D, (&)

and D, (&) are polynomials with indeterminate £, they can
also be represented as an operator that maps the reference
trajectory to the output trajectory as, y = Ty(§)r where
Ta =D, ID,.. Considering the kernel representations for

plant (2), controller (3) and the desired behavior (11), we
can directly write

Cu(D, — D,)R, + D,C.R, =0 (19)

Here we introduce a latent variable £, and rearranging (19),
it gives



R, (D, — D,)(Cy.l) + D, R,(Cc.l) =0 (20)
Simplifying (20), it can be written as
[RyDT Ru(Dr - Dy)] |:ge :| =0 (21)

From (3) we write , u = C,,C, 'e and on using the latent
variable £, it gives

o= 1] &
On simplifying (21) and (22), it results in
R0 0= g o | o] =0 e

In section 2.1 we see that the canonical controller is pa-
rameterized using R(§) and M(§) from (2). From imple-
mentability condition (5), we see that w € A is equivalent
to r =y and Ry (§)y = 0 which implies D(§)w = (D, (&) —
Dy(&))y = 0. This conditional implication also implies
that [ D, —D, ] includes R, (&) as a left factor. From this
observation, we assign the desired behavior D with the
kernel representation D'w = R, [D, —D,] = 0. This
representation corresponds to the same desired behavior
as (11). Therefore, a polynomial matrix, L({) satisfying
(13) is described by

L =[RyD, (Dr—Dy)] (24)
Eq. (21) can be modified as
(€D, CuD =D | ] =0 @)
re-arranging
D, 0 Ry |,
cca[% o o] [B]r=0 o

Since, we assumed that the plant is controllable anytime,
therefore [Polderman et.al. (1997)], there exist an image
representation of the plant behavior given by

b= (i) e
From (26) and (27), we see that
el o, ] [i]-0 e

This represents the relationship of canonical controller
for the given input-output trajectories and the desired
behavior.

For realizing the canonical controller, we assigned a struc-
ture to the polynomials, C,,(0) = 3" 6;0" and Ce(p) =
S piot with unknown parameters 6 := (6 6 ... L)
and p = (pg p1 ... p. ) respectively. Let n, and n; be the

degree of D, and (D, —D,)). Consider a finite interval data
of length N + 1, then (28) can be written as

Ce(p) Dyt kg N} = Cu(0)(Dr — Dy)yi k4N (29)
where k is the current sample time. Denote Uy, x4 N—n,] =

Dru[k,kJrN] and y[k,k-{-N—nb] = (DT — Dy)y[k,kJrN]' In the
matrix form, it can be described as

Yk e Yk4n —Up41 Utk

Yk4N-np—n—1 """ YktN—np—1 ~Uk+N-ng—m *°° ~UktN—-ng—1

The constructed canonical controller is an approximated
feedback controller as we perform the least-square method.
However, the approximation does not affect the closed-
loop system to achieve the desired behavior. Since the
approach lies into the category of data-driven control
synthesis, we do not experience any exact data matching
issues as seen in [Fujisaka et.al. (2005)]. Usually, in data-
driven control estimating the plant model in any sense
(Markovian parameters, state-space parameters, or finite
impulse responses) cause these issues. In addition, the
controller can be designed bi-proper, since we have assigned
the fixed structure to the polynomials. The bi-properness
condition is imposed on the newly designed controllers,
keeping in mind the unfalsification procedure.

3.2 Fault Tolerant Control

Here, we pose our FTC problem in behavioral setting.
Fault tolerant control is concerned with the control of
faulty system [(Blanke et.al., 2006, Ch.7)]. This implies
that we can consider any FTC problem as a control prob-
lem subjected to the state of the system (healthy/faulty).
The solution of a control problem is completely defined by
the triple < O, €, 4 > where

e §[: is the set of admissible control laws. It defines the
algorithm that can be implemented (a mapping from
the time domain to the control space).

e C : is the set of constraints that a controlled system
must satisfy over time. This represents the state
and measurement equations of actual plant model in
state-space representation.

e O :is the set of control/performance objectives. The
system is expected to achieve these objectives, when
controlled by a control law from the set .

In projection-based approach to active FTC, generally the
set 4l is finite. Subsequently, with an appropriate switching
mechanism the right controller is selected. Effectively,
the unfalsified control provides a powerful concept for
handling the fault tolerant control problem that lies into
the category of projection-based approach. However, the
scheme in the present state is effective if and only if
a suitable controller exists in the controller bank for
every faulty situation. The concept of canonical controller
provides a decent parameterization of controllers that
achieves the desired objective. Using this method, the
idea of switching control can be effectively extended from
certain number of control laws in the sense if there is
no control law available in & for any pre-defined faulty
situation.

To obtain a perfect fault tolerant control system, it has
been seen in the literature that one of among the triple
must be known. In model based FTC, the constraints
¢ are known anytime (healthy/post-fault mode). Later
the control law is designed and appended to the set il
Here, we do not consider any estimation of constraints
that implicitly involves fault detection and isolation (FDI)
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delay. In [Yamé et.al. (2008)], without determining € a
pre-designed controller set is embedded in il off-line that
guarantees the fault-tolerance property to the system for
the anticipated set of faults. In this approach, we define
only the control objectives (without determining € as
well) that characterize a set of desired behaviors that is
achievable/implementable anytime.

The extended unfalsified control approach to active FTC
is depicted in Fig. 3. The synergy of canonical control and
unfalsified control is shown by two individual shaded sub-
systems. Here, we use the same structure as explained
in [Yamé et.al. (2008)], therefore, we do not discuss the
design of supervisor. The control objective is given by
the performance functional in (16). In a finite controller
bank, the supervisor, based on falsification/unfalsification
inequality, efficiently switch the right controller in the
loop on detecting the unpermitted behavior. Therefore,
the performance functional must be Cost-detectable. This
property does not take into account the plant model
[Stefanovic et.al. (2008)], rather governed by the system
trajectories only. Since we assumed that for a set of pre-
determined faults at least one right corrective controller
exist in the bank; consequently, the unfalsified control
concept maintains the fault-tolerance property for the
system.

Subsequently, we add a controller synthesis block to
broaden the horizon of projection-based FTC. Eventually,
the desired behavior is characterized by the same control
objectives. Therefore, the approach does not conflict with
the cost-functional chosen for the pre-designed controller
and the on-line designed controller. Following the method
discussed in section 2.1, the controller is designed on-line
such that the fault-tolerance property for the system is still
maintained. Our proposed scheme assumes that a large
set of measurements is required to design a controller in
comparison to measurements required for falsifying the
controller from the bank. Therefore, on detecting the un-
permitted behavior, the supervisor first evolves the con-
troller bank later a new controller is designed if the right
controller is not found in the bank.

4. CONCLUSION

In this preliminary note, we studied a fault tolerant con-
trol problem in the behavioral theoretic framework. We
propose a real-time architecture to active FTC that does
not require any knowledge of plant parameters. Thus, our

approach lies in the broad category of data-drive FTC
that does not require an explicit FDI module, unlike to
existing data-driven approach to FTC in the literature.
Since we treat the FTC problem as any control system
problem, which is subjected to change on the occurrence
of fault. However, in data-driven control it is generally
seen that the first step is to determine any representa-
tion (state-space parameters, Markovian parameters, finite
impulse response) of the plant that implicitly introduce
the exact data matching issues and FDI delays as well.
Consequently, we do not carry any estimation process,
thus, this approach seems promising to handle in-exact
data-driven control to FTC.

Here, we propose our preliminary approach to real-time
active FTC. Therefore, our future work is to study each
shaded sub-system in Fig. 3 rigorously, and their integra-
tion issues as well.
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