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Abstract

We consider blow-up solutions for semilinear heat equations with Sobolev subcritical power nonlin-

earity. Given a blow-up point â, we have from earlier literature, the asymptotic behavior in similarity

variables. Our aim is to discuss the stability of that behavior, with respect to perturbations in the

blow-up point and in initial data. Introducing the notion of “profile order”, we show that it is upper

semicontinuous, and continuous only at points where it is a local minimum.

Résumé

Nous considérons des solutions explosives de l’équation semilinéaire de la chaleur avec une nonlinéarité

sous-critique au sens de Sobolev. Etant donné un point d’explosion â, grâce à des travaux antérieurs,

on connâıt le comportement asymptotique des solutions en variables auto-similaires. Notre objectif

est de discuter la stabilité de ce comportement, par rapport à des perturbations du point d’explosion

et de la donnée initiale. Introduisant la notion de “l’ordre du profil”, nous montrons qu’il est semi-

continu supérieurement, et continu uniquement aux points où il est un minimum local.

1 Introduction

We consider the parabolic problem
{

ut = ∆u+ |u|p−1u

u(x, 0) = u0(x)
(1.1)

where u(t) ∈ L∞(RN ), u : RN × [0, T ) −→ R, the exponent p > 1 is subcritical (that means that p < N+2
N−2

if N ≥ 3) and ∆ stands for the Laplacian in R
N .

Given u0 ∈ L∞(RN ), by standard results, the parabolic problem (1.1) has a unique classical solution
u(x, t), which exists at least for small times. The solution u(x, t) may develop singularities in some finite
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time, no matter how smooth u0(x) is. We say that u(x, t) blows up in a finite time T if u(x, t) satisfies
(1.1) in R

N × [0, T ) and
lim
t→T

‖ u(t) ‖L∞= +∞.

T is called the blow-up time of u(x, t).
A point a ∈ R

N is a blow-up point if and only if there exist (an, tn) → (a, T ) such that |u(an, tn)| → +∞
as n → +∞. We know from [30] that an equivalent definition could be a point a ∈ R

N such that
|u(x, t)| → +∞ as (x, t) → (a, T ). The blow-up set Su ⊂ R

N at time T is the set of all blow-up points.

Problem (1.1) has been addressed in different ways in the literature. A major direction was developed
by authors looking for sufficient blow-up conditions on initial data (cf. Levine [23], Ball [3]) or on the
exponent (cf. Fujita [10]). The second main direction is about the description of the asymptotic blow-
up behavior, locally near a given blow-up point (cf. Giga and Kohn [14], Bricmont and Kupiainen [4],
Herrero and Velázquez [20], Velázquez [35], Merle and Zaag [30]). It happens however that most contri-
butions concern the case of isolated blow-up, which is better understood (see Weissler [39], Bricmont and
Kupiainen [4], Fermanian, Merle and Zaag ([5] and [6])), and much less the case of non-isolated points.
In this paper, we make contributions to the asymptotic behavior question, in particular in the much less
studied case of non-isolated blow-up points.

Consider u(x, t) a solution of (1.1) which blows up at a time T on some blow-up set Su. The very first
question to be answered is the blow-up rate. According to Giga and Kohn [13] and Giga, Matsui and
Sasayama [15], we know that

∀t ∈ [0, T ), ‖ u(t) ‖L∞≤ C(T − t)−
1

p−1 . (1.2)

This fundamental step opens the door to the notion of blow-up profile which has been initiated by Herrero
and Velázquez in [17] and [20], Velázquez in [35] and [36], Filippas and Kohn in [8] and Filippas and
Liu in [9]. The following selfsimilar change of variables is particularly well adapted to the study of the
blow-up profile.

Given a be a blow-up point of u(x, t) (a solution to (1.1)) at time T , we set

u(x, t) = (T − t)−
1

p−1wa,T (y, s) where x− a = y(T − t)
1
2 , s = − log(T − t) (1.3)

so that the selfsimilar solution wa,T (y, s) satisfies for all s ∈ [− log T,+∞) and for all y ∈ R
N ,

∂swa,T = ∆wa,T − 1

2
y · ∇wa,T − 1

p− 1
wa,T + |wa,T |p−1wa,T . (1.4)

The study of u in the neighborhood of (a, T ) is equivalent to the study of wa,T for large values of the
time s. We note that, considering −wa,T if necessary, we have by [14],

wa,T (y, s) −→
s→+∞

κ = (p− 1)−
1

p−1 ,

uniformly on compact sets. Moreover, we know that the speed of convergence is either | log(T − t)|−1

(slow) or (T − t)µ (fast) for some µ > 0 (see Velázquez [36] for example).

To learn more about the way wa,T approaches κ, it is natural to linearize the equation (1.4) about κ. If
we set

va,T (y, s) = wa,T (y, s)− κ, (1.5)

then va,T (or v for simplicity) satisfies the following equation

∂sv = ∆v − 1

2
y · ∇v + v + f(v) ≡ Lv + f(v), (1.6)
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where f(v) = |v + κ|p−1(v + κ)− κ

p− 1
− p

p− 1
v. We easily see from (1.2) that |f(v)| ≤ C|v|2 for some

positive constant C.
It is natural to consider (1.6) as a dynamical system in the weighted Hilbert space

L2
ρ(R

N ) =
{

g(y) ∈ L2
loc(R

N ) :

∫

RN

g2(y)ρ(y)d y < +∞
}

, with ρ(y) =
e−

|y|2

4

(4π)
N
2

,

endowed with the norm defined by

‖ g ‖2L2
ρ
=< g, g >L2

ρ
=

∫

RN

(g(y))2ρ(y)d y,

since the operator L is self-adjoint on L2
ρ(R

N ) and has eigenvalues

λm = 1− m

2
, m = 0, 1, 2, · · · (1.7)

If N = 1, then all the eigenvalues of L are simple and to 1− m
2 corresponds the eigenfunction

hm(y) =

[m2 ]
∑

n=0

m!

n!(m− 2n)!
(−1)nym−2n. (1.8)

If N ≥ 2, the eigenfunctions corresponding to 1− m
2 are

Hα(y) = hα1
(y1) · · ·hαN

(yN ), with α = (α1, · · · , αN ) ∈ N
N and |α| = m. (1.9)

Since the eigenfunctions of L span L2
ρ(R

N ), we expand v as follows

v(y, s) =

∞
∑

k=0

vk(y, s), where vk(y, s) = Pk(v)(y, s) (1.10)

is the orthogonal projection of v on the eigenspace associated to λk = 1− k
2 .

With these new notations, we know from Velázquez [36] that if v(·, s) is not equal to the null function
for some s > 0, then, it holds that

‖ v(s)− Pm(v)(s) ‖L2
ρ
= o(‖ v(s) ‖L2

ρ
) as s → +∞, (1.11)

for some even number m = m(u0, a) ≥ 2.
Moreover, the following possibilities arise according to the value of m(u0, a):

• If m(u0, a) = 2, then there exists an orthogonal transformation of coordinate axes such that,
denoting still by y the new coordinates

v(y, s) = − κ

4ps

la
∑

k=1

(y2k − 2) + o
(1

s

)

as s → +∞, (1.12)

and then for all K0 > 0,

sup
|z|≤K0

∣

∣

∣
(T − t)

1
p−1u

(

a+ z
√

(T − t)| log(T − t)|, t
)

− fla(z)
∣

∣

∣
→ 0 as t → T, (1.13)

where la = 1, · · · , N and fla(z) =
(

p− 1 +
(p− 1)2

4p

la
∑

i=1

z2i

)− 1
p−1

.

• If m(u0, a) ≥ 4 and even, there exist constants cα not all zero such that

v(y, s) = −e(1−
m(u0,a)

2 )s
∑

|α|=m(u0,a)

cαHα(y) + o
(

e(1−
m(u0,a)

2 )s
)

as s → +∞, (1.14)
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and then for all K0 > 0,

sup
|z|≤K0

∣

∣

∣
(T − t)

1
p−1u

(

a+ z(T − t)
1
m , t

)

−
(

p− 1 +
∑

|α|=m(u0,a)

Cαz
α
)− 1

p−1
∣

∣

∣
→ 0 as t → T, (1.15)

where Cα = − κ
(p−1)2 cα, xα = xα1

1 · · ·xαN

N and |α| = α1 + · · · + αN if α = (α1, · · · , αN ) and

Ba(x) =
∑

|α|=m(u0,a)

Cαx
α ≥ 0 for all x ∈ R

N .

We recall that in (1.12) and (1.14), convergence takes place in L2
ρ(R

N ) as well as in Ck,γ
loc (R

N ) for any
k ∈ N and γ ∈ (0, 1).

In our paper, we call the even number m(u0, a) the profile order at the blow-up point a. One may
think that this description of Velázquez is exhaustive, since it gives a “profile” near any blow-up point
a ∈ Su. In our opinion, this description lets two fundamental questions unanswered:

• Question 1: Are the descriptions (1.11)-(1.15) uniform with respect to the blow-up point and
initial data?

• Question 2: What about the geometry of the blow-up set? In other words, is it possible to sum-up
the local information given in (1.12)-(1.15) for all a ∈ Su ∩ B(â, δ̂) for some â ∈ Su and δ̂ > 0, in

order to derive global information about the geometry of Su ∩B(â, δ̂)?

In this paper, we address the first question. The second question was the very first motivation of our
work. Indeed, we initially wanted to extend the work done in [40] in the case m(û0, â) = 2 to the
case m(û0, â) ≥ 4. In fact, in [40], the author could successfully use local information to show a global
information. Namely, he proved that the blow-up set is a smooth manifold, assuming only continuity of
the blow-up set. Unfortunately, we feel far from obtaining an analogous result when m(û0, â) ≥ 4, which
is a much more complicated case. Thus, we leave the second question open.
In the following, we give various answers for Question 1 in subsection 1.1. In subsection 1.2, we discuss
the difficulty of answering Question 2.

1.1 Uniform convergence to the blow-up profile in selfsimilar variables

We address Question 1 in this subsection. Up to our knowledge, Question 1 was first addressed by Zaag
in [40] in the case m(u0, a) = 2, under the assumption that Su locally contains a continuum. In [40], the
author proves that the profile remains unchanged and that the convergence is uniform with respect to the
blow-up point. This uniform estimate allowed to derive local geometrical information on the blow-up set,
namely that it is a C1 manifold, and if its codimension is 1, then, it is of class C2 (see [43]).
The result of [40], [41] and [43] relies on a dynamical system formulation of equation (1.4) and on the
following Liouville theorem by Merle and Zaag [28] and [30].

A Liouville theorem for equation (1.4) Assume that w is a solution of (1.4) defined on R
N × R

such that w ∈ L∞(RN ). Then w ≡ 0 or w ≡ ±κ or w(y, s) ≡ ±θ(s + s0) for some s0 ∈ R, where

θ(s) = κ(1 + es)−
1

p−1 .

In this paper, we want to see if the uniform convergence to the blow-up profile proved in [40] can be
extended in a double way:

• to the case where m(u0, a) ≥ 4.

• by allowing perturbations, not only with respect to the blow-up point, but also with respect to
initial data.

Our first result states that the profile orderm(u0, a) is upper semicontinuous with respect to perturbations
in the initial data and the blow-up point. More precisely, we prove the following:
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Theorem 1 (Upper semicontinuity of the profile order) Let û be a solution of (1.1) associated to

the initial data û0 and blowing up at a point â and at the time T̂ such that û(x, t) 6≡ ±κ(T̂ − t)−
1

p−1 .

Then, there exists Vû0
a neighborhood of û0 in L∞(RN ) and δ̂ > 0 such that for all u0 ∈ Vû0

, u, the
solution of (1.1) with initial data u0, blows up at T and we have this alternative:

1) either Su ∩B(â, δ̂) = ∅,

2) or for all a ∈ Su ∩B(â, δ̂), m(u0, a) ≤ m̂ ≡ m(û0, â).

Moreover, we have

sup
u0∈Vû0

sup
a∈Su∩B(â,δ̂)

‖ va,T (s)−
m̂
∑

i=2

Pi(va,T )(s) ‖L2
ρ

‖
m̂
∑

i=2

Pi(va,T )(s) ‖L2
ρ

−→ 0 as s −→ +∞. (1.16)

Remark Case 1) may occur as one can see from the example constructed by Merle in [26]. Indeed, given

â and b̂ in R, Merle gives a family of blow-up solutions uλ(x, t) to (1.1), where λ > 0, with initial data
u0,λ (continuous in λ) such that for a critical value λ∗ > 0, the following occurs:

• If λ = λ∗, then uλ∗ blows up exactly at two points, â and b̂ with m(u0,λ∗ , â) = m(u0,λ∗ , b̂) = 2.

• If λ < λ∗, then uλ blows up only at a point aλ with m(u0,λ, aλ) = 2 and aλ → â as λ → λ∗−.

• If λ > λ∗, then uλ blows up only at a point bλ with m(u0,λ, bλ) = 2 and bλ → b̂ as λ → λ∗+.

Since u0,λ → u0,λ∗ as λ → λ∗, we see that for some ε0 > 0, δ̂ > 0, we have the following:

• If λ∗ < λ < λ∗ + ε0, then Suλ
∩B(â, δ̂) = ∅.

• If λ∗ − ε0 < λ < λ∗, then Suλ
∩B(â, δ̂) = {aλ}.

Thus, this example illustrates the alternative in Theorem 1.

Remark The existence of the blow-up profile order for (u0, a) means that u(x, t) is different from the

trivial solution ±κ(T − t)−
1

p−1 (see the line before (1.11)). Since the profile order is by definition greater

or equal to 2, when m(û0, â) = 2, we get m(u0, a) = 2 for all u0 ∈ Vû0 and a ∈ Su ∩ B(â, δ̂). In other
words, the profile order is continuous near its minimal value 2. Theorem 1 was already obtained when
m(û0, â) = 2 by Fermanian Kammerer, Merle and Zaag [5] (for lâ = N) and Zaag [40] (for lâ ≤ N − 1).

Remark Unlike Zaag [41], [40] and [43], there is no need to assume that Su∩B(â, δ̂) contains a continuum.

Theorem 1 gives the uniform predominance of ‖
m̂
∑

i=2

Pi(va,T )(s) ‖L2
ρ
with respect to the initial data u0 in

a neighborhood of û0 and with respect to the singular point a in a neighborhood of â. It also provides the
upper semicontinuity of the profile order m(u0, a). In order to get the continuity (in fact, the property
of being locally constant, since m(u0, a) ∈ N), we give in the following theorem a necessary and sufficient
condition:

Theorem 2 (Necessary and sufficient conditions for the continuity of the profile order) Under
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the hypotheses of Theorem 1, the following statements are equivalent:

(i) For some δ̂′ > 0 and some neighborhood V ′
û0

of û0,

for all u0 ∈ V ′
û0

and a ∈ Su ∩B(â, δ̂′), m(u0, a) = m(û0, â).

(ii) For some δ0 > 0 and some neighborhood V0 of û0,

m(û0, â) = min
u0∈V0, a∈Su∩B(â,δ0)

m(u0, a).

(iii) For some δ̂′ > 0 and some neighborhood V ′
û0

of û0,

sup
u0∈V′

û0

sup
a∈Su∩B(â,δ̂′)

‖ va,T (s)− Pm̂(va,T )(s) ‖L2
ρ

‖ Pm̂(va,T )(s) ‖L2
ρ

−→ 0 as s −→ +∞.

Remark Sincem(u0, a) ∈ N, the set
{

(u0, a) | u0 ∈ V0 and a ∈ Su∩B(â, δ0)
}

6= ∅ (it contains (û0, â)),

the minimum in (ii) is realized for some (û1, â1). Up to replacing (û0, â) by (û1, â1) and shrinking the
neighborhoods, (ii) is satisfied. Thus, Theorem 2 is not an empty statement.

Remark Taking u0 = û0 in Theorem 2, we obtain a new version of Theorem 2 given in the next subsection
(see Theorem 2’).

Following Velázquez [36] and Filippas and Kohn [8], we find the asymptotic behavior (uniformly in u0

and a) in the following

Proposition 3 (Asymptotic behavior and blow-up profiles uniform in u0 and a) The assertions

of Theorem 2 are equivalent to the following: For some δ̂′ > 0 and V ′
û0

a neighborhood of û0 in L∞(RN ),

• If m̂ = 2, then for some C > 0 and s′ ∈ R, we have for all u0 ∈ V ′
û0
, a ∈ Su ∩B(â, δ̂′) and s ≥ s′

1

Cs
≤‖ va,T (s) ‖L2

ρ
≤ C

s
. (1.17)

• If m̂ ≥ 4, then for each α ∈ N
N with |α| = m̂, there exists cα(u0, a) ∈ R such that

sup
u0∈V′

û0

sup
a∈Su∩B(â,δ̂′)

‖ va,T (s)− e(1−
m̂
2 )s

∑

|α|=m̂

cα(u0, a)Hα ‖L2
ρ

e(1−
m̂
2 )s

→ 0 as s → +∞,

and for all K0 > 0,

sup
u0∈V′

û0

sup
a∈Su∩B(â,δ̂′)

sup
|z|≤K0

∣

∣

∣
(T−t)

1
p−1u

(

a+z(T−t)
1
m̂ , t

)

−
(

p−1+
∑

|α|=m̂

Cαz
α
)− 1

p−1
∣

∣

∣
→ 0 as t → T,

where Cα = − κ
(p−1)2 cα and the multilinear form

∑

|α|=m̂

Cαx
α ≥ 0 for all x ∈ R

N .

Moreover cα(u0, a) is continuous with respect to u0 and a.

Remark Proposition 3 has already been obtained by Herrero and Velázquez [38] [20] and Filippas and
Liu in [9] (when m̂ ≥ 2) , with no uniform character in (u0, a). Our contribution is exactly to prove this
uniform character. In fact, when m̂ ≥ 2, one has to slightly adapt the argument of [20] and [9] to get the
uniform character. See the proof of Proposition 3 in section 3.3.

Remark Unlike the case m̂ ≥ 4, we don’t have a uniform convergence to some profile when m̂ = 2
systematically. The situation is indeed more complicated.
Indeed, if lâ = N , then we know from Theorem 2 page 350 in [5] that for all u0 ∈ V ′

û0
, u0 has a single
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blow-up point a(u0) in B(â, δ̂′). Moreover, we have the uniform convergence to the profile, in the sens
that

sup
u0∈V′

û0

s ‖ va(u0),T − κ

2ps
(N − |y|2

2
) ‖L2

ρ
→ 0 as s → +∞. (1.18)

If lâ ≤ N−1, then the uniform convergence to some profile is known only under the additional hypothesis
that the blow-up set of û contains a continuum going through â of codimension lâ. The question remains
open without this hypothesis.

Remark Since we expect from the announced result of Herrero and Velázquez [21] that m(u0, a) = 2 is
the generic behavior, the minimum in (ii) of Theorem 2 should be 2, hence the case m̂ ≥ 4 in Proposition
3 is an empty case.

If N = 1, we know from Herrero and Velázquez ([19],[18]) that the situation m(u0, a) = 2 is generic, in
the sense that: given initial data û0 ∈ L∞(RN ) such that the corresponding solution of equation (1.1)
blows up at some time T̂ at some point â with m(û0, â) ≥ 4, then any neighborhood of û0 contains initial
data u0 such that the corresponding solution of equation (1.1) blows up at some time T at only one point
a with m(u0, a) = 2.
Therefore, the minimum in (ii) of Theorem 2 is equal to 2 and our Theorem 2 reads as follows:

Corollary 4 If N = 1 and under the hypotheses of Theorem 1, the following statements are equivalent:

(i) For some δ̂′ > 0 and some neighborhood V ′
û0

of û0,

for all u0 ∈ V ′
û0

and a ∈ Su ∩B(â, δ̂′), m(u0, a) = m(û0, â).

(iv) m(û0, â) = 2.

Moreover, they are both equivalent to (ii) and (iii) in Theorem 2.

Remark Following the third remark after Proposition 3, if the result of [21] is confirmed, then Corollary
4 becomes true for N ≥ 2 too. From [19], one would derive that all the behaviors where m̂ ≥ 4 or m̂ = 2
with lâ ≤ N − 1 are unstable.

1.2 Discussion of the geometry of the blow-up set

Regarding the blow-up set, two questions arise:

• The description: Given a blow-up solution u(x, t) of (1.1), what can we say about its blow-up set
Su? The only general answer available with no restriction on initial data is due to Velázquez who
proved in [37] that Su is closed and that its Hausdorff dimension is at most equal to N − 1. Our
Question 2 stated before the section 1.1 is a description question, to which we devote the following
subsection.

• The construction: Given a closed set S whose Hausdorff dimension is at most equal to N − 1, is
there a blow-up solution u(x, t) of (1.1) such that Su = S? The answer is yes when S is one of the
following cases

– a finite number of points from Merle [26];

– a sphere thanks to Giga and Kohn in [14] (see (1.15) page 848 and Corollary 5.7 page 877);

– a finite number of concentric spheres, as suggested by Matano and Merle in Theorem 1.11 page
1499 in [25]. To prove the existence of such a solution, one has to adapt the method used by
Merle in [26].

Note that the solution is radial in the two last cases. No other geometries for the blow-up sets are
known (except those artificially generated from the above cases by adding irrelevant space variables
to the domain of definition of the solution, giving rise to affine subspaces, cylinders, etc ...). The
question remains open in the other cases, in particular when S is an ellipse in 2 dimensions.
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As we said above, this subsection is devoted to Question 2. Unfortunately, we don’t give any answer,
apart from recalling the results of [40], [41] and [43] proved in the case where m(û0, â) = 2. Indeed, the
case m(û0, â) ≥ 4 is much more complicated. Our goal is to give the reader a flavor of the complexity of
Question 2.

In the following, we fix initial data u0 = û0 and allow a to move in Sû near some â ∈ Sû, a non-isolated
blow-up point.

Question 2 asks whether one can derive any information on the geometry of the blow-up set near â, from
local information in (1.12)-(1.15) on the blow-up profile near a ∈ Sû, where a is close to â.

Knowing that â is a non-isolated blow-up point, we remark that two cases in (1.12)-(1.15) cannot hold
since they lead to an isolated point:

• when m(û0, a) = 2 with la = N : we locally have a bump, see (1.18),

• or when case (1.14) occurs with a definite positive Ba(x): in that case, we know from Velázquez
[36] that a is an isolated blow-up point, i.e. Sû ∩B(a, δ) = {a} for some δ > 0.

Therefore, we either have (m(û0, â) = 2 with lâ ≤ N − 1 or m(û0, â) ≥ 4 with a non definite positive
Bâ(x)).

- When m(û0, â) = 2 and lâ ≤ N − 1, Zaag assumed in [40] (see also the note [42]) that Sû contains
a continuum going through â. He shows that Sû is locally a C1 manifold. In [43], he shows that
when lâ = N − 1, Sû is locally a C2 manifold. The proof relies on two steps:

• Step 1: Stability of the blow-up profile with respect to perturbations in the blow-
up point a and uniform convergence to the profile
The author proves the stability of the blow-up profile and the uniform convergence to the
profile with respect to the blow-up point a near â. The Liouville Theorem in [28] and [30],
stated in subsection 1.1 of our paper, is the key tool in this step.

• Step 2: A covering geometrical argument
From Step 1, the author derives an asymptotic profile for u(x, t) in every ball B(a,K0

√
T − t)

for some K0 > 0 and a a blow-up point close to â. Most importantly, these profiles are
continuous in a and the speed of convergence of u to each one in the ball B(a,K0

√
T − t) is

uniform with respect to a. Now, if a and b are in Sû and 0 < |a−b| ≤ K0

√
T − t, then the balls

B(a,K0

√
T − t) and B(b,K0

√
T − t) intersect each other, leading to two different profiles for

u(x, t) in the intersection. Of course, these profiles have to coincide, up to the error terms.
This makes a geometric constraint which gives more regularity for the blow-up set near â.
The fact that the rate of convergence of the expansion of u(x, t) in B(a,K0

√
T − t) is uniform

in a is ”essential”. By the way, Velázquez, Filippas and Liu obtain those profiles, with no
uniform character with respect to a (see [9], [35] and [36]).

This two-step technique was successfully used by Nouaili in [33] for the case of the semilinear wave
equation

utt = uxx + |u|p−1u (1.19)

where u = u(x, t), x ∈ R, 0 ≤ t ≤ T (x) and p > 1. More precisely, in [33], the author started
from the C1 regularity of the blow-up set proved by Merle and Zaag in [32] and could prove the
C1,α regularity using this two-step technique. Note that for equation (1.19), non global solutions

blow up on a graph Γ =
{

(x, T (x))| x ∈ R

}

, where x 7→ T (x) is 1-Lipschitz (see Alinhac [1], [2] or

Lindblad and Sogge [24]).

- When m(û0, â) ≥ 4 and Bâ(x) is not positive definite, our ambition was to adapt the two-step
technique of [40] here. We could obtain the first step provided thatm(û0, â) = min

a∈Sû∩B(â,δ0)
m(û0, a).

More precisely, let us write the following two versions of Theorem 2 and Proposition 3 that we obtain
taking u0 = û0.
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Theorem 2’ (Stability of the profile order near a local minimum) Under the hypotheses of
Theorem 1, the following statements are equivalent:

(i)′ For some δ̂′ > 0, for all a ∈ Sû ∩B(â, δ̂′), m(û0, a) = m(û0, â).

(ii)′ For some δ0 > 0, m(û0, â) = min
a∈Sû∩B(â,δ0)

m(û0, a).

(iii)′ For some δ̂′ > 0, sup
a∈Sû∩B(â,δ̂′)

‖ va,T (s)− Pm̂(va,T )(s) ‖L2
ρ

‖ Pm̂(va,T )(s) ‖L2
ρ

−→ 0 as s −→ +∞.

We also have the following equivalent statements to those of Theorem 2’:

Proposition 3’ (Asymptotic behavior and blow-up profiles uniform in a) The assertions of

Theorem 2’ are equivalent to the following: For some δ̂′ > 0,

• If m̂ = 2, then for some C > 0 and s′ ∈ R, we have for all a ∈ Sû ∩B(â, δ̂′) and s ≥ s′

1

Cs
≤‖ va,T (s) ‖L2

ρ
≤ C

s
.

• If m̂ ≥ 4, then for each α ∈ N
N with |α| = m̂, there exists cα(a) ∈ R such that

sup
a∈Sû∩B(â,δ̂′)

‖ va,T (s)− e(1−
m̂
2 )s

∑

|α|=m̂

cα(a)Hα ‖L2
ρ

e(1−
m̂
2 )s

→ 0 as s → +∞,

and for all K0 > 0,

sup
a∈Sû∩B(â,δ̂′)

sup
|z|≤K0

∣

∣

∣
(T − t)

1
p−1u

(

a+ z(T − t)
1
m̂ , t

)

−
(

p− 1 +
∑

|α|=m̂

Cαz
α
)− 1

p−1
∣

∣

∣
→ 0 as t → T,

where Cα = − κ
(p−1)2 cα and the multilinear form

∑

|α|=m̂

Cαx
α ≥ 0 for all x ∈ R

N .

Moreover, cα(a) is continuous with respect to a.

Thanks to Theorem 2’, it is enough to choose â such that m(û0, â) = min
a∈Sû∩B(â,δ0)

m(û0, a) in order

to get the stability of the blow-up profile and the uniform convergence to those profiles. This achieves
Step 1 in the technique of [40].
As for the geometrical covering argument of Step 2 of [40], we could not do the same, since the profiles
for m ≥ 4 are much more complicated to describe than for m = 2.
Step 1 revealed to be a fundamental step towards the regularity of the blow-up set in the case m = 2
treated in [40] and for the semilinear wave equation treated by Nouaili [33]. Similarly, we believe that in
the case m ≥ 4 for the heat equation (1.1), we made a step towards further geometrical results for the
blow-up set.

RemarkUnlike in Theorem 2 (see the third remark following Proposition 3), we may have herem(û0, â) ≥
4 and the assertion in Proposition 3’ is totally meaningful. More precisely for any even integer m ∈ N

∗,
there exists a blow-up solution u such that for all a ∈ Su, m(u0, a) = m. Indeed, one has just to adapt
the method of Bricmont and Kupiainen [4] to the radial version of (1.1):

∂tU = ∂2
rU +

N − 1

r
∂rU + |U |p−1U

to find a solution blowing up for r = 1 with:

• If m = 2, ∀K0 > 0, sup
|z|<K0

∣

∣

∣
(T − t)

1
p−1U(1+z

√
T − t, t)− (p−1+

(p− 1)2

4p
z2)−

1
p−1

∣

∣

∣
→ 0 as t → T .
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• If m ≥ 4 and even, ∀K0 > 0, sup
|z|<K0

∣

∣

∣
(T − t)

1
p−1U(1 + z(T − t)

1
m0 , t)− (p− 1 + czm0)−

1
p−1

∣

∣

∣
→ 0 as

t → T .

In fact, Bricmont and Kupiainen [4] did the work in one dimension and in higher dimensions, the term
N−1
r

∂rU can be controlled as a lower order term in selfsimilar variables.

Remark As we said in the first remark after Proposition 3, the estimate in the case m̂ = 2 has already
been proved in [9] with no uniform character.

Since m(û0, a) ∈ N, the mapping a 7→ m(û0, a) has local minima. In particular, it realizes its global
minimum at some â ∈ Sû and we have the following:

Corollary 5 Let û be a solution of (1.1) associated to the initial data û0 and blowing up at some time
T̂ . Then, there exists â ∈ Sû such that (i)′, (ii)′ and (iii)′ of Theorem 2’ are satisfied.

Remark Following this corollary, we conjecture that the profile order (for fixed initial data û0), is constant
on the connected components of Sû, and that the convergence in (iii)′ is uniform on the connected
component.

Remark This corollary is meaningful when â is a non isolated blow-up point. Note also that we don’t
prove the stability of the blow-up profile with respect to the blow-up point and that we only prove that
the order of the multilinear form Ba(x) is locally constant (hence, is stable).

Remark If m(û0, a) = 2, then it is automatically a local minimum and (ii)′ of Theorem 2’ is satisfied.
Moreover,

• If lâ = N , then â is an isolated blow-up point as written earlier.

• If lâ ≤ N−1, then with the additional hypothesis that Sû contains a continuum of dimension N− lâ
going through â, we know from [40] that the profile is stable with respect to the blow-up point.

The proof of our results relies on the Liouville Theorem of [28] and [30], and on a dynamical system
formulation in selfsimilar variables. Note that we don’t prove Corollary 4 and 5 since they are immediate
consequences of Theorem 2, Theorem 2’ and the results of Herrero and Velázquez [18] and [19].

This paper is organized as follows: In Section 2, we prove uniform estimates in the study of the equation
(1.6) satisfied by v. In Section 3, we give the proof of Theorems 1, 2 and 2’ as well as Propositions 3 and 3’.

We note that in the remaining of this paper, we will denote by C all positive constant.

2 Uniform estimates and dynamical study in selfsimilar coordi-

nates

Let û(x, t) be a solution of (1.1) with initial data û0(x) and blowing up at some point â and at time T̂

and
w 6≡ ±κ(T̂ − t)−

1
p−1 . (2.1)

From Giga and Kohn [14], and up to replacing û by −û, we assume that

ŵâ,T̂ (y, s) → κ as s → +∞ in L2
ρ(R

N ) and in Ck,γ
loc (R

N ) (2.2)

for any k ∈ N and γ ∈ (0, 1). From (2.1), as mentioned in the introduction, the blow-up profile of û near
(â, T̂ ) is given according to the value of some even parameter m̂ ≡ m(û0, â) ≥ 2 defined in (1.11).
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From now on, given initial data u0, we denote by u the solution to (1.1) corresponding to u0 and blowing
up at some time T . If a ∈ Su, we denote by wa,T the corresponding selfsimilar variables solution given
by (1.3) and by va,T the function given by (1.5).

We first derive the following uniform L∞ bound in a neighborhood of û0 and a constant sign property of
u(x, t) for x close to the blow-up point â:

Proposition 2.1 (Uniform L∞ bound and ODE localization) Fermanian Kammerer, Merle and
Zaag [5]:
There exist V1 a neighborhood of û0 in L∞(RN ), C > 0 and {Cε}ε such that for all initial data u0 in

V1,
(i) u(t) blows up in T and T → T̂ as u0 → û0 in L∞(RN ).

(ii) ∀t ∈ [0, T ), ‖ u(t) ‖L∞≤ C(T − t)−
1

p−1 ,

(iii) ∀ε > 0, ∀t ∈ [T2 , T ), |∂tu− |u|p−1u| ≤ ε|u|p + Cε.

(iv) There exists δ1 > 0 such that

∀t ∈ [T − δ1, T ), ∀|x− â| ≤ 2δ1, u(x, t) ≥ 0.

(v) For all a ∈ Su ∩B(â, δ1),

va,T (y, s) → 0 as s → +∞ in Ck,γ
loc (R

N ) for any k ∈ N and γ ∈ (0, 1).

Proof.

• For (i) to (iv), see Lemma 2.2, Proposition 1.7 and Corollary 1.8 page 358 and 355 in [5]. Note
that those results of [5] are valid without the assumption made in [5] about the blow-up profile.
For the reader’s convenience, we show how to derive (iv) from (iii). Let us consider V ′

1 a neighbor-
hood of û0 in L∞(RN ) such that for any u0 ∈ V ′

1, points (i), (ii) and (iii) hold.
Applying (iii) for ε = 1

2 , we get the existence of a positive constant C 1
2
such that

∀u0 ∈ V ′
1, ∀x ∈ R

N , ∀t ∈ [
T

2
, T ), ∂tu ≥ |u|p−1u− 1

2
|u|p − C 1

2
. (2.3)

We now choose A > 0 such that
1

2
Ap − C 1

2
> 0. (2.4)

Using (2.2), we deduce the existense of δ > 0 and δ′ > 0 such that for all |x−â| ≤ δ, û(x, T̂−δ′) > 2A.
Then, from continuity arguments applied to the equation (1.1) and the continuity of the blow-up
time (cf. (i) of this Proposition), there exists V1 a neighborhood of û0 such that V1 ⊂ V ′

1 and

∀u0 ∈ V1, ∀|x− â| ≤ δ, u(x, T − δ′) > A. (2.5)

Therefore, thanks to (2.4), we can prove from (2.3) and (2.5), by a priori estimates, that u(x, t) >
A > 0 for all u0 ∈ V1, t ∈ [T − δ′, T ) and |x− â| ≤ δ. Taking δ1 = 1

2 min(δ, δ′) concludes the proof
of (iv).

• For (v), we just remark that thanks to Giga and Kohn [12], we know that we have the convergence
of wa,T to ±κ and that since we have the positivity of the solution locally near (â, T ) (see (iv)), we
deduce that wa,T converges to κ.

This ends the proof of Proposition 2.1. �

Note that at this stage, we don’t know if the convergence in (v) is uniform with respect to u0 and a or
not. Using the Liouville theorem of Merle and Zaag [28] and [30], we can show that uniform character.

We then have:
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Proposition 2.2 (Uniform smallness of va,T ) There exists a neighborhood V2 of û0 in L∞(RN ) and
a positive constant δ2 such that as s → +∞,

(i) sup
u0∈V2

sup
a∈Su∩B(â,δ2)

‖ va,T (s) ‖L2
ρ
−→ 0,

(ii) ∀R > 0, sup
u0∈V2

sup
a∈Su∩B(â,δ2)

(

sup
|y|≤R

|va,T (y, s)|
)

−→ 0.

Proof.
We only prove (i), since (ii) follows from (i) by standard parabolic regularity arguments. Let us assume
that we cannot find a neighborhood of û0 and a constant δ2 > 0 such that (i) holds. Then there exists
η0 > 0, sn → +∞, u0,n → û0 and an → â, an ∈ Su0,n

when n → +∞ such that

∀n ∈ N, ‖ wn,an,Tn
(sn)− κ ‖L2

ρ
> η0. (2.6)

By Proposition 2.1, we know that wn,an,Tn
(y, s) → κ as s → +∞ in Ck,γ

loc (R
N ) for any k ∈ N and γ ∈ (0, 1).

Then E(wn,an,Tn
(s)) → E(κ) as s → +∞, where

E(w)(s) =

∫

RN

(1

2
|∇w(y, s)|2 + 1

2(p− 1)
|w(y, s)|2 − 1

p+ 1
|w(y, s)|p+1

)

ρ(y)dy (2.7)

is a decreasing function in time. Therefore we have

E(wn,an,Tn
(s)) ≥ E(κ). (2.8)

Since sn → +∞, the point (iv) of Proposition 2.1 implies for n large,

wn,an,Tn
(0, sn) = e−

sn
p−1un(an, Tn − e−sn) ≥ 0. (2.9)

We introduce
Wn(y, s) = wn,an,Tn

(y, s+ sn). (2.10)

Then Wn satisfies equation (1.4), and estimates (2.8), (2.9) and (2.6) yield for n large

E(Wn(0)) ≥ E(κ), Wn(0, 0) ≥ 0 and ‖ Wn(·, 0)− κ ‖L2
ρ
> η0. (2.11)

By (ii) in Proposition 2.1, (2.9) and (2.10), there exists C > 0 such that

∀s ∈ [− log Tn − sn,+∞), ‖ Wn(s) ‖L∞≤ C. (2.12)

By the parabolic regularity and a compactness procedure, and since sn → +∞, there exists W (y, s) such
that up to a subsequence

Wn → W as n → +∞ in C2,1
loc (R

N × R). (2.13)

Moreover, W satisfies (1.4), and we have from (2.11) and (2.12),

‖ W ‖L∞≤ C, E(W (0)) ≥ E(κ), W (0, 0) ≥ 0 and ‖ W (0)− κ ‖L2
ρ
> η0. (2.14)

Therefore, by the Liouville theorem, we get

W ≡ ±κ, W ≡ 0 or W (y, s) = ±θ(s+ s0), for some s0 ∈ R. (2.15)

This is in contradiction with (2.14). Indeed, W ≡ −κ contradicts W (0, 0) ≥ 0, W = κ contradicts
‖ W (0)−κ ‖L2

ρ
> η0 andW ≡ 0 orW (y, s) = ±θ(s+s0) contradict E(W (0)) ≥ E(κ) (for E(0) = 0 < E(κ)

and ∀s ∈ R, E(±θ(s)) < E(κ)). This concludes the proof of (i) of Proposition 2.2. �

Note that Proposition 2.2 gives the uniform smallness in time and space of va,T (y, s) with respect to
the initial data u0(x) in a neighborhood V2 of û0 in L∞(RN ) and a ∈ Su ∩ B(â, δ2). From the result of
Velázquez [36] stated in (1.11), we know that va,T (s) ∼ Pm(va,T (s)) in L2

ρ as s → +∞, for some even
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m(u0, a) ≥ 4, with no uniform information with respect to u0 and a. If m̂ = 2, we have already the
uniform character from [5] and [40]. When m̂ ≥ 4, we believe that we can get the uniform character if

we consider the block

m̂
∑

i=2

Pi(va,T )(s). Accordingly, we decompose va,T with respect to the spectrum of

L as follows:










































(expanding modes block) x+(s) =‖
1
∑

k=0

Pk(va,T )(s) ‖L2
ρ

(low frequency block) ym(s) =‖
m
∑

k=2

Pk(va,T )(s) ‖L2
ρ

(high frequency block) z̃m(s) =‖ va,T (s)−
m
∑

k=0

Pk(va,T )(s) ‖L2
ρ
,

(2.16)

where the projection Pk is defined in (1.10). Since the nonlinear term in (1.6) is not quadratic in L2
ρ, we

need to estimate an additional variable

Jm(s) =
(

∫

RN

|va,T (y, s)|4|y|kρ(y)dy
)

1
2

(k = k(m)) (2.17)

where k(m) > 0 will be fixed in Lemma 2.5 below as an increasing sequence. We need also to introduce

zm(s) = z̃m(s) + Jm(s). (2.18)

When (u0, a) = (û0, â), we add a “ ˆ ” to the notation (x̂+, ŷm and ẑm).

Using the notation (2.16), we claim that estimate (1.11) yields x+(s) + zm(s) = o(ym(s)) as s → +∞
which we write more precisely in the following:

Lemma 2.3 If u is a solution of (1.1) blowing up at time T and some point a with the profile given in
(1.12) or (1.14) according to the value of m = m(u0, a), then

∀ε > 0, ∃s0(ε, u0, a), ∀s ≥ s0(ε, u0, a), εym(s) ≥ x+(s) + zm(s). (2.19)

Proof.
Using (1.11), (1.12) and (1.14), we see that

‖ v(s)− Pm(v)(s) ‖L2
ρ
= o(‖ v(s) ‖L2

ρ
) as s → +∞ (2.20)

and

either m(u0, a) = 2 and ‖ v(s) ‖L2
ρ
∼ C0

s
as s → +∞,

or m(u0, a) ≥ 4 and ‖ v(s) ‖L2
ρ
∼ C0e

(1−m
2 )s as s → +∞.

(2.21)

Since we have from (2.18), x+ + zm = x+ + z̃m + Jm, we first show that x+ + z̃m = o(ym), then we show
that Jm = o(ym).
Since we have from (2.16), ‖ v(s) ‖L2

ρ
≤ C(x++ym+ z̃m)(s) and x+(s)+ z̃m(s) ≤ C ‖ v(s)−Pm(v)(s) ‖L2

ρ

as s → +∞, we use (2.20) to get
x+ + z̃m = o(ym). (2.22)

Now, we recall from Herrero and Velázquez [20], the following regularizing effect for the operator L:

Claim 2.4 (Herrero and Velázquez [20]) There exist positive s∗ and C∗ such that for s large enough, we
have:

(

∫

RN

|v(y, s)|8ρ(y)dy
)

1
8 ≤ C∗

(

∫

RN

|v(y, s− s∗)|2ρ(y)dy
)

1
2

.
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Proof.
See Lemma 2.3 in [20], page 142. Note that the result holds for sign-changing solutions with the same
proof. �

Using (2.17), the Cauchy-Schwarz inequality and Claim 2.4, we write

Jm(s) ≤
(

∫

RN

|v(y, s)|8ρ(y)dy
)

1
4
(

∫

RN

|y|2kρ(y)dy
)

1
4 ≤ C

(

∫

RN

v(y, s− s∗)2ρ(y)dy
)

. (2.23)

We claim that for s large enough, we have:
∫

RN

v(y, s− s∗)2ρ(y)dy ≤ C

∫

RN

v(y, s)2ρ(y)dy. (2.24)

Indeed, if m(u0, a) = 2, then we write from (2.21), for s large enough
∫

RN

v(y, s− s∗)2ρ(y)dy ≤ 2C0

s− s∗
≤ 3C0

s
≤ 4 ‖ v(s) ‖L2

ρ

and the same proof holds when m(u0, a) ≥ 4.
Using (2.23), (2.24), (2.16) and (2.22), we write

Jm(s) ≤ C
(

∫

RN

v(y, s− s∗)2ρ(y)dy
)

≤ C

∫

RN

v(y, s)2ρ(y)dy ≤ C(x2
+ + y2m + z̃2m)(s) ≤ Cy2m(s).

Hence Jm(s) = o(ym(s)) as s → +∞. Using (2.22), we conclude the proof of Lemma 2.3. �

In order to prove the stability of the block

m̂
∑

i=2

Pi(va,T )(s) , we use the decomposition (2.16) and (2.18)

to project equation (1.6) in the following:

Lemma 2.5 (Differential inequalities on the components of va,T (s)) For all i ≥ 2, there exist
k = k(i) > 0 an increasing sequence, a neighborhood V3(i) ⊂ V2 of û0 in L∞(RN ) and δ3(i) > 0
such that for all ε > 0, there exists s3(ε, i) ∈ R such that for all s ≥ s3(ε, i), for all u0 ∈ V3(i) and
a ∈ Su ∩B(â, δ3(i)), we have

x′
+(s) ≥

1

2
x+(s)− ε

(

x+(s) + yi(s) + zi(s)
)

(2.25)

ε
(

x+(s) + yi(s) + zi(s)
)

≥ y′i(s) ≥ (1− i

2
)yi(s)− ε

(

x+(s) + yi(s) + zi(s)
)

(2.26)

z′i(s) ≤ (1− i+ 1

2
)zi(s) + ε

(

x+(s) + yi(s) + zi(s)
)

(2.27)

Proof. See Appendix A. �

With these inequalities, we are in a position to prove that for i = m̂, ym̂ dominates x+ and zm̂ as
s → +∞, uniformly with respect to u0 and a. In the following, we start by neglecting x+ with respect
to yi + zi.

Lemma 2.6 (Uniform smallness of the expanding modes block) For all i ≥ 2, u0 ∈ V3(i),
a ∈ Su ∩B(â, δ3(i)), ε > 0 and s ≥ s3(ε, i), we have

x+(s) ≤ ε
(

yi(s) + zi(s)
)

. (2.28)

This Lemma is an immediate consequence of the following:

Lemma 2.7 Consider s∗ ∈ R and Y, Z ∈ C1([s∗,+∞),R+) such that
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1) for all ε > 0, there exists s5(ε) such that

for all s ≥ s5(ε)

{

Y ′ ≥ −ε(Y + Z)

Z ′ ≤ − 1
3Z + εY.

2) If for some ŝ ≥ s∗, we have Y (ŝ) + Z(ŝ) = 0, then for all s ≥ ŝ, Y (s) + Z(s) = 0.

Then, either Z = o(Y ) or Y = o(Z) as s → +∞. Moreover, in this latter case, we have

∀ε > 0 and s ≥ s5(ε), Y (s) ≤ CεZ(s).

Indeed, let us first derive Lemma 2.6 from Lemma 2.7 and then prove this latter.

Proof of Lemma 2.6.
Let Y (s) = e

s
2x+(s) and Z(s) = e

s
2 (yi(s) + zi(s)). Using Lemma 2.5, we see that Y and Z satisfy condi-

tion 1) of Lemma 2.7. It also satisfies condition 2). Indeed, if we assume that Y (ŝ) + Z(ŝ) = 0 for some
ŝ ≥ − log T , then from the definitions (2.16) and (2.18) of x+, ym and zm, we have ‖ va,T (ŝ) ‖L2

ρ
= 0,

hence va,T (·, ŝ) ≡ 0. From the uniqueness of the solution to the Cauchy problem of equation (1.6), we
get va,T (·, s) ≡ 0, hence Y (s) + Z(s) = 0 for all s ≥ ŝ. Therefore, the conclusion of Lemma 2.6 directly
follows from Lemma 2.7 �

Let us now prove Lemma 2.7.

Proof of Lemma 2.7.
Part 1: Let ε > 0, we prove in this part that

either ∃s′5 = s′5(ε) such that ∀s ≥ s′5, Z(s) ≤ CεY (s), (2.29)

or ∀s ≥ s5(ε), Y (s) ≤ CεZ(s). (2.30)

We set γ(s) = 6εY (s)− Z(s). Two cases arise:

Case 1: ∃s′5 ≥ s5(ε) such that γ(s′5) > 0.
If for all s ≥ s′5, γ(s) ≥ 0, then (2.29) holds.
If not, then we have γ(s∗) = 0 for some s∗ ≥ s′5 where s∗ is the smallest s satisfying γ(s) = 0. Therefore
γ′(s∗) ≤ 0. We then compute γ′(s∗). We have from the hypothesis 1)

γ′(s∗) = 6εY ′(s∗)− Z ′(s∗) ≥ Z(s∗)(−ε− 6ε2 +
1

6
) ≥ 1

7
Z(s∗) for ε small enough.

Knowing that γ′(s∗) ≤ 0, we deduce that Z(s∗) = Y (s∗) = 0. By hypothesis 2), we have Z(s) = Y (s) = 0
for all s ≥ s∗ and (2.29) follows with s′5 = s∗.

Case 2: ∀s ≥ s5(ε), γ(s) ≤ 0, that is
6εY (s) ≤ Z(s). (2.31)

Then, we have from hypothesis 1)

∀s ≥ s5(ε), Z ′(s) ≤ −1

6
Z(s) and Z(s) + Y (s) → 0 as s → +∞. (2.32)

Using (2.31) and hypothesis 1), we then deduce that Y ′ ≥ −( 16 + ε)Z ≥ (1 + 6ε)Z ′. Integrating between
s and +∞, we get Y ≤ (1 + 6ε)Z. Writing again hypothesis 1) using this last inequality and (2.32), we
get

Y ′ ≥ (−ε(1 + 6ε)− ε)Z ≥ 6ε(2 + 6ε)Z ′.

Integrating again between s and +∞, we get

Y (s) ≤ 6ε(2 + 6ε)Z(s),
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which gives the second case.
Part 2: Let ε < 1

C
, then either (2.29) or (2.30) occurs.

Assuming that (2.29) occurs, it is clear from Part 1, that for any ε′ < ε, (2.29) occurs as well. Hence
Z = o(Y ) as s → +∞. If (2.30) occurs for ε, then we are lead to Y = o(Z) as s → +∞. This ends the
proof of Lemma 2.7. �

Using Lemmas 2.5 and 2.7, we get the following:

Corollary 2.8 (Either the high or the low frequency block of va,T dominates) For all i ≥ 2,
u0 ∈ V3(i) and a ∈ Su ∩ B(â, δ3(i)), we have either zi(s) = o(yi(s)) or yi(s) = o(zi(s)) as s → +∞.

Moreover, in this latter case, we have

for all ε > 0 and s ≥ s3(ε, i), yi(s) ≤ Cεzi(s). (2.33)

Proof.
Just apply Lemmas 2.5 and 2.7 with Y (s) = e(1−

i
2 )syi(s) and Z(s) = e(1−

i
2 )szi(s). �

Remark: Unlike the case where yi = o(zi), when zi = o(yi), the inequalities (2.26) and (2.27) alone do
not yield an estimate like (2.33), uniform with respect to u0 and a. As a matter of fact, when i = m̂, we
will use other ideas to derive such a uniform estimate. That will be the heart of our argument.

We now establish the following result giving the uniform stability of the dynamic where ym is predominant.

Lemma 2.9 (Uniform stability of the dynamic where the low frequency block is predomi-
nant) For all i ≥ 2 and C∗ > 0, there exists s∗(i, C∗) ∈ R, such that for all initial data u0 in V3(i),
a ∈ Su ∩B(â, δ3(i)) and s0 ≥ s∗,

if yi(s0) ≥ C∗zi(s0), then ∀s ≥ s0, yi(s) ≥
C∗

2
zi(s). (2.34)

Proof.
Consider i ≥ 2. Following closely the proof in [5], (Lemma 3.3 page 375) and considering Lemmas 2.5
and 2.6, we have for all ε ∈ (0, 1

2 ), u0 ∈ V3(i), a ∈ Su ∩B(â, δ3(i)) and s ≥ s3(ε, i)






y′i(s) ≥ (1− i
2 )yi(s)− 3

2ε
(

yi(s) + zi(s)
)

z′i(s) ≤ (1− i+1
2 )zi(s) +

3
2ε
(

yi(s) + zi(s)
)

.

(2.35)

We argue by contradiction. Suppose that there exists C > 0, s0 > s3(ε, i) where ε = C
4(2+C)2 , u0 ∈ V3(i)

and a ∈ Su ∩B(â, δ3(i)) such that

yi(s0) ≥ Czi(s0) and ∃s∗0 > s0, yi(s
∗
0) <

C

2
zi(s

∗
0).

Let γ(s) = yi(s)− C
2 zi(s), then γ(s0) ≥ 0 and γ(s∗0) < 0. Therefore, there exists s2 ∈ [s0, s

∗
0[ such that

γ(s2) = 0, γ(s) < 0 for all s ∈ [s2, s
∗
0), hence γ′(s2) ≤ 0 (2.36)

on the one hand. On the other hand, we have from (2.35)

γ′(s2) = y′i(s2)−
C

2
z′i(s2) ≥

C

4
zi(s2) + (1− i

2
)
(

yi(s)−
C

2
zi(s2)

)

− 3

2
ε(1 +

C

2
)
(

yi(s2) + zi(s2)
)

. (2.37)

Using (2.36) and (2.37), we obtain

γ′(s2) ≥
[C

4
− 3

2
ε(1 +

C

2
)2
]

zi(s2) > yi(s2), (2.38)

since ε = C
4(2+C)2 and zi(s2) > 0 (in case zi(s2) = 0 it follows that for all s ≥ s2, va ≡ 0 and γ(s) = 0

which contradicts γ(s∗0) < 0). This contradicts (2.36) and concludes the proof of Lemma 2.9. �
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3 Proof of the main results

Our aim in this section consists in proving Theorems 1, 2 and 2’ as well as Propositions 3 and 3’.

3.1 Proof of Theorem 1

We claim that it is enough to prove (1.16). Indeed, assuming (1.16) true and taking a ∈ Su ∩B(â, δ̂), we
see from the definition of m(u0, a) that va,T (s) ∼ Pm(u0,a)(va,T (s)) as s → +∞ in L2

ρ on the one hand.

On the other hand, from (1.16), va,T (s) ∼
m̂
∑

i=2

Pi(va,T (s)) as s → +∞ in L2
ρ. Thus, m(u0, a) ≤ m̂ and

the alternative 1), 2) in Theorem 1 holds. Therefore, we only prove (1.16).
We proceed in three parts. In Part 1, we prove that zm̂(s) ≤ ym̂(s) uniformly in u0 and a. In Part 2, we
prove that zm̂(s) = o(ym̂(s)) as s → +∞, with no uniform character (with respect to a and u0). Finally,
in Part 3, we prove the uniform character of zm̂(s) = o(ym̂(s)) as s → +∞.

Part 1: We claim the following:

Lemma 3.1 There exists ŝ0 ∈ R, a neighborhood V4 ⊂ V3(m̂) of û0 in L∞(RN ) and δ4 ∈ (0, δ3(m̂)),
such that for all u0 ∈ V4 and for all a ∈ Su ∩B(â, δ4),

∀s ≥ ŝ0, ym̂(s) ≥ zm̂(s). (3.1)

Proof.
Rewriting Lemma 2.9 with C∗ = 2, we have the existence of some s∗ such that

∀u0 ∈ V3, ∀a ∈ Su ∩B(â, δ3),

if ∃s0 ≥ s∗ such that ym̂(s0) ≥ 2zm̂(s0), then ∀s ≥ s0, ym̂(s) ≥ zm̂(s).
(3.2)

By Lemma 2.3 applied to (û0, â) with ε = 1
3 ,

∃s0(
1

3
, û0, â) : ∀s ≥ s0(

1

3
, û0, â), ŷm̂(s) ≥ 3ẑm̂(s).

We set

ŝ0 := max
(

s0(
1

3
, û0, â), s

∗
)

.

Then, using continuity arguments at s = ŝ0, applied to equation (1.1), we obtain the existence of a
neighborhood V ′′

3 of û0 in L∞(RN ) and δ′′3 > 0 such that

∀u0 ∈ V ′′
3 ∀a ∈ Su ∩B(â, δ′′3 ), ym̂(ŝ0) ≥ 2zm̂(ŝ0).

Finally, by (3.2), we obtain for all u0 ∈ V4 = V3∩V ′′
3 and for all a ∈ Su∩B(â, δ4) (where δ4 = inf(δ3, δ

′′
3 )),

∀s ≥ ŝ0, ym̂(s) ≥ zm̂(s).

This ends the proof of Lemma 3.1. �

Part 2: We claim the following:

Lemma 3.2 For all ε > 0, u0 ∈ V4 and a ∈ Su ∩B(â, δ4), there exists s′5(ε, u0) ∈ R such that

∀s ≥ s′5(ε, u0, a), 4εym̂(s) ≥ zm̂(s). (3.3)
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Proof.
Let ε > 0, u0 ∈ V4 and a ∈ Su ∩ B(â, δ4). We shall restrict ε to small ones in the following. Using
Lemmas 2.5, 2.6 and 3.1, setting

s4(ε) = sup
(

ŝ0, s3(ε, m̂)
)

, (3.4)

we have for all s ≥ s4(ε), the inequalities (2.35) and (3.1) hold. Using Corollary 2.8, we see that:

either ym̂(s) = o(zm̂(s)) or zm̂(s) = o(ym̂(s)) as s → +∞ and in view of (3.1), we must have zm̂(s) =
o(ym̂(s)) as s → +∞ and Lemma 3.2 follows. �

Part 3: From Lemma 3.2, we can introduce for all ε > 0, u0 ∈ V4 and a ∈ Su ∩B(â, δ4)

s5(ε, u0, a) := inf
{

s ≥ s4(ε) : ∀σ ≥ s, 4εym̂(σ) ≥ zm̂(σ)
}

. (3.5)

We claim the following:

Lemma 3.3

s5(ε, u0, a)− s4(ε) is bounded only in terms of ε independently from u0 and a.

Proof.
If s5(ε, u0, a) = s4(ε), then the answer is trivial. Hence, we assume in the following that s4(ε) <

s5(ε, u0, a). We note that in this case, by minimality, there exists a sequence (sn) such that

sn −→
n→+∞

s5(ε, u0, a), with sn ∈ [s4(ε), s5(ε, u0, a)] and 4εym̂(sn) < zm̂(sn). (3.6)

Step 1: We prove that

∃ε0 > 0 : ∀ε ∈ (0, ε0) : ∀s ∈ [s4(ε), s5(ε, u0, a)], 4εym̂(s) ≤ zm̂(s). (3.7)

We argue by contradiction. If (3.7) does not hold, then we can construct from (3.6) σ∗(= σ∗(n)) ∈
[

s4(ε), sn
)

such that

4εym̂(σ∗) = zm̂(σ∗) and ∀σ ∈ (σ∗, sn], 4εym̂(σ) < zm̂(σ). (3.8)

By minimality, this yields
z′m̂(σ∗)− 4εy′m̂(σ∗) ≥ 0, (3.9)

on the one hand. On the other hand, using (2.35), there exists ε0 > 0 such that for all ε ∈ (0, ε0), we
have

z′m̂(σ∗)− 4εy′m̂(σ∗) ≤ (1− m̂+1
2 )zm̂(σ∗) + 3

2ε
(

ym̂(σ∗) + zm̂(σ∗)
)

−4ε
[

(1− m̂
2 )ym̂(σ∗)− 3

2ε
(

ym̂(σ∗) + zm̂(σ∗)
)

]

≤ zm̂(σ∗)
[

− 1
8 + 3ε+ 6ε2

]

≤ 0.

(3.10)

Using (3.9) and (3.10), we see that zm̂(σ∗) = 0. Therefore, va,T (y, s) ≡ 0 for all s ≥ σ∗, by uniqueness
in the Cauchy problem of (1.6). By definition (2.16) and (2.18) of ym̂ and zm̂, we see that for all s ≥ σ∗,
zm̂(s) = ym̂(s) = 0, hence s5(ǫ, u0, a) ≤ σ∗ from (3.5). This contradicts the fact that σ∗ < sn ≤
s5(ǫ, u0, a). Thus, (3.7) holds. Finally, using (3.5) and (3.7), we are led to

zm̂(s5(ε, u0, a)) = 4εym̂(s5(ε, u0, a)). (3.11)

Step 2: We prove that
s5(ε, u0, a)− s4(ε) ≤ 10| log ε|. (3.12)

In fact, using (3.1), (3.4) and (3.7), we have :

∀s ∈ [s4(ε), s5(ε, u0, a)], 4εym̂(s) ≤ zm̂(s) ≤ ym̂(s). (3.13)
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If for some s̄ ∈ [s4, s5], ym̂(s̄) = 0, then, ym̂(s̄) = zm̂(s̄) and va,T (y, s) = 0 for all s ≥ s̄ by uniqueness in
the Cauchy problem of (1.6). This implies s5(ε, u0, a) = s4(ε) and (3.12) follows.
If for all s ∈ [s4(ε), s5(ε, u0, a)], ym̂(s) > 0, using (3.13), (2.35) becomes : ∀s ∈ [s4(ε), s5(ε, u0, a)],

y′m̂(s) ≥
(

1− m̂

2
− 3ε

)

ym̂(s) and z′m̂(s) ≤
(11

8
− m̂+ 1

2
+

3

2
ε
)

zm̂(s).

Therefore,

[log(
zm̂

ym̂
)]′ ≤ −1

8
+ 5ε ≤ −1

9
if ε is small enough

and by (3.13), we have

4ε ≤ zm̂(s5)

ym̂(s5)
≤ zm̂(s4)

ym̂(s4)
exp[(− (s5 − s4)

9
],

which yields
s5(ε, u0, a)− s4(ε) ≤ 9| log 4ε|,

and Lemma 3.3 is proved. �

As a conclusion : for all ε < ε′0, u0 ∈ V ′

= V4, a ∈ Su ∩B(0, δ4), we have from (3.5) and (3.12):

∀s ≥ s′0(ε) = s4(ε) + 10| log ε| ≥ s5(ε, u0, a), 4εym̂(s) ≥ zm̂(s). (3.14)

Therefore, from (2.18) and (2.28), we have

for all s ≥ max(s′0(ε), s3(ε, m̂)), z̃m̂ + x+ ≤ Cεym̂.

Using (2.16), we get

‖ va,T (s)−
m̂
∑

k=2

Pk(va,T (s)) ‖L2
ρ
≤ Cε ‖ va,T (s) ‖L2

ρ

which concludes the proof of (1.16) and Theorem 1. �

3.2 Proof of Theorem 2 and Theorem 2’

We only prove Theorem 2, since the proof of Theorem 2’ is quite similar. Indeed, in order to get the
proof of Theorem 2’, just follow the proof of Theorem 2 and take V0 = Vû0

= {û0}.

Proof of Theorem 2.
(iii) =⇒ (i): this follows by the definition (1.11) of the profile order.
(i) =⇒ (ii): trivial.
(ii) =⇒ (iii):

Let V6 = V4∩V3(m̂)∩V1∩V3(m̂−1)∩V0 (hence, for Theorem 2’, V6 = {û0}) and δ6 = min(δ3(m̂), δ4, δ3(m̂−
1), δ0) and introduce

pm̂(s) =‖ Pm̂(v)(s) ‖L2
ρ
. (3.15)

We claim that the (iii) follows from the following:

Lemma 3.4 For all ε > 0, there exists s6(ε) such that for all s ≥ s6(ε), u0 ∈ V6 and a ∈ Su ∩B(â, δ6),
we have

(a) x+(s) ≤ ε(ym̂−1 + pm̂ + zm̂)(s),

(b) zm̂(s) ≤ ε(ym̂−1 + pm̂)(s),

(c) ym̂−1(s) ≤ ε(x+ + ym̂−1 + pm̂ + zm̂)(s).
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Indeed, considering ε ∈ (0, 1
4 ), s ≥ s6(ε), u0 ∈ V6 and a ∈ Su∩B(â, δ6) and summing the three inequalities

in this Lemma, we get:

x+(s) + zm̂(s) + ym̂−1(s) ≤ 3εpm̂(s) + 2ε(x+ + zm̂ + ym̂−1)(s).

Hence, using the definition (2.18) of z̃m̂, we get

x+(s) + z̃m̂(s) + ym̂−1(s) ≤ x+(s) + zm̂(s) + ym̂−1(s) ≤ 6εpm̂(s).

Using the definition (2.16), (3.15) of x+, z̃m̂, ym̂−1 and pm̂, we get

‖ v(s)− Pm̂(v)(s) ‖L2
ρ
≤ 6ε ‖ Pm̂(v)(s) ‖L2

ρ
,

which is the desired conclusion in (iii).

It remains to prove Lemma 3.4 to conclude the proof of Theorems 2 and 2’.

Proof of Lemma 3.4.
Consider ε > 0, u0 ∈ V6 and a ∈ Su ∩B(â, δ6).

(a) From Lemma 2.6, we have for all s ≥ s3(ε, m̂),

x+(s) ≤ ε(ym̂ + zm̂)(s).

Since we have the definition (2.16) of ym̂,

ym̂(s) ≤ pm̂(s) + ym̂−1(s) (3.16)

and (a) follows.

(b) This is a direct consequence of (3.14) and (3.16).

(c) Since by (ii) of the Theorem 2, we have m(u0, a) ≥ m̂, we have from the definitions (1.11), (2.16),
(2.18) and of m(u0, a), ym̂−1, z̃m̂−1 and zm̂−1

ym̂−1(s) = o(z̃m̂−1(s)), hence ym̂−1(s) = o(zm̂−1(s)) as s → +∞, (3.17)

(with no uniform character with respect to u0 and a).
Applying Corollary 2.8 with i = m̂ − 1, we see then that the second estimate in (3.17) holds uniformly
in the sense that

for all ε > 0 and s ≥ s3(ε, m̂− 1), ym̂−1(s) ≤ Cεzm̂−1(s).

Using the definitions (2.18), (2.16) and (3.15) of zm̂−1, z̃m̂−1 and pm̂, we write

zm̂−1(s) = z̃m̂−1(s) + Jm̂−1(s), (3.18)

z̃m̂−1(s) ≤ pm̂(s) + z̃m̂−1(s) ≤ pm̂(s) + zm̂(s). (3.19)

Since ‖ v ‖L∞≤ M + κ from (ii) of Proposition 2.1, and knowing that the sequence k(i) is increasing, we
write from the definitions (2.17) and (2.18) of Jm̂ and zm̂:

Jm̂−1(s) ≤
(

∫

|y|<1

|v(y, s)|4|y|k(m̂−1)ρ(y)dy
)

1
2

+
(

∫

|y|>1

|v(y, s)|4|y|k(m̂−1)ρ(y)dy
)

1
2

≤ M
(

∫

|y|<1

|v(y, s)|2ρ(y)dy
)

1
2

+
(

∫

|y|>1

|v(y, s)|4|y|k(m̂)ρ(y)dy
)

1
2

≤ M ‖ v(s) ‖L2
ρ
+Jm̂(s)
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which gives
Jm̂−1(s) ≤ M ‖ v(s) ‖L2

ρ
+zm̂(s). (3.20)

Since we have from the definition (2.16), (3.15) and (2.18) of x+, ym̂−1, pm̂, z̃m̂ and zm̂,

‖ v(s) ‖L2
ρ
≤ (x+ + ym̂−1 + pm̂ + z̃m̂)(s) ≤ (x+ + ym̂−1 + pm̂ + zm̂)(s),

(c) follows from (3.18), (3.19) and (3.20).
This concludes the proof of Lemma 3.4 as well as (ii) =⇒ (iii). This concludes also the proof of Theorems
2 and 2’. �

3.3 Proof of Propositions 3 and 3’

We only prove Proposition 3 since Proposition 3’ follows by the same argument.

Proof of Proposition 3.

We will prove that the assertion in Proposition 3 is equivalent to assertion (i) in Theorem 2.

Assertion of Proposition 3 =⇒ (i) of Theorem 2: If the assertion of Proposition 3 is true, then by definition

of m(u0, a), for all u0 ∈ V ′
û0
, a ∈ Su ∩B(â, δ̂′), m(u0, a) = m̂ and (i) of Theorem 2 follows.

(i) of Theorem 2 =⇒ Assertion of Proposition 3: Here, we redo the analysis of Herrero and Velázquez
[20] and Filippas and Liu [9], paying attention to getting the uniform character with respect to u0 and
a. We will distinguish two cases: m̂ ≥ 4 and even and m̂ = 2.

If m̂ ≥ 4 and even: For a multi-index α in N
N , we introduce vα the projection of v over Hα. It is

defined by

vα(s) =

∫

RN

v(y, s)
Hα(y)

‖ Hα ‖2
L2

ρ

ρ(y)dy. (3.21)

Note that for any m ∈ N, Pm(v) defined in (1.10) satisfies

Pm(v)(y, s) =
∑

|α|=m

vα(s)Hα(y).

Taking |α| = m̂ and projecting equation (1.6) on the eigenfunction Hα, we write:

v′α(s) = (1− m̂

2
)vα(s) +

∫

RN

f(v(y, s))
Hα(y)

‖ Hα ‖2
L2

ρ

ρ(y)dy.

Since |v| ≤ C and |f(v)| ≤ C|v|2 ≤ C|v| 32 , we use the Hölder inequality to write

∣

∣

∣

∫

RN

f(v(y, s))Hα(y)ρ(y)dy
∣

∣

∣
≤ C

∫

RN

|v(y, s)| 32 (1 + |y|m̂)ρ(y)dy ≤ C
(

∫

RN

|v(y, s)|2ρ(y)dy
)

3
4

.

Therefore, from (iii) of Theorem 2, we know that for all |α| = m̂ and s ≥ s9 for some s9 ∈ R,

∣

∣

∣
v′α(s)− (1− m̂

2
)vα(s)

∣

∣

∣
≤ C

(

∫

RN

|v(y, s)|2ρ(y)dy
)

3
4 ≤ Cp

3
2

m̂(s), (3.22)

with p2m̂(s) =‖ Pm̂(v)(s) ‖2L2
ρ
=
∑

|β|=m̂

(vβ(s))
2 ‖ Hβ ‖2L2

ρ
and

p′m̂(s) ≤ (1− m̂

2
)pm̂(s) + Cp

3
2

m̂(s),
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since ‖ v(s) ‖L2
ρ
→ 0, hence pm̂(s) → 0 as s → +∞, uniformly in u0 and a (see Proposition 2.2 and (i) of

Theorem 2). Therefore, this yields pm̂(s) ≤ Ce(1−
m̂
2 )s for s ≥ s10, for some s10, and for all u0 ∈ V10 and

a ∈ Su ∩B(â, δ10). Injecting this in (3.22), we get the existence of Cα(u0, a) such that vα ∼ Cαe
(1− m̂

2 )s.
More precisely, for all s ≥ s10, u0 ∈ V10 and a ∈ Su ∩B(â, δ10),

|vα(s)− Cαe
(1− m̂

2 )s| ≤ Ce
3
2 (1−

m̂
2 )s

and Cα is continuous with respect to u0 and a.

If m̂ = 2: This case has been treated by Filippas and Liu in [9] and Velázquez in [36], with no uniform
character. Our contribution is to prove this uniform character.

From (1.8) and (1.9) (with m = 2), we know that the eigenvalue λ2 = 0 is of multiplicity N(N+1)
2 and

that its eigenspace is generated by the orthogonal basis

{

yiyj | i < j
}

∪
{

y2i − 2 | i = 1, · · · , N
}

. (3.23)

Therefore, defining the N ×N symmetric matrix A(u0, a, s) (or A(s) for simplicity) by

A(u0, a, s) ≡ A(s) =

∫

RN

va,T (y, s)M(y)ρ(y)dy where Mi,j(y) =
1

4
yiyj −

1

2
δij , (3.24)

we see that the coefficients of A(s) are (up to a multiplicity factor) the projections of va,T (y, s) on the
eigenspace generated by (3.23). Moreover, we have the following nice expression for P2(v)

P2(v)(y, s) =
1

2
yTA(s)y − trA(s) with

1

C0
≤

‖ P2(v)(s) ‖L2
ρ

‖ A(s) ‖ ≤ C0. (3.25)

We have the following result:

Lemma 3.5 (An ODE satisfied by the matrix A(s)) There exist V10 a neighborhood of u0 in
L∞(RN ×R) and a constant δ10 > 0 such that for all ε > 0, there exist s10(ε) satisfying for all s ≥ s10(ε),
u0 ∈ V10, and a ∈ Su ∩B(â, δ10),

‖ A′(s)− 1

β
A(s)2 ‖≤ ε ‖ A(s) ‖2 with β =

κ

2p
. (3.26)

Proof.
As for Proposition 3.2 page 514 in [40], there is no difficulty in adapting the proof of Filippas and Liu [9]
to this uniform context. �

In the following Lemma, we define eigenvalues for A(s) and project (3.26) on the eigenvectors:

Lemma 3.6 (Eigenvalues for the matrix A(s))

(i) There exist N real functions li(u0, a, s) = li(s), eigenvalues of A(s) C1 in terms of s.
For any (ū0, ā, s̄) ∈ V10 × Sū ∩ B(â, δ10)× [− log T,+∞) and ǫ > 0, there exists η > 0 such that if
(u0, a, s) ∈ V10 × Su ∩B(â, δ10)× [− log T,+∞) and ‖u0 − ū0‖L∞(RN ) + |a− ā|+ |s− s̄| ≤ η, then
for all i ∈ {1, ..., N}, |lσ(i)(u0, a, s)− li(ū0, ā, s̄)| ≤ ǫ for some permutation σ of {1, ..., N}.

(ii) The eigenvalues of A(s) satisfy for all s ≥ s10(ε), u0 ∈ V10, and a ∈ Su ∩ B(â, δ10) (where s10(ε),
V10 and δ10 are defined in Lemma 3.5),

∣

∣

∣
li
′(s)− 1

β
|li(s)|2

∣

∣

∣
≤ ε
(

N
∑

i=1

|li(s)|2
)

, i = 1, · · · , N. (3.27)
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Remark: We take
N
∑

i=1

|li(s)| or

√

√

√

√

N
∑

i=1

|li(s)|2 as a norm of A(s) depending on the convenience.

We note that
N
∑

i=1

|li(s)| is always different from zero. Indeed, if we assume that there exist a time s0,

u0 and a such that

N
∑

i=1

|li(s0)| = 0, then A(s0) = 0. Using (3.25) and (iii) of Theorem 2, we see that

v(y, s0) ≡ 0. This yields v(y, s) ≡ 0 and A(s) = 0 for all the times thanks to the uniqueness of the initial
value problem for equation (1.1). Consequently, we get

u ≡ κ(T − t)−
1

p−1 . (3.28)

Since Proposition 3 holds under the hypotheses of Theorem 1 and (3.28) is excluded by the hypotheses

of Theorem 1, we get a contradiction. Thus,
N
∑

i=1

|li(s)| is always different from zero.

Proof of Lemma 3.6.

(i) As for Lemma 3.1 page 514 in [40], from the regularity of wa,T , it is clear that for each a ∈ R
N ,

the symmetric matrix A(s) is a C1 function of s. Therefore, according to Kato [22], we can define
N C1 functions of s that we denote by li(u0, a, s) ≡ li(s), 1 ≤ i ≤ N , eigenvalues of A(s).
Since A(s) is a continuous function of (u0, a, s) and the eigenvalues of a matrix vary continuously
with respect to the coefficients, the eigenvalues li(s) are continuous in terms of (u0, a, s), after
appropriate renaming.

(ii) The ODE (3.27) follows from (3.26) by projection on the eigenvectors. We refer to [9] and [36] for
more details.

�

Since we have from (iii) in Theorem 2, (3.25) and the remark after Lemma 3.6 that for some C0 > 0 and

some s13 large enough, for all s ≥ s13, u0 ∈ V ′
û0
, a ∈ Su ∩B(â, δ̂′),

1

C0
≤

‖ va,T (s) ‖L2
ρ

N
∑

i=1

|li(s)|
≤ C0,

clearly (1.17) follows from the following Lemma:

Lemma 3.7 There exist C0 > 0 and s11 such that for all s ≥ s11, u0 ∈ V10, a ∈ Su ∩B(â, δ10),

(i)

N
∑

i=1

|li(s)| ≥
1

C0s
(3.29)

(ii) − C0

s
≤

N
∑

i=1

li(s) < 0. (3.30)

(iii)

N
∑

i=1

|li(s)| ≤
C0

s
(3.31)

Therefore, our proof reduces to the proof of Lemma 3.7.

Proof of Lemma 3.7.
The proof of this fact follows from the argument of Filippas and Liu for the proof of Proposition 3 page
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324 in [9] and Velázquez for the proof of Lemma 3.2 page 458 in [36].

(i) Consider u0 ∈ V10 and a ∈ Su ∩B(â, δ10). Thanks to (3.27), we know that for all s ≥ s10(
1

2βN ),

(

N
∑

i=1

l2i (s)
)′

= 2

N
∑

i=1

li(s)l
′
i(s) ≥ −c

(

N
∑

i=1

l2i (s)
)

3
2

,

for some positive constant c independent of u0, a and s. Integrating this inequality, we get the inequality
(3.29).

(ii) Consider u0 ∈ V10 and a ∈ Su ∩B(â, δ10). From (3.27), we know that for all s ≥ s10(
1

2βN )

(

N
∑

i=1

li(s)
)′

≥ 1

2β

N
∑

i=1

|li(s)|2 > 0. (3.32)

Therefore, knowing that

N
∑

i=1

li(s) → 0 as s → +∞, we must have

N
∑

i=1

li(s) < 0 for all s ≥ s10(
1

2βN
). (3.33)

Then, by (3.32), we get

∀s ≥ s10(
1

2βN
),

(

N
∑

i=1

li(s)
)′

≥ c
(

N
∑

i=1

li(s)
)2

,

for some c > 0, which gives (3.30) by integration.

(iii) Introducing
η(s) = min

1≤i≤N
li(s), (3.34)

we see from (ii) of Lemma 3.6 that η : s 7→ η(s) is absolutely continuous on [s10(ε),+∞). Hence, η is
almost everywhere differentiable on [s10(ε),+∞). Moreover, for any ε > 0 and almost every s ≥ s10(ε),
we have

η′(s) ≥ 1

β
η2(s)− ε

N
∑

i=1

|li(s)|2.

Since we trivially have

η(s) ≤ − 1

N∗

N
∑

i=1

|li(s)| where N∗ = max
{

N, 2(N − 1)
}

, (3.35)

it follows
N
∑

i=1

|li(s)|2 ≤
(

N
∑

i=1

|li(s)|
)2

≤ N2
∗η

2(s).

Hence for ε = 1
2βN2

∗
and for almost every s ≥ s10(ε),

η′(s) ≥ η2(s)
( 1

β
− εN2

∗

)

≥ 1

2β
η2(s).

Since η(s) < 0, from (3.34) and (3.33), we get by integration for all s ≥ s11 ≡ max
(

s10(
1

2βN ), s10(
1

2βN2
∗
)
)

−2β

s
≤ η(s) < 0.

Using (3.35), we conclude the proof of (iii) of Lemma 3.7, which gives the conclusion of Proposition 3. �
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A Proof of Lemma 2.5

Let P̄i(v) =

i
∑

l=2

Pl(v). Applying P̄i on the equation (1.6) satisfied by va,T (y, s) (v(y, s) for simplicity),

multiplying by P̄iv and integrating with respect to ρ(y)dy, we get

y′i(s)yi(s) =

∫

RN

P̄i(Lv)P̄ivρdy +

∫

RN

P̄i(f(v))P̄ivρdy ≡ I1 + I2.

By definition of L and P̄i, we have

I1 =

∫

RN

P̄i(Lv)P̄ivρdy =

i
∑

l,j=2

(1− l

2
)

∫

RN

PlvPjvρdy =

i
∑

l=2

(1− l

2
)

∫

RN

(Plv)
2ρdy,

from the orthogonality of the eigenspaces of L in L2
ρ.

Since y2i (s) =
i
∑

l=2

∫

RN

(Plv)
2ρdy, it follows that

0 ≥ I1 ≥ (1− i

2
)y2i (s).

Using the Cauchy-Schwarz inequality and the fact that |f(v)| ≤ C|v|2, we have

I2 ≤ C ‖ v2(s) ‖L2
ρ
yi(s).

So, we get

C ‖ v2(s) ‖L2
ρ
≥ y′i(s) ≥ (1− i

2
)yi(s)− C ‖ v2(s) ‖L2

ρ
. (A.1)

Similarly, we have

x′
+(s) ≥

1

2
x+(s)− C ‖ v2(s) ‖L2

ρ
and z̃′i(s) ≤ (1− i+ 1

2
)z̃i(s) + C ‖ v2(s) ‖L2

ρ
. (A.2)

In order to estimate ‖ v2 ‖L2
ρ
, we follow an idea of Filippas and Kohn in their paper [8]. Using Proposition

2.2, we have: ∀u0 ∈ V2, a ∈ Su ∩B(â, δ2), ε > 0, and δ > 0, ∃s2(ε) such that ∀s ≥ s2(ε)

‖ v2(s) ‖2L2
ρ
=

∫

|y|≤δ−1

v4(y, s)ρ(y)dy +

∫

|y|≥δ−1

v4(y, s)ρ(y)dy ≤ ε2 ‖ v(s) ‖2L2
ρ
+δkJ2

i (s)

where k ∈ N (later, we will choose k large and depending on m). Then,

‖ v2(s) ‖L2
ρ
≤ ε ‖ v(s) ‖L2

ρ
+δ

k
2 Ji(s) ≤ ε(x+ + yi + z̃i)(s) + δ

k
2 Ji(s), ∀s ≥ s2(ε). (A.3)

In order to get an estimation on Ji, we multiply the equation (1.6) by v3(y, s)|y|kρ(y) and integrate by
parts. Writing L(v) = 1

ρ
∇(ρ∇v) + v, we then have

1

4

d

ds

(

∫

RN

v4(y, s)|y|kρ dy
)

= J2
i (s) + I3 + I4, (A.4)

where, using the fact that |f(v)| ≤ C|v|,

I3 =

∫

RN

f(v(y, s))v3(y, s)|y|kρ dy ≤ CJ2
m(s),

and

I4 =

∫

RN

∇(ρ(y)∇v(y, s))v3(y, s)|y|kρ(y) dy

= −k

8
J2
m(s) +

k(k − 1)

4

∫

RN

v4(y, s)|y|k−2ρ(y) dy − 3

∫

RN

v2(y, s)|∇v(y, s)|2|y|kρ(y) dy

≤ −k

8
J2
i (s) +

k(k − 1)

4

∫

RN

v4(y, s)|y|k−2ρ(y) dy.
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Then, going back to (A.4) and using Cauchy-Schwarz inequality, we obtain

1

4

d

ds
(J2

i (s)) ≤ −(
k

8
− 1− C)J2

i (s) +
k(k − 1)

4
Ji(s)

(

∫

RN

v4(y, s)|y|k−4ρ(y) dy
)

1
2

. (A.5)

Now, using the uniform convergence to zero of v over the compact subsets of RN when s → +∞ given
by Proposition (2.2), we have

(

∫

RN

v4(y, s)|y|k−4ρ(y) dy
)

1
2 ≤

(

∫

|y|≤δ−1

v4(y, s)|y|k−4ρ(y) dy
)

1
2

+
(

∫

|y|≥δ−1

v4(y, s)|y|k−4ρ(y) dy
)

1
2

≤ εδ2−
k
2 ‖ v(s) ‖L2

ρ
+δ2Jm(s).

Thus replacing in (A.5), we get the following integral inequation satisfied by Jm:

J ′
i(s) ≤ −θJi(s) + ε′ ‖ v(s) ‖L2

ρ
, (A.6)

where

θ = θ(k, δ) =
k

2
− 2− 2C − k(k − 1)

2
δ2 and ε′ = ε′(ε, δ, k) =

1

2
k(k − 1)εδ2−

k
2 .

Given i ≥ 2, by first choosing k = k(i) large, then δ = δ(i) small, we can always make θ ≥ i+1
2 − 1. Note

that by a trivial induction on i, it is possible to choose k(i) as an increasing sequence of i. Note also that
choosing ǫ small enough, we can make ǫ′ as small as we want. Hence, from (A.6), we obtain

J ′
i(s) ≤ (1− i+ 1

2
)Ji(s) + ε′ ‖ v(s) ‖L2

ρ
≤ (1− i+ 1

2
)Ji(s) + ε′ (x+ + yi + z̃i)(s), ∀s ≥ s2(ε). (A.7)

Finally, using (A.3), (A.1) and (A.2), we have for all s ≥ s2(ε):







y′i(s) ≥ (1− i
2 )yi(s)− Cε(x+ + yi + z̃i)(s)− Cδ

k
2 Ji(s)

z̃′i(s) ≤ (1− i+1
2 )z̃i(s) + Cε(x+ + yi + z̃i)(s) + Cδ

k
2 Ji(s),

as zi = z̃i+Ji. Taking ε̂ > 0, then by choosing k large enough, δ small enough and finally ε small enough,
we can make δ

k
2 C ≤ εC + ε′ < ε̂. Therefore, we get the desired result for some s3(ε̂) ≥ s2(ε) and some

neighborhood V3 ⊂ V2 of initial data û0. �
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