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Introduction

We consider the parabolic problem

u t = ∆u + |u| p-1 u u(x, 0) = u 0 (x) (1.1)
where u(t) ∈ L ∞ (R N ), u : R N × [0, T ) -→ R, the exponent p > 1 is subcritical (that means that p < N +2 N -2

if N ≥ 3) and ∆ stands for the Laplacian in R N . Given u 0 ∈ L ∞ (R N ), by standard results, the parabolic problem (1.1) has a unique classical solution u(x, t), which exists at least for small times. The solution u(x, t) may develop singularities in some finite This fundamental step opens the door to the notion of blow-up profile which has been initiated by Herrero and Velázquez in [START_REF] Herrero | Flat blow-up in one-dimensional semilinear heat equations[END_REF] and [START_REF] Herrero | Blow-up behaviour of one-dimensional semilinear parabolic equations[END_REF], Velázquez in [START_REF] Velázquez | Higher dimensional blow-up for semilinear parabolic equations[END_REF] and [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF], Filippas and Kohn in [START_REF] Filippas | Refined asymptotics for the blow-up of u t -∆u = u p[END_REF] and Filippas and Liu in [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF]. The following selfsimilar change of variables is particularly well adapted to the study of the blow-up profile.

Given a be a blow-up point of u(x, t) (a solution to (1.1)) at time T , we set u(x, t) = (Tt) -1 p-1 w a,T (y, s) where xa = y(Tt)

1 2 , s = -log(T -t) (1.3)
so that the selfsimilar solution w a,T (y, s) satisfies for all s ∈ [-log T, +∞) and for all y ∈ R N ,

∂ s w a,T = ∆w a,T - 1 2 y • ∇w a,T - 1 p -1 w a,T + |w a,T | p-1 w a,T . (1.4) 
The study of u in the neighborhood of (a, T ) is equivalent to the study of w a,T for large values of the time s. We note that, considering -w a,T if necessary, we have by [START_REF] Giga | Nondegeneracy of blow-up for semilinear heat equations[END_REF],

w a,T (y, s) -→ s→+∞ κ = (p -1) -1 p-1 ,
uniformly on compact sets. Moreover, we know that the speed of convergence is either | log(Tt)| -1 (slow) or (Tt) µ (fast) for some µ > 0 (see Velázquez [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF] for example).

To learn more about the way w a,T approaches κ, it is natural to linearize the equation (1.4) about κ. If we set v a,T (y, s) = w a,T (y, s)κ, (1.5) then v a,T (or v for simplicity) satisfies the following equation

∂ s v = ∆v - 1 2 y • ∇v + v + f (v) ≡ Lv + f (v), (1.6) 
where f (v) = |v + κ| p-1 (v + κ) -κ p -1 -p p -1 v. We easily see from (1.2) that |f (v)| ≤ C|v| 2 for some positive constant C.

It is natural to consider (1.6) as a dynamical system in the weighted Hilbert space , endowed with the norm defined by

L 2 ρ (R N ) = g(y) ∈ L 2 loc (R N ) :
g 2 L 2 ρ =< g, g > L 2 ρ = R N (g(y)) 2 ρ(y)d y,
since the operator L is self-adjoint on L 2 ρ (R N ) and has eigenvalues

λ m = 1 - m 2 , m = 0, 1, 2, • • • (1.7)
If N = 1, then all the eigenvalues of L are simple and to 1 -m 2 corresponds the eigenfunction

h m (y) = [ m 2 ] n=0 m! n!(m -2n)!
(-1) n y m-2n .

(1.8)

If N ≥ 2, the eigenfunctions corresponding to 1 -m 2 are

H α (y) = h α1 (y 1 ) • • • h α N (y N ), with α = (α 1 , • • • , α N ) ∈ N N and |α| = m. (1.9) 
Since the eigenfunctions of L span L 2 ρ (R N ), we expand v as follows

v(y, s) = ∞ k=0 v k (y, s), where v k (y, s) = P k (v)(y, s) (1.10) 
is the orthogonal projection of v on the eigenspace associated to λ k = 1 -k 2 . With these new notations, we know from Velázquez [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF] that if v(•, s) is not equal to the null function for some s > 0, then, it holds that v(s) -P m (v)(s) L 2 ρ = o( v(s) L 2 ρ ) as s → +∞, (1.11) for some even number m = m(u 0 , a) ≥ 2. Moreover, the following possibilities arise according to the value of m(u 0 , a):

• If m(u 0 , a) = 2, then there exists an orthogonal transformation of coordinate axes such that, denoting still by y the new coordinates

v(y, s) = - κ 4ps la k=1 (y 2 k -2) + o 1 s as s → +∞, (1.12) 
and then for all K 0 > 0, • If m(u 0 , a) ≥ 4 and even, there exist constants c α not all zero such that v(y, s) = -e (1-m(u 0 ,a)

2

)s |α|=m(u0,a)

c α H α (y) + o e (1-m(u 0 ,a)

2 )s as s → +∞, (1.14) and then for all K 0 > 0, sup |z|≤K0

(Tt)

1 p-1 u a + z(T -t) 1 m , t -p -1 + |α|=m(u0,a) C α z α -1 p-1
→ 0 as t → T, (1.15) where

C α = -κ (p-1) 2 c α , x α = x α1 1 • • • x α N N and |α| = α 1 + • • • + α N if α = (α 1 , • • • , α N ) and B a (x) = |α|=m(u0,a)
C α x α ≥ 0 for all x ∈ R N .

We recall that in (1.12) and (1.14), convergence takes place in L 2 ρ (R N ) as well as in C k,γ loc (R N ) for any k ∈ N and γ ∈ (0, 1).

In our paper, we call the even number m(u 0 , a) the profile order at the blow-up point a. One may think that this description of Velázquez is exhaustive, since it gives a "profile" near any blow-up point a ∈ S u . In our opinion, this description lets two fundamental questions unanswered:

• Question 1: Are the descriptions (1.11)- (1.15) uniform with respect to the blow-up point and initial data?

• Question 2: What about the geometry of the blow-up set? In other words, is it possible to sum-up the local information given in (1.12)-(1.15) for all a ∈ S u ∩ B(â, δ) for some â ∈ S u and δ > 0, in order to derive global information about the geometry of S u ∩ B(â, δ)?

In this paper, we address the first question. The second question was the very first motivation of our work. Indeed, we initially wanted to extend the work done in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] in the case m(û 0 , â) = 2 to the case m(û 0 , â) ≥ 4. In fact, in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF], the author could successfully use local information to show a global information. Namely, he proved that the blow-up set is a smooth manifold, assuming only continuity of the blow-up set. Unfortunately, we feel far from obtaining an analogous result when m(û 0 , â) ≥ 4, which is a much more complicated case. Thus, we leave the second question open.

In the following, we give various answers for Question 1 in subsection 1.1. In subsection 1.2, we discuss the difficulty of answering Question 2.

Uniform convergence to the blow-up profile in selfsimilar variables

We address Question 1 in this subsection. Up to our knowledge, Question 1 was first addressed by Zaag in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] in the case m(u 0 , a) = 2, under the assumption that S u locally contains a continuum. In [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF], the author proves that the profile remains unchanged and that the convergence is uniform with respect to the blow-up point. This uniform estimate allowed to derive local geometrical information on the blow-up set, namely that it is a C 1 manifold, and if its codimension is 1, then, it is of class C 2 (see [START_REF] Zaag | Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation[END_REF]). The result of [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF], [START_REF] Zaag | One dimensional behavior of singular N dimensional solutions of semilinear heat equations[END_REF] and [START_REF] Zaag | Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation[END_REF] relies on a dynamical system formulation of equation (1.4) and on the following Liouville theorem by Merle and Zaag [START_REF] Merle | Optimal estimates for blowup rate and behavior for nonlinear heat equations[END_REF] and [START_REF] Merle | A Liouville theorem for vector-valued nonlinear heat equations and applications[END_REF].

A Liouville theorem for equation (1.4) Assume that w is a solution of (1.4) 

defined on R N × R such that w ∈ L ∞ (R N ). Then w ≡ 0 or w ≡ ±κ or w(y, s) ≡ ±θ(s + s 0 ) for some s 0 ∈ R, where θ(s) = κ(1 + e s ) -1 p-1 .
In this paper, we want to see if the uniform convergence to the blow-up profile proved in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] can be extended in a double way:

• to the case where m(u 0 , a) ≥ 4.

• by allowing perturbations, not only with respect to the blow-up point, but also with respect to initial data.

Our first result states that the profile order m(u 0 , a) is upper semicontinuous with respect to perturbations in the initial data and the blow-up point. More precisely, we prove the following:

Theorem 1 (Upper semicontinuity of the profile order) Let û be a solution of (1.1) associated to the initial data û0 and blowing up at a point â and at the time T such that û(x, t) ≡ ±κ( Tt) -1 p-1 . Then, there exists V û0 a neighborhood of û0 in L ∞ (R N ) and δ > 0 such that for all u 0 ∈ V û0 , u, the solution of (1.1) with initial data u 0 , blows up at T and we have this alternative:

1) either S u ∩ B(â, δ) = ∅, 2) or for all a ∈ S u ∩ B(â, δ), m(u 0 , a) ≤ m ≡ m(û 0 , â).

Moreover, we have

sup u0∈V û0 sup a∈Su∩B(â, δ) v a,T (s) - m i=2 P i (v a,T )(s) L 2 ρ m i=2 P i (v a,T )(s) L 2 ρ -→ 0 as s -→ +∞.
(1.16)

Remark Case 1) may occur as one can see from the example constructed by Merle in [START_REF] Merle | Solution of a nonlinear heat equation with arbitrarily given blow-up points[END_REF]. Indeed, given â and b in R, Merle gives a family of blow-up solutions u λ (x, t) to (1.1), where λ > 0, with initial data u 0,λ (continuous in λ) such that for a critical value λ * > 0, the following occurs:

• If λ = λ * , then u λ * blows up exactly at two points, â and b with m(u 0,λ

* , â) = m(u 0,λ * , b) = 2.
• If λ < λ * , then u λ blows up only at a point a λ with m(u 0,λ , a λ ) = 2 and a λ → â as λ → λ * -.

• If λ > λ * , then u λ blows up only at a point b λ with m(u 0,λ , b λ ) = 2 and b λ → b as λ → λ * + .
Since u 0,λ → u 0,λ * as λ → λ * , we see that for some ε 0 > 0, δ > 0, we have the following:

• If λ * < λ < λ * + ε 0 , then S u λ ∩ B(â, δ) = ∅. • If λ * -ε 0 < λ < λ * , then S u λ ∩ B(â, δ) = {a λ }.
Thus, this example illustrates the alternative in Theorem 1.

Remark The existence of the blow-up profile order for (u 0 , a) means that u(x, t) is different from the trivial solution ±κ(Tt) -1 p-1 (see the line before (1.11)). Since the profile order is by definition greater or equal to 2, when m(û 0 , â) = 2, we get m(u 0 , a) = 2 for all u 0 ∈ V û0 and a ∈ S u ∩ B(â, δ). In other words, the profile order is continuous near its minimal value 2. Theorem 1 was already obtained when m(û 0 , â) = 2 by Fermanian Kammerer, Merle and Zaag [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF] (for l â = N ) and Zaag [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] (for l â ≤ N -1).

Remark Unlike Zaag [START_REF] Zaag | One dimensional behavior of singular N dimensional solutions of semilinear heat equations[END_REF], [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] and [START_REF] Zaag | Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation[END_REF], there is no need to assume that S u ∩B(â, δ) contains a continuum. Theorem 1 gives the uniform predominance of

m i=2 P i (v a,T )(s) L 2
ρ with respect to the initial data u 0 in a neighborhood of û0 and with respect to the singular point a in a neighborhood of â. It also provides the upper semicontinuity of the profile order m(u 0 , a). In order to get the continuity (in fact, the property of being locally constant, since m(u 0 , a) ∈ N), we give in the following theorem a necessary and sufficient condition:

Theorem 2 (Necessary and sufficient conditions for the continuity of the profile order) Under the hypotheses of Theorem 1, the following statements are equivalent:

(i) For some δ′ > 0 and some neighborhood V ′ û0 of û0 , for all u 0 ∈ V ′ û0 and a ∈ S u ∩ B(â, δ′ ), m(u 0 , a) = m(û 0 , â).

(ii) For some δ 0 > 0 and some neighborhood V 0 of û0 , m(û 0 , â) = min u0∈V0, a∈Su∩B(â,δ0) m(u 0 , a).

(iii) For some δ′ > 0 and some neighborhood V ′ û0 of û0 ,

sup u0∈V ′ û0 sup a∈Su∩B(â, δ′ ) v a,T (s) -P m(v a,T )(s) L 2 ρ P m(v a,T )(s) L 2 ρ -→ 0 as s -→ +∞.
Remark Since m(u 0 , a) ∈ N, the set (u 0 , a) | u 0 ∈ V 0 and a ∈ S u ∩B(â, δ 0 ) = ∅ (it contains (û 0 , â)), the minimum in (ii) is realized for some (û 1 , â1 ). Up to replacing (û 0 , â) by (û 1 , â1 ) and shrinking the neighborhoods, (ii) is satisfied. Thus, Theorem 2 is not an empty statement.

Remark Taking u 0 = û0 in Theorem 2, we obtain a new version of Theorem 2 given in the next subsection (see Theorem 2').

Following Velázquez [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF] and Filippas and Kohn [START_REF] Filippas | Refined asymptotics for the blow-up of u t -∆u = u p[END_REF], we find the asymptotic behavior (uniformly in u 0 and a) in the following Proposition 3 (Asymptotic behavior and blow-up profiles uniform in u 0 and a) The assertions of Theorem 2 are equivalent to the following: For some δ′ > 0 and V ′ û0 a neighborhood of û0 in L ∞ (R N ),

• If m = 2, then for some C > 0 and s ′ ∈ R, we have for all

u 0 ∈ V ′ û0 , a ∈ S u ∩ B(â, δ′ ) and s ≥ s ′ 1 Cs ≤ v a,T (s) L 2 ρ ≤ C s .
(1.17)

• If m ≥ 4, then for each α ∈ N N with |α| = m, there exists c α (u 0 , a) ∈ R such that

sup u0∈V ′ û0 sup a∈Su∩B(â, δ′ ) v a,T (s) -e (1-m 2 )s |α|= m c α (u 0 , a)H α L 2 ρ e (1-m 2 )s → 0 as s → +∞,
and for all K 0 > 0, sup

u0∈V ′ û0 sup a∈Su∩B(â, δ′ ) sup |z|≤K0 (T -t) 1 p-1 u a+z(T -t) 1 m , t -p-1+ |α|= m C α z α -1 p-1 → 0 as t → T,
where C α = -κ (p-1) 2 c α and the multilinear form |α|= m C α x α ≥ 0 for all x ∈ R N . Moreover c α (u 0 , a) is continuous with respect to u 0 and a.

Remark Proposition 3 has already been obtained by Herrero and Velázquez [START_REF] Velázquez | Blow up for semilinear parabolic equations[END_REF] [20] and Filippas and Liu in [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF] (when m ≥ 2) , with no uniform character in (u 0 , a). Our contribution is exactly to prove this uniform character. In fact, when m ≥ 2, one has to slightly adapt the argument of [START_REF] Herrero | Blow-up behaviour of one-dimensional semilinear parabolic equations[END_REF] and [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF] to get the uniform character. See the proof of Proposition 3 in section 3.3.

Remark Unlike the case m ≥ 4, we don't have a uniform convergence to some profile when m = 2 systematically. The situation is indeed more complicated. Indeed, if l â = N , then we know from Theorem 2 page 350 in [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF] that for all u 0 ∈ V ′ û0 , u 0 has a single blow-up point a(u 0 ) in B(â, δ′ ). Moreover, we have the uniform convergence to the profile, in the sens that sup

u0∈V ′ û0 s v a(u0),T - κ 2ps (N - |y| 2 2 ) L 2 ρ → 0 as s → +∞. (1.18)
If l â ≤ N -1, then the uniform convergence to some profile is known only under the additional hypothesis that the blow-up set of û contains a continuum going through â of codimension l â.

The question remains open without this hypothesis.

Remark Since we expect from the announced result of Herrero and Velázquez [START_REF] Herrero | Generic behaviour near blow-up points for a N -dimensional semilinear heat equation[END_REF] that m(u 0 , a) = 2 is the generic behavior, the minimum in (ii) of Theorem 2 should be 2, hence the case m ≥ 4 in Proposition 3 is an empty case.

If N = 1, we know from Herrero and Velázquez ([19], [START_REF] Herrero | Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles[END_REF]) that the situation m(u 0 , a) = 2 is generic, in the sense that: given initial data û0 ∈ L ∞ (R N ) such that the corresponding solution of equation (1.1) blows up at some time T at some point â with m(û 0 , â) ≥ 4, then any neighborhood of û0 contains initial data u 0 such that the corresponding solution of equation (1.1) blows up at some time T at only one point a with m(u 0 , a) = 2. Therefore, the minimum in (ii) of Theorem 2 is equal to 2 and our Theorem 2 reads as follows:

Corollary 4 If N = 1 and under the hypotheses of Theorem 1, the following statements are equivalent:

(i) For some δ′ > 0 and some neighborhood

V ′ û0 of û0 , for all u 0 ∈ V ′ û0 and a ∈ S u ∩ B(â, δ′ ), m(u 0 , a) = m(û 0 , â). (iv) m(û 0 , â) = 2.
Moreover, they are both equivalent to (ii) and (iii) in Theorem 2.

Remark Following the third remark after Proposition 3, if the result of [START_REF] Herrero | Generic behaviour near blow-up points for a N -dimensional semilinear heat equation[END_REF] is confirmed, then Corollary 4 becomes true for N ≥ 2 too. From [START_REF] Herrero | Generic behaviour of one-dimensional blow-up patterns[END_REF], one would derive that all the behaviors where m ≥ 4 or m = 2 with l â ≤ N -1 are unstable.

Discussion of the geometry of the blow-up set

Regarding the blow-up set, two questions arise:

• The description: Given a blow-up solution u(x, t) of (1.1), what can we say about its blow-up set S u ?

The only general answer available with no restriction on initial data is due to Velázquez who proved in [START_REF] Velázquez | Estimates on the (n -1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation[END_REF] that S u is closed and that its Hausdorff dimension is at most equal to N -1. Our Question 2 stated before the section 1.1 is a description question, to which we devote the following subsection.

• The construction: Given a closed set S whose Hausdorff dimension is at most equal to N -1, is there a blow-up solution u(x, t) of (1.1) such that S u = S? The answer is yes when S is one of the following cases -a finite number of points from Merle [START_REF] Merle | Solution of a nonlinear heat equation with arbitrarily given blow-up points[END_REF];

-a sphere thanks to Giga and Kohn in [START_REF] Giga | Nondegeneracy of blow-up for semilinear heat equations[END_REF] (see (1.15) page 848 and Corollary 5.7 page 877);

-a finite number of concentric spheres, as suggested by Matano and Merle in Theorem 1.11 page 1499 in [START_REF] Matano | On nonexistence of type II blowup for a supercritical nonlinear heat equation[END_REF]. To prove the existence of such a solution, one has to adapt the method used by Merle in [START_REF] Merle | Solution of a nonlinear heat equation with arbitrarily given blow-up points[END_REF].

Note that the solution is radial in the two last cases. No other geometries for the blow-up sets are known (except those artificially generated from the above cases by adding irrelevant space variables to the domain of definition of the solution, giving rise to affine subspaces, cylinders, etc ...). The question remains open in the other cases, in particular when S is an ellipse in 2 dimensions.

As we said above, this subsection is devoted to Question 2. Unfortunately, we don't give any answer, apart from recalling the results of [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF], [START_REF] Zaag | One dimensional behavior of singular N dimensional solutions of semilinear heat equations[END_REF] and [START_REF] Zaag | Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation[END_REF] proved in the case where m(û 0 , â) = 2. Indeed, the case m(û 0 , â) ≥ 4 is much more complicated. Our goal is to give the reader a flavor of the complexity of Question 2.

In the following, we fix initial data u 0 = û0 and allow a to move in S û near some â ∈ S û, a non-isolated blow-up point.

Question 2 asks whether one can derive any information on the geometry of the blow-up set near â, from local information in (1.12)-(1.15) on the blow-up profile near a ∈ S û, where a is close to â.

Knowing that â is a non-isolated blow-up point, we remark that two cases in (1.12)-(1.15) cannot hold since they lead to an isolated point:

• when m(û 0 , a) = 2 with l a = N : we locally have a bump, see (1.18),

• or when case (1.14) occurs with a definite positive B a (x): in that case, we know from Velázquez [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF] that a is an isolated blow-up point, i.e. S û ∩ B(a, δ) = {a} for some δ > 0.

Therefore, we either have (m(û 0 , â) = 2 with l â ≤ N -1 or m(û 0 , â) ≥ 4 with a non definite positive

B â(x)).
-When m(û 0 , â) = 2 and l â ≤ N -1, Zaag assumed in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] (see also the note [START_REF] Zaag | Regularity of the blow-up set and singular behavior for semilinear heat equations[END_REF]) that S û contains a continuum going through â. He shows that S û is locally a C 1 manifold. In [START_REF] Zaag | Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation[END_REF], he shows that when l â = N -1, S û is locally a C 2 manifold. The proof relies on two steps:

• Step 1: Stability of the blow-up profile with respect to perturbations in the blowup point a and uniform convergence to the profile The author proves the stability of the blow-up profile and the uniform convergence to the profile with respect to the blow-up point a near â. The Liouville Theorem in [START_REF] Merle | Optimal estimates for blowup rate and behavior for nonlinear heat equations[END_REF] and [START_REF] Merle | A Liouville theorem for vector-valued nonlinear heat equations and applications[END_REF], stated in subsection 1.1 of our paper, is the key tool in this step.

• Step 2: A covering geometrical argument

From Step 1, the author derives an asymptotic profile for u(x, t) in every ball B(a, K 0 √ Tt) for some K 0 > 0 and a a blow-up point close to â. Most importantly, these profiles are continuous in a and the speed of convergence of u to each one in the ball B(a, K 0 √ Tt) is uniform with respect to a. Now, if a and b are in S û and 0

< |a-b| ≤ K 0 √ T -t, then the balls B(a, K 0 √ T -t) and B(b, K 0 √ T -t)
intersect each other, leading to two different profiles for u(x, t) in the intersection. Of course, these profiles have to coincide, up to the error terms. This makes a geometric constraint which gives more regularity for the blow-up set near â. The fact that the rate of convergence of the expansion of u(x, t) in B(a, K 0 √ Tt) is uniform in a is "essential". By the way, Velázquez, Filippas and Liu obtain those profiles, with no uniform character with respect to a (see [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF], [START_REF] Velázquez | Higher dimensional blow-up for semilinear parabolic equations[END_REF] and [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF]). This two-step technique was successfully used by Nouaili in [START_REF] Nouaili | C 1,α regularity of the blow-up curve at non characteristic points for the one dimentional semilinear wave equation[END_REF] for the case of the semilinear wave equation

u tt = u xx + |u| p-1 u (1.19)
where u = u(x, t), x ∈ R, 0 ≤ t ≤ T (x) and p > 1. More precisely, in [START_REF] Nouaili | C 1,α regularity of the blow-up curve at non characteristic points for the one dimentional semilinear wave equation[END_REF], the author started from the C 1 regularity of the blow-up set proved by Merle and Zaag in [START_REF] Merle | Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension[END_REF] and could prove the C 1,α regularity using this two-step technique. Note that for equation (1.19), non global solutions blow up on a graph Γ = (x, T (x))| x ∈ R , where x → T (x) is 1-Lipschitz (see Alinhac [START_REF] Alinhac | Blowup for Nonlinear Hyperbolic Equations Boston[END_REF], [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF] or Lindblad and Sogge [START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equations[END_REF]).

-When m(û 0 , â) ≥ 4 and B â(x) is not positive definite, our ambition was to adapt the two-step technique of [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] here. We could obtain the first step provided that m(û 0 , â) = min

a∈S û ∩B(â,δ0) m(û 0 , a).
More precisely, let us write the following two versions of Theorem 2 and Proposition 3 that we obtain taking u 0 = û0 .

Theorem 2' (Stability of the profile order near a local minimum) Under the hypotheses of Theorem 1, the following statements are equivalent:

(i) ′ For some δ′ > 0, for all a ∈ S û ∩ B(â, δ′ ), m(û 0 , a) = m(û 0 , â).

(ii) ′ For some δ 0 > 0, m(û 0 , â) = min

a∈S û ∩B(â,δ0)
m(û 0 , a).

(iii) ′ For some δ′ > 0, sup

a∈S û ∩B(â, δ′ ) v a,T (s) -P m(v a,T )(s) L 2 ρ P m(v a,T )(s) L 2 ρ -→ 0 as s -→ +∞.
We also have the following equivalent statements to those of Theorem 2':

Proposition 3' (Asymptotic behavior and blow-up profiles uniform in a) The assertions of Theorem 2' are equivalent to the following: For some δ′ > 0,

• If m = 2, then for some C > 0 and s ′ ∈ R, we have for all a ∈ S û ∩ B(â, δ′ ) and

s ≥ s ′ 1 Cs ≤ v a,T (s) L 2 ρ ≤ C s . • If m ≥ 4, then for each α ∈ N N with |α| = m, there exists c α (a) ∈ R such that sup a∈S û ∩B(â, δ′ ) v a,T (s) -e (1-m 2 )s |α|= m c α (a)H α L 2 ρ e (1-m 2 )s → 0 as s → +∞,
and for all K 0 > 0, sup

a∈S û ∩B(â, δ′ ) sup |z|≤K0 (T -t) 1 p-1 u a + z(T -t) 1 m , t -p -1 + |α|= m C α z α -1 p-1 → 0 as t → T,
where C α = -κ (p-1) 2 c α and the multilinear form

|α|= m C α x α ≥ 0 for all x ∈ R N . Moreover, c α (a) is continuous with respect to a.
Thanks to Theorem 2', it is enough to choose â such that m(û 0 , â) = min

a∈S û ∩B(â,δ0)
m(û 0 , a) in order to get the stability of the blow-up profile and the uniform convergence to those profiles. This achieves

Step 1 in the technique of [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF].

As for the geometrical covering argument of Step 2 of [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF], we could not do the same, since the profiles for m ≥ 4 are much more complicated to describe than for m = 2.

Step 1 revealed to be a fundamental step towards the regularity of the blow-up set in the case m = 2 treated in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] and for the semilinear wave equation treated by Nouaili [START_REF] Nouaili | C 1,α regularity of the blow-up curve at non characteristic points for the one dimentional semilinear wave equation[END_REF]. Similarly, we believe that in the case m ≥ 4 for the heat equation (1.1), we made a step towards further geometrical results for the blow-up set.

Remark Unlike in Theorem 2 (see the third remark following Proposition 3), we may have here m(û 0 , â) ≥ 4 and the assertion in Proposition 3' is totally meaningful. More precisely for any even integer m ∈ N * , there exists a blow-up solution u such that for all a ∈ S u , m(u 0 , a) = m. Indeed, one has just to adapt the method of Bricmont and Kupiainen [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] to the radial version of (1.1):

∂ t U = ∂ 2 r U + N -1 r ∂ r U + |U | p-1 U
to find a solution blowing up for r = 1 with:

• If m = 2, ∀K 0 > 0, sup |z|<K0 (T -t) 1 p-1 U (1 + z √ T -t, t) -(p -1 + (p -1) 2 4p z 2 ) -1 p-1 → 0 as t → T .
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• If m ≥ 4 and even, ∀K 0 > 0, sup |z|<K0 (T -t) 1 p-1 U (1 + z(T -t) 1 m 0 , t) -(p -1 + cz m0 ) -1 p-1 → 0 as t → T .
In fact, Bricmont and Kupiainen [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] did the work in one dimension and in higher dimensions, the term N -1 r ∂ r U can be controlled as a lower order term in selfsimilar variables. Remark As we said in the first remark after Proposition 3, the estimate in the case m = 2 has already been proved in [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF] with no uniform character.

Since m(û 0 , a) ∈ N, the mapping a → m(û 0 , a) has local minima. In particular, it realizes its global minimum at some â ∈ S û and we have the following:

Corollary 5 Let û be a solution of (1.1) associated to the initial data û0 and blowing up at some time T . Then, there exists â ∈ S û such that (i) ′ , (ii) ′ and (iii) ′ of Theorem 2' are satisfied.

Remark Following this corollary, we conjecture that the profile order (for fixed initial data û0 ), is constant on the connected components of S û, and that the convergence in (iii) ′ is uniform on the connected component.

Remark This corollary is meaningful when â is a non isolated blow-up point. Note also that we don't prove the stability of the blow-up profile with respect to the blow-up point and that we only prove that the order of the multilinear form B a (x) is locally constant (hence, is stable).

Remark If m(û 0 , a) = 2, then it is automatically a local minimum and (ii) ′ of Theorem 2' is satisfied. Moreover,

• If l â = N , then â is an isolated blow-up point as written earlier.

• If l â ≤ N -1, then with the additional hypothesis that S û contains a continuum of dimension N -l â going through â, we know from [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF] that the profile is stable with respect to the blow-up point.

The proof of our results relies on the Liouville Theorem of [START_REF] Merle | Optimal estimates for blowup rate and behavior for nonlinear heat equations[END_REF] and [START_REF] Merle | A Liouville theorem for vector-valued nonlinear heat equations and applications[END_REF], and on a dynamical system formulation in selfsimilar variables. Note that we don't prove Corollary 4 and 5 since they are immediate consequences of Theorem 2, Theorem 2' and the results of Herrero and Velázquez [START_REF] Herrero | Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles[END_REF] and [START_REF] Herrero | Generic behaviour of one-dimensional blow-up patterns[END_REF].

This paper is organized as follows: In Section 2, we prove uniform estimates in the study of the equation (1.6) satisfied by v. In Section 3, we give the proof of Theorems 1, 2 and 2' as well as Propositions 3 and 3'.

We note that in the remaining of this paper, we will denote by C all positive constant.

2 Uniform estimates and dynamical study in selfsimilar coordinates

Let û(x, t) be a solution of (1.1) with initial data û0 (x) and blowing up at some point â and at time T and

w ≡ ±κ( T -t) -1 p-1 . (2.1)
From Giga and Kohn [START_REF] Giga | Nondegeneracy of blow-up for semilinear heat equations[END_REF], and up to replacing û by -û, we assume that ŵâ, T (y, s)

→ κ as s → +∞ in L 2 ρ (R N ) and in C k,γ loc (R N ) (2.2)
for any k ∈ N and γ ∈ (0, 1). From (2.1), as mentioned in the introduction, the blow-up profile of û near (â, T ) is given according to the value of some even parameter m ≡ m(û 0 , â) ≥ 2 defined in (1.11).

From now on, given initial data u 0 , we denote by u the solution to (1.1) corresponding to u 0 and blowing up at some time T . If a ∈ S u , we denote by w a,T the corresponding selfsimilar variables solution given by (1.3) and by v a,T the function given by (1.5).

We first derive the following uniform L ∞ bound in a neighborhood of û0 and a constant sign property of u(x, t) for x close to the blow-up point â:

Proposition 2.1 (Uniform L ∞ bound and ODE localization) Fermanian Kammerer, Merle and Zaag [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF]:

There exist V 1 a neighborhood of û0 in L ∞ (R N ), C > 0 and {C ε } ε such that for all initial data u 0 in V 1 , (i) u(t) blows up in T and T → T as u 0 → û0 in L ∞ (R N ). (ii) ∀t ∈ [0, T ), u(t) L ∞ ≤ C(T -t) -1 p-1 , (iii) ∀ε > 0, ∀t ∈ [ T 2 , T ), |∂ t u -|u| p-1 u| ≤ ε|u| p + C ε . (iv) There exists δ 1 > 0 such that ∀t ∈ [T -δ 1 , T ), ∀|x -â| ≤ 2δ 1 , u(x, t) ≥ 0. (v) For all a ∈ S u ∩ B(â, δ 1 ), v a,T (y, s) → 0 as s → +∞ in C k,γ
loc (R N ) for any k ∈ N and γ ∈ (0, 1).

Proof.

• For (i) to (iv), see Lemma 2.2, Proposition 1.7 and Corollary 1.8 page 358 and 355 in [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF]. Note that those results of [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF] are valid without the assumption made in [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF] about the blow-up profile.

For the reader's convenience, we show how to derive (iv) from (iii). Let us consider V ′ 1 a neighborhood of û0 in L ∞ (R N ) such that for any u 0 ∈ V ′ 1 , points (i), (ii) and (iii) hold. Applying (iii) for ε = 1 2 , we get the existence of a positive constant C 1 2 such that

∀u 0 ∈ V ′ 1 , ∀x ∈ R N , ∀t ∈ [ T 2 , T ), ∂ t u ≥ |u| p-1 u - 1 2 |u| p -C 1 2 . (2.3) We now choose A > 0 such that 1 2 A p -C 1 2 > 0. (2.4) Using (2.
2), we deduce the existense of δ > 0 and δ ′ > 0 such that for all |x-â| ≤ δ, û(x, T -δ ′ ) > 2A.

Then, from continuity arguments applied to the equation (1.1) and the continuity of the blow-up time (cf. (i) of this Proposition), there exists V 1 a neighborhood of û0 such that V 1 ⊂ V ′ 1 and

∀u 0 ∈ V 1 , ∀|x -â| ≤ δ, u(x, T -δ ′ ) > A. (2.5) 
Therefore, thanks to (2.4), we can prove from (2.3) and (2.5), by a priori estimates, that u(x, t) > A > 0 for all

u 0 ∈ V 1 , t ∈ [T -δ ′ , T ) and |x -â| ≤ δ. Taking δ 1 = 1 2 min(δ, δ ′
) concludes the proof of (iv).

• For (v), we just remark that thanks to Giga and Kohn [START_REF] Giga | Asymptotically self-similar blow-up of semilinear heat equations[END_REF], we know that we have the convergence of w a,T to ±κ and that since we have the positivity of the solution locally near (â, T ) (see (iv)), we deduce that w a,T converges to κ.

This ends the proof of Proposition 2.1.

Note that at this stage, we don't know if the convergence in (v) is uniform with respect to u 0 and a or not. Using the Liouville theorem of Merle and Zaag [START_REF] Merle | Optimal estimates for blowup rate and behavior for nonlinear heat equations[END_REF] and [START_REF] Merle | A Liouville theorem for vector-valued nonlinear heat equations and applications[END_REF], we can show that uniform character.

We then have: Proof.

We only prove (i), since (ii) follows from (i) by standard parabolic regularity arguments. Let us assume that we cannot find a neighborhood of û0 and a constant δ 2 > 0 such that (i) holds. Then there exists η 0 > 0, s n → +∞, u 0,n → û0 and a n → â, a n ∈ S u0,n when n → +∞ such that

∀n ∈ N, w n,an,Tn (s n ) -κ L 2 ρ > η 0 . (2.6) 
By Proposition 2.1, we know that w n,an,Tn (y, s) → κ as s → +∞ in C k,γ loc (R N ) for any k ∈ N and γ ∈ (0, 1). Then E(w n,an,Tn (s)) → E(κ) as s → +∞, where

E(w)(s) = R N 1 2 |∇w(y, s)| 2 + 1 2(p -1) |w(y, s)| 2 - 1 p + 1 |w(y, s)| p+1 ρ(y)dy (2.7)
is a decreasing function in time. Therefore we have

E(w n,an,Tn (s)) ≥ E(κ). (2.8) 
Since s n → +∞, the point (iv) of Proposition 2.1 implies for n large,

w n,an,Tn (0, s n ) = e -sn p-1 u n (a n , T n -e -sn ) ≥ 0. (2.9) 
We introduce W n (y, s) = w n,an,Tn (y, s + s n ).

(2.10)

Then W n satisfies equation (1.4), and estimates (2.8), (2.9) and (2.6) yield for n large

E(W n (0)) ≥ E(κ), W n (0, 0) ≥ 0 and W n (•, 0) -κ L 2 ρ > η 0 . (2.11)
By (ii) in Proposition 2.1, (2.9) and (2.10), there exists C > 0 such that

∀s ∈ [-log T n -s n , +∞), W n (s) L ∞ ≤ C. (2.12)
By the parabolic regularity and a compactness procedure, and since s n → +∞, there exists W (y, s) such that up to a subsequence

W n → W as n → +∞ in C 2,1 loc (R N × R). (2.13) 
Moreover, W satisfies (1.4), and we have from (2.11) and (2.12),

W L ∞ ≤ C, E(W (0)) ≥ E(κ), W (0, 0) ≥ 0 and W (0) -κ L 2 ρ > η 0 . (2.14)
Therefore, by the Liouville theorem, we get W ≡ ±κ, W ≡ 0 or W (y, s) = ±θ(s + s 0 ), for some s 0 ∈ R.

(2.15)

This is in contradiction with (2.14). Indeed, W ≡ -κ contradicts W (0, 0) ≥ 0, W = κ contradicts W (0)-κ L 2 ρ > η 0 and W ≡ 0 or W (y, s) = ±θ(s+s 0 ) contradict E(W (0)) ≥ E(κ) (for E(0) = 0 < E(κ) and ∀s ∈ R, E(±θ(s)) < E(κ)). This concludes the proof of (i) of Proposition 2.2.

Note that Proposition 2.2 gives the uniform smallness in time and space of v a,T (y, s) with respect to the initial data u 0 (x) in a neighborhood V 2 of û0 in L ∞ (R N ) and a ∈ S u ∩ B(â, δ 2 ). From the result of Velázquez [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF] stated in (1.11), we know that v a,T (s) ∼ P m (v a,T (s)) in L 2 ρ as s → +∞, for some even m(u 0 , a) ≥ 4, with no uniform information with respect to u 0 and a. If m = 2, we have already the uniform character from [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF] and [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF]. When m ≥ 4, we believe that we can get the uniform character if we consider the block m i=2 P i (v a,T )(s). Accordingly, we decompose v a,T with respect to the spectrum of L as follows:

                     (expanding modes block) x + (s) = 1 k=0 P k (v a,T )(s) L 2 ρ (low frequency block) y m (s) = m k=2 P k (v a,T )(s) L 2 ρ (high frequency block) zm (s) = v a,T (s) - m k=0 P k (v a,T ) (s) L 2 ρ , (2.16) 
where the projection P k is defined in (1.10). Since the nonlinear term in (1.6) is not quadratic in L 2 ρ , we need to estimate an additional variable

J m (s) = R N |v a,T (y, s)| 4 |y| k ρ(y)dy 1 2 (k = k(m)) (2.17)
where k(m) > 0 will be fixed in Lemma 2.5 below as an increasing sequence. We need also to introduce z m (s) = zm (s) + J m (s).

(2.18)

When (u 0 , a) = (û 0 , â), we add a " ˆ" to the notation (x + , ŷm and ẑm ).

Using the notation (2.16), we claim that estimate (1.11) yields x + (s) + z m (s) = o(y m (s)) as s → +∞ which we write more precisely in the following:

Lemma 2.
3 If u is a solution of (1.1) blowing up at time T and some point a with the profile given in (1.12) or (1.14) according to the value of m = m(u 0 , a), then ∀ε > 0, ∃s 0 (ε, u 0 , a), ∀s ≥ s 0 (ε, u 0 , a), εy m (s) ≥ x + (s) + z m (s).

(2.19)

Proof.

Using (1.11), (1.12) and (1.14), we see that

v(s) -P m (v)(s) L 2 ρ = o( v(s) L 2 ρ ) as s → +∞ (2.20) and either m(u 0 , a) = 2 and v(s) L 2 ρ ∼ C 0 s as s → +∞, or m(u 0 , a) ≥ 4 and v(s) L 2 ρ ∼ C 0 e (1-m 2 )s
as s → +∞.

( Now, we recall from Herrero and Velázquez [START_REF] Herrero | Blow-up behaviour of one-dimensional semilinear parabolic equations[END_REF], the following regularizing effect for the operator L:

Claim 2.4 (Herrero and Velázquez [START_REF] Herrero | Blow-up behaviour of one-dimensional semilinear parabolic equations[END_REF]) There exist positive s * and C * such that for s large enough, we have:

R N |v(y, s)| 8 ρ(y)dy 1 8 ≤ C * R N |v(y, s -s * )| 2 ρ(y)dy 1 2 .
Proof. See Lemma 2.3 in [START_REF] Herrero | Blow-up behaviour of one-dimensional semilinear parabolic equations[END_REF], page 142. Note that the result holds for sign-changing solutions with the same proof.

Using (2.17), the Cauchy-Schwarz inequality and Claim 2.4, we write

J m (s) ≤ R N |v(y, s)| 8 ρ(y)dy 1 4 R N |y| 2k ρ(y)dy 1 4 ≤ C R N v(y, s -s * ) 2 ρ(y)dy . (2.23)
We claim that for s large enough, we have:

R N v(y, s -s * ) 2 ρ(y)dy ≤ C R N v(y, s) 2 ρ(y)dy. (2.24)
Indeed, if m(u 0 , a) = 2, then we write from (2.21), for s large enough

R N v(y, s -s * ) 2 ρ(y)dy ≤ 2C 0 s -s * ≤ 3C 0 s ≤ 4 v(s) L 2 ρ
and the same proof holds when m(u 0 , a) ≥ 4. Using (2.23), (2.24), (2.16) and (2.22), we write

J m (s) ≤ C R N v(y, s -s * ) 2 ρ(y)dy ≤ C R N v(y, s) 2 ρ(y)dy ≤ C(x 2 + + y 2 m + z2 m )(s) ≤ Cy 2 m (s).
Hence J m (s) = o(y m (s)) as s → +∞. Using (2.22), we conclude the proof of Lemma 2.3.

In order to prove the stability of the block m i=2 P i (v a,T )(s) , we use the decomposition (2.16) and (2.18) to project equation (1.6) in the following:

Lemma 2.5 (Differential inequalities on the components of v a,T (s)) For all i ≥ 2, there exist k = k(i) > 0 an increasing sequence, a neighborhood V 3 (i) ⊂ V 2 of û0 in L ∞ (R N ) and δ 3 (i) > 0 such that for all ε > 0, there exists s 3 (ε, i) ∈ R such that for all s ≥ s 3 (ε, i), for all u 0 ∈ V 3 (i) and a ∈ S u ∩ B(â, δ 3 (i)), we have

x ′ + (s) ≥ 1 2 x + (s) -ε x + (s) + y i (s) + z i (s) (2.25) ε x + (s) + y i (s) + z i (s) ≥ y ′ i (s) ≥ (1 - i 2 )y i (s) -ε x + (s) + y i (s) + z i (s) (2.26) z ′ i (s) ≤ (1 - i + 1 2 )z i (s) + ε x + (s) + y i (s) + z i (s) (2.27) Proof. See Appendix A.
With these inequalities, we are in a position to prove that for i = m, y m dominates x + and z m as s → +∞, uniformly with respect to u 0 and a. In the following, we start by neglecting x + with respect to y i + z i .

Lemma 2.6 (Uniform smallness of the expanding modes block) For all i ≥ 2, u 0 ∈ V 3 (i), a ∈ S u ∩ B(â, δ 3 (i)), ε > 0 and s ≥ s 3 (ε, i), we have

x + (s) ≤ ε y i (s) + z i (s) . (2.28)
This Lemma is an immediate consequence of the following:

Lemma 2.7 Consider s * ∈ R and Y, Z ∈ C 1 ([s * , +∞), R + ) such that
1) for all ε > 0, there exists s 5 (ε) such that for all s ≥ s 5 (ε)

Y ′ ≥ -ε(Y + Z) Z ′ ≤ -1 3 Z + εY.
2) If for some ŝ ≥ s * , we have Y (ŝ) + Z(ŝ) = 0, then for all s ≥ ŝ, Y (s) + Z(s) = 0. (y i (s) + z i (s)). Using Lemma 2.5, we see that Y and Z satisfy condition 1) of Lemma 2.7. It also satisfies condition 2). Indeed, if we assume that Y (ŝ) + Z(ŝ) = 0 for some ŝ ≥log T , then from the definitions (2.16) and (2.18) of x + , y m and z m , we have v a,T (ŝ) L 2 ρ = 0, hence v a,T (•, ŝ) ≡ 0. From the uniqueness of the solution to the Cauchy problem of equation (1.6), we get v a,T (•, s) ≡ 0, hence Y (s) + Z(s) = 0 for all s ≥ ŝ. Therefore, the conclusion of Lemma 2.6 directly follows from Lemma 2.7

Then, either Z = o(Y ) or Y = o(Z)
Let us now prove Lemma 2.7.

Proof of Lemma 2.7. Part 1: Let ε > 0, we prove in this part that

either ∃s ′ 5 = s ′ 5 (ε) such that ∀s ≥ s ′ 5 , Z(s) ≤ CεY (s), (2.29) 
or ∀s ≥ s 5 (ε), Y (s) ≤ CεZ(s).

(2.30)

We set γ(s) = 6εY (s) -Z(s). Two cases arise:

Case 1: ∃s ′ 5 ≥ s 5 (ε) such that γ(s ′ 5 ) > 0. If for all s ≥ s ′ 5 , γ(s) ≥ 0, then (2.29) holds. If not, then we have γ(s * ) = 0 for some s * ≥ s ′ 5 where s * is the smallest s satisfying γ(s) = 0. Therefore γ ′ (s * ) ≤ 0. We then compute γ ′ (s * ). We have from the hypothesis 1)

γ ′ (s * ) = 6εY ′ (s * ) -Z ′ (s * ) ≥ Z(s * )(-ε -6ε 2 + 1 6 ) ≥ 1 7
Z(s * ) for ε small enough.

Knowing that γ ′ (s * ) ≤ 0, we deduce that Z(s * ) = Y (s * ) = 0. By hypothesis 2), we have Z(s) = Y (s) = 0 for all s ≥ s * and (2.29) follows with s ′ 5 = s * .

Case 2: ∀s ≥ s 5 (ε), γ(s) ≤ 0, that is 6εY (s) ≤ Z(s).

(2.31)

Then, we have from hypothesis 1)

∀s ≥ s 5 (ε), Z ′ (s) ≤ - 1 6 Z(s) and Z(s) + Y (s) → 0 as s → +∞. (2.32)
Using (2.31) and hypothesis 1), we then deduce that

Y ′ ≥ -( 1 6 + ε)Z ≥ (1 + 6ε)Z ′ .
Integrating between s and +∞, we get Y ≤ (1 + 6ε)Z. Writing again hypothesis 1) using this last inequality and (2.32), we get

Y ′ ≥ (-ε(1 + 6ε) -ε)Z ≥ 6ε(2 + 6ε)Z ′ .
Integrating again between s and +∞, we get Using Lemmas 2.5 and 2.7, we get the following: Corollary 2.8 (Either the high or the low frequency block of v a,T dominates) For all i ≥ 2, u 0 ∈ V 3 (i) and a ∈ S u ∩ B(â, δ 3 (i)), we have either z i (s) = o(y i (s)) or y i (s) = o(z i (s)) as s → +∞. Moreover, in this latter case, we have for all ε > 0 and s ≥ s 3 (ε, i), y i (s) ≤ Cεz i (s).

Y (s) ≤ 6ε(2 + 6ε)Z(
(2.33)

Proof.

Just apply Lemmas 2.5 and 2.7 with Y (s) = e (1-i 2 )s y i (s) and Z(s) = e (1-i 2 )s z i (s).

Remark: Unlike the case where y i = o(z i ), when z i = o(y i ), the inequalities (2.26) and (2.27) alone do not yield an estimate like (2.33), uniform with respect to u 0 and a. As a matter of fact, when i = m, we will use other ideas to derive such a uniform estimate. That will be the heart of our argument.

We now establish the following result giving the uniform stability of the dynamic where y m is predominant.

Lemma 2.9 (Uniform stability of the dynamic where the low frequency block is predominant) For all i ≥ 2 and C * > 0, there exists s

* (i, C * ) ∈ R, such that for all initial data u 0 in V 3 (i), a ∈ S u ∩ B(â, δ 3 (i)) and s 0 ≥ s * , if y i (s 0 ) ≥ C * z i (s 0 ), then ∀s ≥ s 0 , y i (s) ≥ C * 2 z i (s). (2.34) 
Proof.

Consider i ≥ 2. Following closely the proof in [START_REF] Kammerer | Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view[END_REF], (Lemma 3.3 page 375) and considering Lemmas 2.5 and 2.6, we have for all ε ∈ (0, 1 2 ),

u 0 ∈ V 3 (i), a ∈ S u ∩ B(â, δ 3 (i)) and s ≥ s 3 (ε, i)    y ′ i (s) ≥ (1 -i 2 )y i (s) -3 2 ε y i (s) + z i (s) z ′ i (s) ≤ (1 -i+1 2 )z i (s) + 3 2 ε y i (s) + z i (s) . (2.35) 
We argue by contradiction. Suppose that there exists C > 0,

s 0 > s 3 (ε, i) where ε = C 4(2+C) 2 , u 0 ∈ V 3 (i) and a ∈ S u ∩ B(â, δ 3 (i)) such that y i (s 0 ) ≥ Cz i (s 0 ) and ∃s * 0 > s 0 , y i (s * 0 ) < C 2 z i (s * 0 ). Let γ(s) = y i (s) -C 2 z i (s), then γ(s 0 ) ≥ 0 and γ(s * 0 ) < 0. Therefore, there exists s 2 ∈ [s 0 , s * 0 [ such that γ(s 2 ) = 0, γ(s) < 0 for all s ∈ [s 2 , s * 0 ), hence γ ′ (s 2 ) ≤ 0 (2.36)
on the one hand. On the other hand, we have from (2.35)

γ ′ (s 2 ) = y ′ i (s 2 ) - C 2 z ′ i (s 2 ) ≥ C 4 z i (s 2 ) + (1 - i 2 ) y i (s) - C 2 z i (s 2 ) - 3 2 ε(1 + C 2 ) y i (s 2 ) + z i (s 2 ) . (2.37)
Using (2.36) and (2.37), we obtain

γ ′ (s 2 ) ≥ C 4 - 3 2 ε(1 + C 2 ) 2 z i (s 2 ) > y i (s 2 ), (2.38) 
since ε = C 4(2+C) 2 and z i (s 2 ) > 0 (in case z i (s 2 ) = 0 it follows that for all s ≥ s 2 , v a ≡ 0 and γ(s) = 0 which contradicts γ(s * 0 ) < 0). This contradicts (2.36) and concludes the proof of Lemma 2.9.

Proof.

Let ε > 0, u 0 ∈ V 4 and a ∈ S u ∩ B(â, δ 4 ). We shall restrict ε to small ones in the following. Using Lemmas 2.5, 2.6 and 3.1, setting

s 4 (ε) = sup ŝ0 , s 3 (ε, m) , (3.4) 
we have for all s ≥ s 4 (ε), the inequalities (2.35) and (3.1) hold. Using Corollary 2.8, we see that:

either y m(s) = o(z m(s)) or z m(s) = o(y m(s)) as s → +∞ and in view of (3.1), we must have z m(s) = o(y m(s)) as s → +∞ and Lemma 3.2 follows.

Part 3: From Lemma 3.2, we can introduce for all ε > 0, u 0 ∈ V 4 and a ∈ S u ∩ B(â, δ 4 )

s 5 (ε, u 0 , a) := inf s ≥ s 4 (ε) : ∀σ ≥ s, 4εy m(σ) ≥ z m(σ) . (3.5) 
We claim the following:

Lemma 3.3 s 5 (ε, u 0 , a) -s 4 (ε) is bounded only in terms of ε independently from u 0 and a. Proof. If s 5 (ε, u 0 , a) = s 4 (ε)
, then the answer is trivial. Hence, we assume in the following that s 4 (ε) < s 5 (ε, u 0 , a). We note that in this case, by minimality, there exists a sequence (s n ) such that

s n -→ n→+∞ s 5 (ε, u 0 , a), with s n ∈ [s 4 (ε), s 5 (ε, u 0 , a)] and 4εy m(s n ) < z m(s n ). (3.6) 
Step 1: We prove that ∃ε 0 > 0 : ∀ε ∈ (0, ε 0 ) : ∀s ∈ [s 4 (ε), s 5 (ε, u 0 , a)], 4εy m(s) ≤ z m(s). 

By minimality, this yields

z ′ m(σ * ) -4εy ′ m(σ * ) ≥ 0, (3.9) 
on the one hand. On the other hand, using (2.35), there exists ε 0 > 0 such that for all ε ∈ (0, ε 0 ), we have

z ′ m(σ * ) -4εy ′ m(σ * ) ≤ (1 -m+1 2 )z m(σ * ) + 3 2 ε y m(σ * ) + z m(σ * ) -4ε (1 -m 2 )y m(σ * ) -3 2 ε y m(σ * ) + z m(σ * ) ≤ z m(σ * ) -1 8 + 3ε + 6ε 2 ≤ 0. (3.10) 
Using (3.9) and (3.10), we see that z m(σ * ) = 0. Therefore, v a,T (y, s) ≡ 0 for all s ≥ σ * , by uniqueness in the Cauchy problem of (1.6). By definition (2.16) and (2.18) of y m and z m, we see that for all s ≥ σ * , z m(s) = y m(s) = 0, hence s 5 (ǫ, u 0 , a) ≤ σ * from (3.5). This contradicts the fact that σ * < s n ≤ s 5 (ǫ, u 0 , a). Thus, (3.7) holds. Finally, using (3.5) and (3.7), we are led to z m(s 5 (ε, u 0 , a)) = 4εy m(s 5 (ε, u 0 , a)).

(3.11)

Step 2: We prove that s 5 (ε, u 0 , a)s 4 (ε) ≤ 10| log ε|.

(3.12)

In fact, using (3.1), (3.4) and (3.7), we have :

∀s ∈ [s 4 (ε), s 5 (ε, u 0 , a)], 4εy m(s) ≤ z m(s) ≤ y m(s). (3.13) 
Indeed, considering ε ∈ (0, 1 4 ), s ≥ s 6 (ε), u 0 ∈ V 6 and a ∈ S u ∩B(â, δ 6 ) and summing the three inequalities in this Lemma, we get:

x + (s) + z m(s) + y m-1 (s) ≤ 3εp m(s) + 2ε(x + + z m + y m-1 )(s).
Hence, using the definition (2.18) of z m, we get

x + (s) + z m(s) + y m-1 (s) ≤ x + (s) + z m(s) + y m-1 (s) ≤ 6εp m(s).
Using the definition (2.16), (3.15) of x + , z m, y m-1 and p m, we get

v(s) -P m(v)(s) L 2 ρ ≤ 6ε P m(v)(s) L 2 ρ ,
which is the desired conclusion in (iii).

It remains to prove Lemma 3.4 to conclude the proof of Theorems 2 and 2'.

Proof of Lemma 3.4. Consider ε > 0, u 0 ∈ V 6 and a ∈ S u ∩ B(â, δ 6 ).

(a) From Lemma 2.6, we have for all s ≥ s 3 (ε, m), 

x + (s) ≤ ε(y m + z m)(s).
y m-1 (s) = o(z m-1 (s)), hence y m-1 (s) = o(z m-1 (s)) as s → +∞, (3.17) 
(with no uniform character with respect to u 0 and a). Applying Corollary 2.8 with i = m -1, we see then that the second estimate in (3.17) holds uniformly in the sense that for all ε > 0 and s ≥ s 3 (ε, m -1), y m-1 (s) ≤ Cεz m-1 (s).

Using the definitions (2.18), (2.16) and (3.15) of z m-1 , z m-1 and p m, we write

z m-1 (s) = z m-1 (s) + J m-1 (s), (3.18) 
z m-1 (s) ≤ p m(s) + z m-1 (s) ≤ p m(s) + z m(s). (3.19)
Since v L ∞ ≤ M + κ from (ii) of Proposition 2.1, and knowing that the sequence k(i) is increasing, we write from the definitions (2.17 

≤ M v(s) L 2 ρ +J m(s) which gives J m-1 (s) ≤ M v(s) L 2 ρ +z m(s
v(s) L 2 ρ ≤ (x + + y m-1 + p m + z m)(s) ≤ (x + + y m-1 + p m + z m)(s),
(c) follows from (3.18), (3.19) and (3.20). This concludes the proof of Lemma 3.4 as well as (ii) =⇒ (iii). This concludes also the proof of Theorems 2 and 2'.

Proof of Propositions 3 and 3'

We only prove Proposition 3 since Proposition 3' follows by the same argument.

Proof of Proposition 3.

We will prove that the assertion in Proposition 3 is equivalent to assertion (i) in Theorem 2.

Assertion of Proposition 3 =⇒ (i) of Theorem 2: If the assertion of Proposition 3 is true, then by definition of m(u 0 , a), for all u 0 ∈ V ′ û0 , a ∈ S u ∩ B(â, δ′ ), m(u 0 , a) = m and (i) of Theorem 2 follows. (i) of Theorem 2 =⇒ Assertion of Proposition 3: Here, we redo the analysis of Herrero and Velázquez [START_REF] Herrero | Blow-up behaviour of one-dimensional semilinear parabolic equations[END_REF] and Filippas and Liu [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF], paying attention to getting the uniform character with respect to u 0 and a. We will distinguish two cases: m ≥ 4 and even and m = 2.

If m ≥ 4 and even: For a multi-index α in N N , we introduce v α the projection of v over H α . It is defined by Taking |α| = m and projecting equation (1.6) on the eigenfunction H α , we write:

v α (s) = R N v(y, s) H α (y) H α 2
v ′ α (s) = (1 - m 2 )v α (s) + R N f (v(y, s)) H α (y) H α 2 L 2 ρ ρ(y)dy. Since |v| ≤ C and |f (v)| ≤ C|v| 2 ≤ C|v| 3 2
, we use the Hölder inequality to write

R N f (v(y, s))H α (y)ρ(y)dy ≤ C R N |v(y, s)| 3 2 (1 + |y| m)ρ(y)dy ≤ C R N |v(y, s)| 2 ρ(y)dy 3 4 .
Therefore, from (iii) of Theorem 2, we know that for all |α| = m and s ≥ s 9 for some s 9 ∈ R,

v ′ α (s) -(1 - m 2 )v α (s) ≤ C R N |v(y, s)| 2 ρ(y)dy 3 4 ≤ Cp 3 2 m(s), (3.22) 
with p2 m(s) = P m(v)(s) 2

L 2 ρ = |β|= m(v β (s)) 2 H β 2 L 2 ρ and p ′ m(s) ≤ (1 - m 2
)p m(s) + Cp since v(s) L 2 ρ → 0, hence p m(s) → 0 as s → +∞, uniformly in u 0 and a (see Proposition 2.2 and (i) of Theorem 2). Therefore, this yields p m(s) ≤ Ce (1-m 2 )s for s ≥ s 10 , for some s 10 , and for all u 0 ∈ V 10 and a ∈ S u ∩ B(â, δ 10 ). Injecting this in (3.22), we get the existence of C α (u 0 , a) such that v α ∼ C α e (1-m 2 )s . More precisely, for all s ≥ s 10 , u 0 ∈ V 10 and a ∈ S u ∩ B(â, δ 10 ),

|v α (s) -C α e (1-m 2 )s | ≤ Ce 3 2 (1-m 2 )s
and C α is continuous with respect to u 0 and a.

If m = 2: This case has been treated by Filippas and Liu in [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF] and Velázquez in [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF], with no uniform character. Our contribution is to prove this uniform character. From (1.8) and (1.9) (with m = 2), we know that the eigenvalue λ 2 = 0 is of multiplicity N (N +1) 2 and that its eigenspace is generated by the orthogonal basis

y i y j | i < j ∪ y 2 i -2 | i = 1, • • • , N . (3.23) 
Therefore, defining the N × N symmetric matrix A(u 0 , a, s) (or A(s) for simplicity) by

A(u 0 , a, s) ≡ A(s) = R N v a,T (y, s)M (y)ρ(y)dy where M i,j (y) = 1 4 y i y j - 1 2 δ ij , (3.24) 
we see that the coefficients of A(s) are (up to a multiplicity factor) the projections of v a,T (y, s) on the eigenspace generated by (3.23). Moreover, we have the following nice expression for P 2 (v)

P 2 (v)(y, s) = 1 2 y T A(s)y -trA(s) with 1 C 0 ≤ P 2 (v)(s) L 2 ρ A(s) ≤ C 0 . (3.25) 
We have the following result: Lemma 3.5 (An ODE satisfied by the matrix A(s)) There exist V 10 a neighborhood of u 0 in L ∞ (R N × R) and a constant δ 10 > 0 such that for all ε > 0, there exist s 10 (ε) satisfying for all s ≥ s 10 (ε), u 0 ∈ V 10 , and a ∈ S u ∩ B(â, δ 10 ),

A ′ (s) - 1 β A(s) 2 ≤ ε A(s) 2 with β = κ 2p . ( 3 

.26)

Proof.

As for Proposition 3.2 page 514 in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF], there is no difficulty in adapting the proof of Filippas and Liu [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF] to this uniform context.

In the following Lemma, we define eigenvalues for A(s) and project (3.26) on the eigenvectors: Lemma 3.6 (Eigenvalues for the matrix A(s))

(i) There exist N real functions l i (u 0 , a, s) = l i (s), eigenvalues of A(s) C 1 in terms of s.

For any (ū 0 , ā, s) ∈ V 10 × S ū ∩ B(â, δ 10 ) × [-log T, +∞) and ǫ > 0, there exists η > 0 such that if (u 0 , a, s) ∈ V 10 × S u ∩ B(â, δ 10 ) × [-log T, +∞) and u 0 -ū0 L ∞ (R N ) + |a -ā| + |s -s| ≤ η, then for all i ∈ {1, ..., N }, |l σ(i) (u 0 , a, s)l i (ū 0 , ā, s)| ≤ ǫ for some permutation σ of {1, ..., N }.

(ii) The eigenvalues of A(s) satisfy for all s ≥ s 10 (ε), u 0 ∈ V 10 , and a ∈ S u ∩ B(â, δ 10 ) (where s 10 (ε), V 10 and δ 10 are defined in Lemma 3.5), Proof of Lemma 3.6.

l i ′ (s) - 1 β |l i (s)| 2 ≤ ε N i=1 |l i (s)| 2 , i = 1, • • • , N. ( 3 
(i) As for Lemma 3.1 page 514 in [START_REF] Zaag | On the regularity of the blow-up set for semilinear heat equations[END_REF], from the regularity of w a,T , it is clear that for each a ∈ R N , the symmetric matrix A(s) is a C 1 function of s. Therefore, according to Kato [START_REF] Kato | Perturbation Theory for linear operators[END_REF], we can define N C 1 functions of s that we denote by l i (u 0 , a, s) ≡ l i (s), 1 ≤ i ≤ N , eigenvalues of A(s). Since A(s) is a continuous function of (u 0 , a, s) and the eigenvalues of a matrix vary continuously with respect to the coefficients, the eigenvalues l i (s) are continuous in terms of (u 0 , a, s), after appropriate renaming.

(ii) The ODE (3.27) follows from (3.26) by projection on the eigenvectors. We refer to [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF] and [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF] for more details.

Since we have from (iii) in Theorem 2, (3.25) and the remark after Lemma 3.6 that for some C 0 > 0 and some s 13 large enough, for all s ≥ s 13 , u 0 ∈ V ′ û0 , a ∈ S u ∩ B(â, δ′ ),

1 C 0 ≤ v a,T (s) L 2 ρ N i=1 |l i (s)| ≤ C 0 ,
clearly (1.17) follows from the following Lemma:

Lemma 3.7 There exist C 0 > 0 and s 11 such that for all s ≥ s 11 , u 0 ∈ V 10 , a ∈ S u ∩ B(â, δ 10 ),

N i=1 |l i (s)| ≥ 1 C 0 s (3.29) (ii) - C 0 s ≤ N i=1 l i (s) < 0. (3.30) (iii) N i=1 |l i (s)| ≤ C 0 s (3.31) (i) 
Therefore, our proof reduces to the proof of Lemma 3.7.

Proof of Lemma 3.7.

The proof of this fact follows from the argument of Filippas and Liu for the proof of Proposition 3 page 324 in [START_REF] Filippas | On the blowup of multidimensional semilinear heat equation[END_REF] and Velázquez for the proof of Lemma 3.2 page 458 in [START_REF] Velázquez | Classification of singularities for blowing up solutions in higher dimensions[END_REF].

(i) Consider u 0 ∈ V 10 and a ∈ S u ∩ B(â, δ 10 ). Thanks to (3.27), we know that for all s ≥ s 10 ( 1 2βN ),

N i=1 l 2 i (s) ′ = 2 N i=1 l i (s)l ′ i (s) ≥ -c N i=1 l 2 i (s) 3 2 ,
for some positive constant c independent of u 0 , a and s. Integrating this inequality, we get the inequality (3.29).

(ii) Consider u 0 ∈ V 10 and a ∈ S u ∩ B(â, δ 10 ). From (3.27), we know that for all s ≥ s 10 By definition of L and Pi , we have In order to estimate v 2 L 2 ρ , we follow an idea of Filippas and Kohn in their paper [START_REF] Filippas | Refined asymptotics for the blow-up of u t -∆u = u p[END_REF]. Using Proposition 2.2, we have: ∀u 0 ∈ V 2 , a ∈ S u ∩ B(â, δ 2 ), ε > 0, and δ > 0, ∃s 2 (ε) such that ∀s ≥ s 2 (ε) v 2 (s) 2 where k ∈ N (later, we will choose k large and depending on m). Then, Thus replacing in (A.5), we get the following integral inequation satisfied by J m :

( 1 2βN ) N i=1 l i (s) ′ ≥ 1 2β N i=1 |l i (s)| 2 > 0. ( 3 
I 1 = R N Pi (Lv) Pi vρdy = i l,j=2 (1 - 
v 2 (s) L 2 ρ ≤ ε v(s) L 2 ρ +δ
J ′ i (s) ≤ -θJ i (s) + ε ′ v(s) L 2 ρ , (A.6)
where

θ = θ(k, δ) = k 2 -2 -2C - k(k -1) 2 δ 2 and ε ′ = ε ′ (ε, δ, k) = 1 2 k(k -1)εδ 2-k 2 .
Given i ≥ 2, by first choosing k = k(i) large, then δ = δ(i) small, we can always make θ ≥ i+1 2 -1. Note that by a trivial induction on i, it is possible to choose k(i) as an increasing sequence of i. Note also that choosing ǫ small enough, we can make ǫ ′ as small as we want. Hence, from (A.6), we obtain

J ′ i (s) ≤ (1 - i + 1 2 )J i (s) + ε ′ v(s) L 2 ρ ≤ (1 - i + 1 2
)J i (s) + ε ′ (x + + y i + zi )(s), ∀s ≥ s 2 (ε). (A.7)

Finally, using (A.3), (A.1) and (A.2), we have for all s ≥ s 2 (ε):

   y ′ i (s) ≥ (1 -i 2 )y i (s) -Cε(x + + y i + zi )(s) -Cδ k 2 J i (s) z′ i (s) ≤ (1 - i+1 
2 )z i (s) + Cε(x + + y i + zi )(s) + Cδ k 2 J i (s), as z i = zi + J i . Taking ε > 0, then by choosing k large enough, δ small enough and finally ε small enough, we can make δ k 2 C ≤ εC + ε ′ < ε. Therefore, we get the desired result for some s 3 (ε) ≥ s 2 (ε) and some neighborhood V 3 ⊂ V 2 of initial data û0 .

R N g 2

 2 (y)ρ(y)d y < +∞ , with ρ(y) = e -

1 p- 1

 11 u a + z (Tt)| log(Tt)|, tf la (z) → 0 as t → T, (1.13)where l a = 1, • • • , N and f la (z) = p -

Proposition 2 . 2 (

 22 Uniform smallness of v a,T ) There exists a neighborhood V 2 of û0 in L ∞ (R N ) and a positive constant δ 2 such that as s → +∞, T (y, s)| -→ 0.

(3. 7 )

 7 We argue by contradiction. If (3.7) does not hold, then we can construct from (3.6) σ * (= σ * (n)) ∈ s 4 (ε), s n such that 4εy m(σ * ) = z m(σ * ) and ∀σ ∈ (σ * , s n ], 4εy m(σ) < z m(σ).

  Since we have the definition (2.16) of y m, y m(s) ≤ p m(s) + y m-1 (s) (3.16) and (a) follows. (b) This is a direct consequence of (3.14) and (3.16). (c) Since by (ii) of the Theorem 2, we have m(u 0 , a) ≥ m, we have from the definitions (1.11), (2.16), (2.18) and of m(u 0 , a), y m-1 , z m-1 and z m-1

  ) and (2.18) of J m and z m:

J m- 1 2 + 2 ≤

 122 (s) ≤ |y|<1 |v(y, s)| 4 |y| k( m-1) ρ(y)dy 1 |y|>1 |v(y, s)| 4 |y| k( m-1) ρ(y)dy 1 M |y|<1 |v(y, s)| 2 ρ(y)dy 1 2 + |y|>1 |v(y, s)| 4 |y| k( m) ρ(y)dy1 2

21 )

 21 Note that for any m ∈ N, P m (v) defined in (1.10) satisfiesP m (v)(y, s) = |α|=m v α (s)H α (y).

  s 0 )| = 0, then A(s 0 ) = 0. Using(3.25) and (iii) of Theorem 2, we see that v(y, s 0 ) ≡ 0. This yields v(y, s) ≡ 0 and A(s) = 0 for all the times thanks to the uniqueness of the initial value problem for equation(1.1). Consequently, we getu ≡ κ(Tt) -1 p-1 . (3.28) Since Proposition 3 holds under the hypotheses of Theorem 1 and (3.28) is excluded by the hypotheses of Theorem 1, we get a contradiction. Thus, N i=1 |l i (s)| is always different from zero.

. 32 ) 2 , 2 *

 3222 Therefore, knowing that N i=1 l i (s) → 0 as s → +∞, we must have N i=1 l i (s) < 0 for all s ≥ s 10 ( for some c > 0, which gives (3.30) by integration. (iii) Introducing η(s) = min 1≤i≤N l i (s), (3.34)we see from (ii) of Lemma 3.6 that η : s → η(s) is absolutely continuous on [s 10 (ε), +∞). Hence, η is almost everywhere differentiable on [s 10 (ε), +∞). Moreover, for any ε > 0 and almost every s ≥ s 10 (ε), we haveη ′ (s) ≥ 1 β η 2 (s)ε N i=1 |l i (s)| 2 . s)| where N * = max N, 2(N -1) ,and for almost every s ≥ s 10 (ε), η ′ (s) ≥ η 2 s) < 0, from (3.34) and (3.33), we get by integration for all s ≥ s 11 ≡ max s 10 ( 1 2βN ), s 10 ( 12βN 2 * ) -2β s ≤ η(s) < 0.Using(3.35), we conclude the proof of (iii) of Lemma 3.7, which gives the conclusion of Proposition 3.A Proof of Lemma 2.5Let Pi (v) = i l=2 P l (v). Applying Pi on the equation (1.6) satisfied by v a,T (y, s) (v(y, s) for simplicity), multiplying by Pi v and integrating with respect to ρ(y)dy, we get y ′ i (s)y i (s) = R N Pi (Lv) Pi vρdy + R N Pi (f (v)) Pi vρdy ≡ I 1 + I 2 .

1 v 4 1 v 4 2 L 2 ρ

 141422 (y, s)ρ(y)dy+ |y|≥δ -(y, s)ρ(y)dy ≤ ε 2 v(s) +δ k J 2 i (s)

k 2 J 4 d ds R N v 4 2 ≤- 1 v 4 2 +- 1 v 4 2 ≤ εδ 2-k 2 v

 24421421422 i (s) ≤ ε(x + + y i + zi )(s) + δ k 2 J i (s), ∀s ≥ s 2 (ε).(A.[START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF] In order to get an estimation on J i , we multiply the equation (1.6) by v 3 (y, s)|y| k ρ(y) and integrate by parts. WritingL(v) = 1 ρ ∇(ρ∇v) + v, we then have 1 (y, s)|y| k ρ dy = J 2 i (s) + I 3 + I 4 , (A.4)where, using the fact that |f (v)| ≤ C|v|,I 3 = R N f (v(y, s))v 3 (y, s)|y| k ρ dy ≤ CJ 2 m (s),andI 4 = R N ∇(ρ(y)∇v(y, s))v 3 (y, s)|y| k ρ(y) dy = -k 8 J 2 m (s) + k(k -1) 4 R N v 4 (y, s)|y| k-2 ρ(y) dy -3 R N v 2 (y, s)|∇v(y, s)| 2 |y| k ρ(y) dy ≤ -k 8 J 2 i (s) + k(k -1) 4 R N v 4 (y, s)|y| k-2 ρ(y) dy.Then, going back to (A.4) and using Cauchy-Schwarz inequality, the uniform convergence to zero of v over the compact subsets of R N when s → +∞ given by Proposition (2.2), we have R N v 4 (y, s)|y| k-4 ρ(y) dy 1 |y|≤δ (y, s)|y| k-4 ρ(y) dy 1 |y|≥δ (y, s)|y| k-4 ρ(y) dy 1 (s) L 2 ρ +δ 2 J m (s).

  as s → +∞. Moreover, in this latter case, we have ∀ε > 0 and s ≥ s 5 (ε), Y (s) ≤ CεZ(s).Indeed, let us first derive Lemma 2.6 from Lemma 2.7 and then prove this latter.

	Proof of Lemma 2.6. Let Y (s) = e s 2 x + (s) and Z(s) = e	s 2

  s), which gives the second case. Part 2: Let ε < 1 C , then either (2.29) or (2.30) occurs. Assuming that (2.29) occurs, it is clear from Part 1, that for any ε ′ < ε, (2.29) occurs as well. Hence Z = o(Y ) as s → +∞. If (2.30) occurs for ε, then we are lead to Y = o(Z) as s → +∞. This ends the proof of Lemma 2.7.

  ). (3.20) Since we have from the definition (2.16), (3.15) and (2.18) of x + , y m-1 , p m, z m and z m,

  .27) (s)| 2 as a norm of A(s) depending on the convenience. (s)| is always different from zero. Indeed, if we assume that there exist a time s 0 , u 0 and a such that

	N	N
	Remark: We take N |l i We note that i=1 |l i (s)| or i=1 i=1 |l i

  (P l v) 2 ρdy, from the orthogonality of the eigenspaces of L in L 2 ρ .Using the Cauchy-Schwarz inequality and the fact that |f (v)| ≤ C|v| 2 , we haveI 2 ≤ C v 2 (s) L 2 ρ y i (s). So, we get C v 2 (s) L 2

					l 2	)	R N	P l vP j vρdy =	i l=2	(1 -	l 2	)	R N
		i							
	Since y 2 i (s) =	l=2 R N	(P l v) 2 ρdy, it follows that				
				0 ≥ I 1 ≥ (1 -	i 2	)y 2 i (s).
										(A.1)
	Similarly, we have							
	x ′ + (s) ≥	1 2	x + (s) -C v 2 (s) L 2 ρ	and z′ i (s) ≤ (1 -	i + 1 2	)z i (s) + C v 2 (s) L 2 ρ .	(A.2)

ρ ≥ y ′ i (s) ≥ (1 -i 2 )y i (s) -C v 2 (s) L 2 ρ .

m(s),
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1 Khenissy-Rebai-

Proof of the main results

Our aim in this section consists in proving Theorems 1, 2 and 2' as well as Propositions 3 and 3'.

Proof of Theorem 1

We claim that it is enough to prove (1.16). Indeed, assuming (1.16) true and taking a ∈ S u ∩ B(â, δ), we see from the definition of m(u 0 , a) that v a,T (s) ∼ P m(u0,a) (v a,T (s)) as s → +∞ in L 2 ρ on the one hand.

On the other hand, from (1.16), v a,T (s) ∼

Thus, m(u 0 , a) ≤ m and the alternative 1), 2) in Theorem 1 holds. Therefore, we only prove (1.16). We proceed in three parts. In Part 1, we prove that z m(s) ≤ y m(s) uniformly in u 0 and a. In Part 2, we prove that z m(s) = o(y m(s)) as s → +∞, with no uniform character (with respect to a and u 0 ). Finally, in Part 3, we prove the uniform character of z m(s) = o(y m(s)) as s → +∞.

Part 1: We claim the following:

such that for all u 0 ∈ V 4 and for all a ∈ S u ∩ B(â, δ 4 ),

Proof.

Rewriting Lemma 2.9 with C * = 2, we have the existence of some s * such that

By Lemma 2.3 applied to (û 0 , â) with ε = 1 3 ,

We set ŝ0 := max s 0 ( 1 3 , û0 , â), s * .

Then, using continuity arguments at s = ŝ0 , applied to equation (1.1), we obtain the existence of a neighborhood

Finally, by (3.2), we obtain for all u 0 ∈ V 4 = V 3 ∩ V ′′ 3 and for all a ∈ S u ∩ B(â, δ 4 ) (where

This ends the proof of Lemma 3.1.

Part 2: We claim the following:

If for some s ∈ [s 4 , s 5 ], y m(s) = 0, then, y m(s) = z m(s) and v a,T (y, s) = 0 for all s ≥ s by uniqueness in the Cauchy problem of (1.6). This implies s 5 (ε, u 0 , a) = s 4 (ε) and (3.12) follows. If for all s ∈ [s 4 (ε), s 5 (ε, u 0 , a)], y m(s) > 0, using (3.13), (2.35) becomes : ∀s ∈ [s 4 (ε), s 5 (ε, u 0 , a)],

Therefore,

if ε is small enough and by (3.13), we have

which yields s 5 (ε, u 0 , a)s 4 (ε) ≤ 9| log 4ε|, and Lemma 3.3 is proved.

As a conclusion : for all ε < ε ′ 0 , u 0 ∈ V ′ = V 4 , a ∈ S u ∩ B(0, δ 4 ), we have from (3.5) and (3.12):

Therefore, from (2.18) and (2.28), we have

Using (2.16), we get v a,T (s) -

which concludes the proof of (1.16) and Theorem 1.

Proof of Theorem 2 and Theorem 2'

We only prove Theorem 2, since the proof of Theorem 2' is quite similar. Indeed, in order to get the proof of Theorem 2', just follow the proof of Theorem 2 and take V 0 = V û0 = {û 0 }.
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