
HAL Id: hal-00570164
https://hal.science/hal-00570164v1

Submitted on 27 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On characteristic points at blow-up for a semilinear
wave equation in one space dimension

Frank Merle, Hatem Zaag

To cite this version:
Frank Merle, Hatem Zaag. On characteristic points at blow-up for a semilinear wave equation in one
space dimension. Singularities in Nonlinear Problems 2009, Nov 2009, Kyoto, Japan. �hal-00570164�

https://hal.science/hal-00570164v1
https://hal.archives-ouvertes.fr


On characteristic points at blow-up for a

semilinear wave equation in one space dimension∗

Frank Merle
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We consider the one dimensional semilinear wave equation{
∂2
ttu = ∂2

xxu+ |u|p−1u,
u(0) = u0 and ut(0) = u1,

(1)

where u(t) : x ∈ R → u(x, t) ∈ R, p > 1, u0 ∈ H1
loc,u and u1 ∈ L2

loc,u with ‖v‖2
L2

loc,u
=

sup
a∈R

∫
|x−a|<1

|v(x)|2dx and ‖v‖2
H1

loc,u
= ‖v‖2

L2
loc,u

+ ‖∇v‖2
L2

loc,u
.

The Cauchy problem for equation (1) in the space H1
loc,u × L2

loc,u follows from the finite
speed of propagation and the wellposedness in H1 × L2 (see Ginibre, Soffer and Velo [5]).
If the solution is not global in time, then we call it a blow-up solution. The existence
of blow-up solutions is guaranteed by ODE techniques, or also by the following blow-up
criterion from Levine [8]:

If (u0, u1) ∈ H1 × L2(R) satisfies∫
R

(
1
2
|u1(x)|2 +

1
2
|∂xu0(x)|2 − 1

p+ 1
|u0(x)|p+1

)
dx < 0,

then the solution of (1) cannot be global in time.

More blow-up results can be found in Caffarelli and Friedman [4], [3], Alinhac [1] and
Kichenassamy and Litman [6], [7].

If u is a blow-up solution of (1), we define (see for example Alinhac [1]) a 1-Lipschitz
curve Γ = {(x, T (x))} such that u cannot be extended beyond the set called the maximal
influence domain of u:

D = {(x, t) | t < T (x)}. (2)

T̄ = infx∈R T (x) and Γ are called the blow-up time and the blow-up graph of u. A point
x0 is a non characteristic point (or a regular point) if

there are δ0 ∈ (0, 1) and t0 < T (x0) such that u is defined on Cx0,T (x0),δ0 ∩ {t ≥ t0} (3)
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where Cx̄,t̄,δ̄ = {(x, t) | t < t̄− δ̄|x− x̄|}. If not, then we call x0 a characteristic point (or
a singular point). Naturally, we denote by R (resp. S) the set of non characteristic (resp.
characteristic) points. Note then that

R∪ S = R.

In our papers [11], [13], [12], [14], [15] and [16], we made several contributions to the
study of blow-up solutions of (1), namely the description of its blow-up graph and blow-up
behavior in selfsimilar variables.

1 The blow-up graph of equation (1)

It is clear from rather simple arguments that R 6= ∅ for any blow-up solution u(x, t) (if
T (x) achieves its minimum at x0, then x0 ∈ R; if the infiimum is at infinity, then see the
remark following Theorem 1 in [15]). On the contrary, the situation was unclear for S, and
it was commonly conjectured before our contributions that S was empty. In particular,
that was the case in the examples constructed by Cafarelli and Friedman in [4] and [3].
In [16], we prove that the conjecture was false. More precisely, we proved the following:

Proposition 1 (Existence of initial data with S 6= ∅) If the initial data (u0, u1) is
odd and u(x, t) blows up in finite time, then 0 ∈ S.

For general blow-up solutions, we proved the following facts about R and S in [15] and
[16] (see Theorem 1 (and the following remark) in [15], see Propositions 5 and 8 in [16]):

Theorem 2 (Geometry of the blow-up graph)
(i) R is a non empty open set, and x 7→ T (x) is of class C1 on R;
(ii) S is a closed set with empty interior, and given x0 ∈ S, if 0 < |x− x0| ≤ δ0, then

0 < T (x)− T (x0) + |x− x0| ≤
C0|x− x0|

| log(x− x0)|
(k(x0)−1)(p−1)

2

(4)

for some δ0 > 0 and C0 > 0, where k(x0) ≥ 2 is an integer. In particular, T (x) is right
and left differentiable at x0, with T ′l (x0) = 1 and T ′r(x0) = −1.

2 Asymptotic behavior near the blow-up graph

As one may guess from the above description, the asymptotic behavior will not be the
same on R and on S. In both cases, we need to use the similarity variables which we recall
in the following. Let us stress the fact that the keystone of our work is the existence of a
Lyapunov functional in similarity variables.

Given some (x0, T0) such that 0 < T0 ≤ T (x0), we introduce the following self-similar
change of variables:

wx0,T0(y, s) = (T0 − t)
2
p−1u(x, t), y =

x− x0

T0 − t
, s = − log(T0 − t). (5)
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If T0 = T (x0), then we simply write wx0 instead of wx0,T (x0). The function w = wx0,T0

satisfies the following equation for all y ∈ B = B(0, 1) and s ≥ − log T0:

∂2
ssw = Lw − 2(p+ 1)

(p− 1)2
w + |w|p−1w − p+ 3

p− 1
∂sw − 2y∂2

y,sw (6)

where Lw =
1
ρ
∂y
(
ρ(1− y2)∂yw

)
and ρ(y) = (1− y2)

2
p−1 . (7)

From Antonini and Merle [2], we know the existence of the following Lyapunov functional
for equation (6):

E(w) =
∫ 1

−1

(
1
2

(∂sw)2 +
1
2

(∂yw)2 (1− y2) +
(p+ 1)
(p− 1)2

w2 − 1
p+ 1

|w|p+1

)
ρdy, (8)

defined for (∂sw,w) ∈ H where

H =
{
q | ‖q‖2H ≡

∫ 1

−1

(
q2

1 +
(
q′1
)2 (1− y2) + q2

2

)
ρdy < +∞

}
. (9)

From Proposition 1 in [14], we know that the only stationary solutions of (6) in the space
H are q ≡ 0 or w(y) ≡ ±κ(d, y), where d ∈ (−1, 1) and

κ(d, y) = κ0
(1− d2)

1
p−1

(1 + dy)
2
p−1

where κ0 =
(

2(p+ 1)
(p− 1)2

) 1
p−1

and |y| < 1. (10)

Note that the set of stationary solutions is made of 3 connected components. One wanders
whether these stationary solutions are good candidates for the convergence of wx0(y, s).
As a matter of fact, that is the case when x0 ∈ R as we see from the following result (see
Corollary 4 in [14] and Theorem 6 in [16]):

Theorem 3 (Asymptotic behavior near the blow-up graph)
(i) Case where x0 ∈ R: Existence of an asymptotic profile. There exist δ0(x0) > 0,
d(x0) ∈ (−1, 1), |θ(x0)| = 1, s0(x0) ≥ − log T (x0) such that for all s ≥ s0:∥∥∥∥( wx0(s)

∂swx0(s)

)
− θ(x0)

(
κ(d(x0), .)
0

)∥∥∥∥
H
≤ C0e

−µ0(s−s0) (11)

for some positive µ0 and C0 independent from x0. Moreover, E(wx0(s)) → E(κ0) as
s→∞.
(ii) Case where x0 ∈ S: decomposition into a sum of decoupled solitons. It holds
that∥∥∥∥∥∥∥

(
wx0(s)
∂swx0(s)

)
−


k(x0)∑
i=1

e∗iκ(di(s), ·)

0


∥∥∥∥∥∥∥
H

→ 0 and E(wx0(s))→ k(x0)E(κ0) (12)

as s→∞, for some
k(x0) ≥ 2, e∗i = e∗1(−1)i+1
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and continuous di(s) = − tanh ζi(s) ∈ (−1, 1) for i = 1, ..., k(x0). Moreover, for some
C0 > 0, for all i = 1, ..., k(x0) and s large enough,∣∣∣∣ζi(s)− (i− (k(x0) + 1)

2

)
(p− 1)

2
log s

∣∣∣∣ ≤ C0. (13)

Remark: Note that some elements in the description in similarity variables given above
have a geometrical interpretation:
- when x0 ∈ R, the paramter d(x0) appearing in (11) is equal to the slope T ′(x0) of the
blow-up curve (hence d(x0) = T ′(x0));
- when x0 ∈ S, k(x0) ≥ 2 is the number of solitons in the decomposition (12) appears also
in the upper bound estimate on T (x) for x near x0 given in (4).
Remark: The proof of the convergence in (i) has two major difficulties:
- the linearized operator of equation (6) around the profile κ(d, y) is not selfadjoint, which
makes the standard tools unefficient for the control of the negative part of the spectrum.
Fortunately, the Lyapunov functional structure will be useful in this matter;
- all the non zero stationary solutions of equation (6) are non isolated, which generates a
null eigenvalue difficult to control in the linearization of equation (6) around κ(d, y). A
modulation technique is then used to overcome this difficulty.

Extending the definition of k(x0) defined for x0 ∈ S after (12) by setting

k(x0) = 1 for all x0 ∈ R,

we proved the following energy criterion in [16] and using the monotonicity of the Lyapunov
functional E(w), we have the following consequence from the blow-up behavior in Theorem
3:

Proposition 2.1 (An energy criterion for non characteristic points; see Corol-
lary 7 in [16])
(i) For all x0 ∈ R and s0 ≥ − log T (x0), we have

E(wx0(s0)) ≥ k(x0)E(κ0).

(ii) If for some x0 and s0 ≥ − log T (x0), we have

E(wx0(s0)) < 2E(κ0),

then x0 ∈ R.

3 A Liouville theorem and a trapping result near the set of
stationary solutions

The following Liouville thoerem is crucial in our analysis:

Theorem 4 (A Liouville Theorem for equation (6)) Consider w(y, s) a solution to
equation (6) defined for all (y, s) ∈ (− 1

δ∗
, 1
δ∗

)× R such that for all s ∈ R,

‖w(s)‖H1(− 1
δ∗
, 1
δ∗

) + ‖∂sw(s)‖L2(− 1
δ∗
, 1
δ∗

) ≤ C
∗ (14)

4



for some δ∗ ∈ (0, 1) and C∗ > 0. Then, either w ≡ 0 or w can be extended to a function
(still denoted by w) defined in

{(y, s) | −1−T0e
s < d0y} ⊃

(
− 1
δ∗
,

1
δ∗

)
×R by w(y, s) = θ0κ0

(1− d2
0)

1
p−1

(1 + T0es + d0y)
2
p−1

, (15)

for some T0 ≥ T ∗, d0 ∈ [−δ∗, δ∗] and θ0 = ±1, where κ0 defined in (10).

Remark: Note that deriving blow-up estimates through the proof of Liouville Theorems
has been successful for different problems. For the case of the heat equation

∂tu = ∆u+ |u|p−1u (16)

where u : (x, t) ∈ RN × [0, T ) → R, p > 1 and (N − 2)p < N + 2, the blow-up time T
is unique for equation (16). The blow-up set is the subset of RN such that u(x, t) does
not remain bounded as (x, t) approaches (x0, T ). In [17], the second author proved the
C2 regularity of the blow-up set under a non degeneracy condition. A Liouville Theorem
proved in [10] and [9] was crucially needed for the proof of the regularity result in the heat
equation. The above Liouville Theorem is crucial for the regularity of the blow-up set for
the wave equation (Theorem 3).

The second fundamental crucial result for our contributions is given by the following
trapping result from [14] (See Theorem 3 in [14] and its proof):

Proposition 3.1 (A trapping result near the sheet d 7→ κ(d, y) of stationnary
solutions) There exists ε0 > 0 such that if w ∈ C([s∗,∞),H) for some s∗ ∈ R is a
solution of equation (6) such that

∀s ≥ s∗, E(w(s)) ≥ E(κ0) and
∥∥∥∥( w(s∗)

∂sw(s∗)

)
− ω∗

(
κ(d∗, ·)
0

)∥∥∥∥
H
≤ ε∗ (17)

for some d∗ = − tanh ξ∗, ω∗ = ±1 and ε∗ ∈ (0, ε0], then there exists d∞ = − tanh ξ∞ such
that

|ξ∞ − ξ∗| ≤ C0ε
∗ and

∥∥∥∥( w(s)
∂sw(s)

)
− ω∗

(
κ(d∞, ·)
0

)∥∥∥∥
H
→ 0. (18)
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