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We consider the one dimensional semilinear wave equation

∂ 2 tt u = ∂ 2 xx u + |u| p-1 u, u(0) = u 0 and u t (0) = u 1 , (1) 
where u(t) :

x ∈ R → u(x, t) ∈ R, p > 1, u 0 ∈ H 1 loc,u and u 1 ∈ L 2 loc,u with v 2 L 2 loc,u = sup a∈R |x-a|<1 |v(x)| 2 dx and v 2 H 1 loc,u = v 2 L 2 loc,u + ∇v 2 L 2 loc,u
.

The Cauchy problem for equation [START_REF] Alinhac | Blowup for nonlinear hyperbolic equations[END_REF] in the space H 1 loc,u × L 2 loc,u follows from the finite speed of propagation and the wellposedness in H 1 × L 2 (see Ginibre, Soffer and Velo [START_REF] Ginibre | The global Cauchy problem for the critical nonlinear wave equation[END_REF]). If the solution is not global in time, then we call it a blow-up solution. The existence of blow-up solutions is guaranteed by ODE techniques, or also by the following blow-up criterion from Levine [START_REF] Levine | Instability and nonexistence of global solutions to nonlinear wave equations of the form P u tt = -Au + F(u)[END_REF]:

If (u 0 , u 1 ) ∈ H 1 × L 2 (R) satisfies R 1 2 |u 1 (x)| 2 + 1 2 |∂ x u 0 (x)| 2 - 1 p + 1 |u 0 (x)| p+1 dx < 0,
then the solution of (1) cannot be global in time.

More blow-up results can be found in Caffarelli and Friedman [START_REF] Caffarelli | The blow-up boundary for nonlinear wave equations[END_REF], [START_REF] Caffarelli | Differentiability of the blow-up curve for onedimensional nonlinear wave equations[END_REF], Alinhac [START_REF] Alinhac | Blowup for nonlinear hyperbolic equations[END_REF] and Kichenassamy and Litman [START_REF] Kichenassamy | Blow-up surfaces for nonlinear wave equations[END_REF], [START_REF] Kichenassamy | Blow-up surfaces for nonlinear wave equations[END_REF].

If u is a blow-up solution of (1), we define (see for example Alinhac [START_REF] Alinhac | Blowup for nonlinear hyperbolic equations[END_REF]) a 1-Lipschitz curve Γ = {(x, T (x))} such that u cannot be extended beyond the set called the maximal influence domain of u:

D = {(x, t) | t < T (x)}.
(2) T = inf x∈R T (x) and Γ are called the blow-up time and the blow-up graph of u. A point x 0 is a non characteristic point (or a regular point) if there are δ 0 ∈ (0, 1) and t 0 < T (x 0 ) such that u is defined on

C x 0 ,T (x 0 ),δ 0 ∩ {t ≥ t 0 } (3)
where C x, t, δ = {(x, t) | t < t -δ|x -x|}. If not, then we call x 0 a characteristic point (or a singular point). Naturally, we denote by R (resp. S) the set of non characteristic (resp. characteristic) points. Note then that R ∪ S = R.

In our papers [START_REF] Merle | Determination of the blow-up rate for the semilinear wave equation[END_REF], [START_REF] Merle | Determination of the blow-up rate for a critical semilinear wave equation[END_REF], [START_REF] Merle | Blow-up rate near the blow-up surface for semilinear wave equations[END_REF], [START_REF] Merle | Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension[END_REF], [START_REF] Merle | Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation[END_REF] and [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF], we made several contributions to the study of blow-up solutions of (1), namely the description of its blow-up graph and blow-up behavior in selfsimilar variables.

1 The blow-up graph of equation [START_REF] Alinhac | Blowup for nonlinear hyperbolic equations[END_REF] It is clear from rather simple arguments that R = ∅ for any blow-up solution u(x, t) (if T (x) achieves its minimum at x 0 , then x 0 ∈ R; if the infiimum is at infinity, then see the remark following Theorem 1 in [START_REF] Merle | Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation[END_REF]). On the contrary, the situation was unclear for S, and it was commonly conjectured before our contributions that S was empty. In particular, that was the case in the examples constructed by Cafarelli and Friedman in [START_REF] Caffarelli | The blow-up boundary for nonlinear wave equations[END_REF] and [START_REF] Caffarelli | Differentiability of the blow-up curve for onedimensional nonlinear wave equations[END_REF]. In [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF], we prove that the conjecture was false. More precisely, we proved the following: Proposition 1 (Existence of initial data with S = ∅) If the initial data (u 0 , u 1 ) is odd and u(x, t) blows up in finite time, then 0 ∈ S.

For general blow-up solutions, we proved the following facts about R and S in [START_REF] Merle | Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation[END_REF] and [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF] (see Theorem 1 (and the following remark) in [START_REF] Merle | Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation[END_REF], see Propositions 5 and 8 in [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF]):

Theorem 2 (Geometry of the blow-up graph) (i) R is a non empty open set, and x → T (x) is of class C 1 on R; (ii) S is a closed set with empty interior, and given

x 0 ∈ S, if 0 < |x -x 0 | ≤ δ 0 , then 0 < T (x) -T (x 0 ) + |x -x 0 | ≤ C 0 |x -x 0 | | log(x -x 0 )| (k(x 0 )-1)(p-1) 2 (4) 
for some δ 0 > 0 and C 0 > 0, where k(x 0 ) ≥ 2 is an integer. In particular, T (x) is right and left differentiable at x 0 , with T l (x 0 ) = 1 and T r (x 0 ) = -1.

Asymptotic behavior near the blow-up graph

As one may guess from the above description, the asymptotic behavior will not be the same on R and on S. In both cases, we need to use the similarity variables which we recall in the following. Let us stress the fact that the keystone of our work is the existence of a Lyapunov functional in similarity variables.

Given some (x 0 , T 0 ) such that 0 < T 0 ≤ T (x 0 ), we introduce the following self-similar change of variables:

w x 0 ,T 0 (y, s) = (T 0 -t)
If T 0 = T (x 0 ), then we simply write w x 0 instead of w x 0 ,T (x 0 ) . The function w = w x 0 ,T 0 satisfies the following equation for all y ∈ B = B(0, 1) and s ≥ -log T 0 :

∂ 2 ss w = Lw - 2(p + 1) (p -1) 2 w + |w| p-1 w - p + 3 p -1 ∂ s w -2y∂ 2 y,s w (6) 
where

Lw = 1 ρ ∂ y ρ(1 -y 2 )∂ y w and ρ(y) = (1 -y 2 ) 2 p-1 . (7) 
From Antonini and Merle [START_REF] Antonini | Optimal bounds on positive blow-up solutions for a semilinear wave equation[END_REF], we know the existence of the following Lyapunov functional for equation ( 6):

E(w) = 1 -1 1 2 (∂ s w) 2 + 1 2 (∂ y w) 2 (1 -y 2 ) + (p + 1) (p -1) 2 w 2 - 1 p + 1 |w| p+1 ρdy, (8) 
defined for (∂ s w, w) ∈ H where

H = q | q 2 H ≡ 1 -1 q 2 1 + q 1 2 (1 -y 2 ) + q 2 2 ρdy < +∞ . (9) 
From Proposition 1 in [START_REF] Merle | Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension[END_REF], we know that the only stationary solutions of (6) in the space H are q ≡ 0 or w(y) ≡ ±κ(d, y), where d ∈ (-1, 1) and

κ(d, y) = κ 0 (1 -d 2 ) 1 p-1 (1 + dy) 2 p-1 where κ 0 = 2(p + 1) (p -1) 2 1 p-1 and |y| < 1. (10) 
Note that the set of stationary solutions is made of 3 connected components. One wanders whether these stationary solutions are good candidates for the convergence of w x 0 (y, s).

As a matter of fact, that is the case when x 0 ∈ R as we see from the following result (see Corollary 4 in [START_REF] Merle | Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension[END_REF] and Theorem 6 in [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF]):

Theorem 3 (Asymptotic behavior near the blow-up graph) (i) Case where x 0 ∈ R: Existence of an asymptotic profile. There exist δ 0 (x 0 ) > 0, d(x 0 ) ∈ (-1, 1), |θ(x 0 )| = 1, s 0 (x 0 ) ≥ -log T (x 0 ) such that for all s ≥ s 0 :

w x 0 (s) ∂ s w x 0 (s) -θ(x 0 ) κ(d(x 0 ), .) 0 H ≤ C 0 e -µ 0 (s-s 0 ) (11) 
for some positive µ 0 and C 0 independent from x 0 . Moreover, E(w x 0 (s)) → E(κ 0 ) as s → ∞.

(ii) Case where x 0 ∈ S: decomposition into a sum of decoupled solitons. It holds that

w x 0 (s) ∂ s w x 0 (s) -    k(x 0 ) i=1 e * i κ(d i (s), •) 0    H → 0 and E(w x 0 (s)) → k(x 0 )E(κ 0 ) (12)
as s → ∞, for some k(x 0 ) ≥ 2, e * i = e * 1 (-1) i+1

and continuous d i (s) = -tanh ζ i (s) ∈ (-1, 1) for i = 1, ..., k(x 0 ). Moreover, for some C 0 > 0, for all i = 1, ..., k(x 0 ) and s large enough,

ζ i (s) -i - (k(x 0 ) + 1) 2 (p -1) 2 log s ≤ C 0 . ( 13 
)
Remark: Note that some elements in the description in similarity variables given above have a geometrical interpretation:

-when x 0 ∈ R, the paramter d(x 0 ) appearing in ( 11) is equal to the slope T (x 0 ) of the blow-up curve (hence d(x 0 ) = T (x 0 )); -when x 0 ∈ S, k(x 0 ) ≥ 2 is the number of solitons in the decomposition [START_REF] Merle | Blow-up rate near the blow-up surface for semilinear wave equations[END_REF] appears also in the upper bound estimate on T (x) for x near x 0 given in (4).

Remark: The proof of the convergence in (i) has two major difficulties:

-the linearized operator of equation ( 6) around the profile κ(d, y) is not selfadjoint, which makes the standard tools unefficient for the control of the negative part of the spectrum. Fortunately, the Lyapunov functional structure will be useful in this matter; -all the non zero stationary solutions of equation ( 6) are non isolated, which generates a null eigenvalue difficult to control in the linearization of equation ( 6) around κ(d, y). A modulation technique is then used to overcome this difficulty.

Extending the definition of k(x 0 ) defined for x 0 ∈ S after ( 12) by setting

k(x 0 ) = 1 for all x 0 ∈ R,
we proved the following energy criterion in [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF] and using the monotonicity of the Lyapunov functional E(w), we have the following consequence from the blow-up behavior in Theorem 3:

Proposition 2.1 (An energy criterion for non characteristic points; see Corollary 7 in [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF]) (i) For all x 0 ∈ R and s 0 ≥ -log T (x 0 ), we have

E(w x 0 (s 0 )) ≥ k(x 0 )E(κ 0 ).
(ii) If for some x 0 and s 0 ≥ -log T (x 0 ), we have

E(w x 0 (s 0 )) < 2E(κ 0 ), then x 0 ∈ R.

A Liouville theorem and a trapping result near the set of stationary solutions

The following Liouville thoerem is crucial in our analysis:

Theorem 4 (A Liouville Theorem for equation ( 6)) Consider w(y, s) a solution to equation ( 6) defined for all (y, s) ∈ (-

1 δ * , 1 δ * ) × R such that for all s ∈ R, w(s) H 1 (-1 δ * , 1 δ * ) + ∂ s w(s) L 2 (-1 δ * , 1 δ * ) ≤ C * (14) 
for some δ * ∈ (0, 1) and C * > 0. Then, either w ≡ 0 or w can be extended to a function (still denoted by w) defined in

{(y, s) | -1 -T 0 e s < d 0 y} ⊃ - 1 δ * , 1 δ * × R by w(y, s) = θ 0 κ 0 (1 -d 2 0 ) 1 p-1 (1 + T 0 e s + d 0 y) 2 p-1 , (15) 
for some T 0 ≥ T * , d 0 ∈ [-δ * , δ * ] and θ 0 = ±1, where κ 0 defined in [START_REF] Merle | A Liouville theorem for vector-valued nonlinear heat equations and applications[END_REF].

Remark: Note that deriving blow-up estimates through the proof of Liouville Theorems has been successful for different problems. For the case of the heat equation

∂ t u = ∆u + |u| p-1 u (16) 
where u : (x, t) ∈ R N × [0, T ) → R, p > 1 and (N -2)p < N + 2, the blow-up time T is unique for equation [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF]. The blow-up set is the subset of R N such that u(x, t) does not remain bounded as (x, t) approaches (x 0 , T ). In [START_REF] Zaag | Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation[END_REF], the second author proved the C 2 regularity of the blow-up set under a non degeneracy condition. A Liouville Theorem proved in [START_REF] Merle | A Liouville theorem for vector-valued nonlinear heat equations and applications[END_REF] and [START_REF] Merle | Optimal estimates for blowup rate and behavior for nonlinear heat equations[END_REF] was crucially needed for the proof of the regularity result in the heat equation. The above Liouville Theorem is crucial for the regularity of the blow-up set for the wave equation (Theorem 3).

The second fundamental crucial result for our contributions is given by the following trapping result from [START_REF] Merle | Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension[END_REF] (See Theorem 3 in [START_REF] Merle | Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension[END_REF] and its proof): 

Proposition 3 . 1 (H

 31 A trapping result near the sheet d → κ(d, y) of stationnary solutions) There exists 0 > 0 such that if w ∈ C([s * , ∞), H) for some s * ∈ R is a solution of equation (6) such that ∀s ≥ s * , E(w(s)) ≥ E(κ 0 ) and w(s * ) ∂ s w(s * ) -ω * κ(d * , for some d * = -tanh ξ * , ω * = ±1 and * ∈ (0, 0 ], then there exists d ∞ = -tanh ξ ∞ such that |ξ ∞ -ξ * | ≤ C 0 * and w(s) ∂ s w(s) -ω * κ(d ∞ , •) 0

p-1 u(x, t), y =x -x 0 T 0 -t , s = -log(T 0 -t).(5)
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