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Transient temperature field in a parallel-flow three-fluid heat exchanger 

with the thermal capacitance of the walls and the longitudinal walls conduction 
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Abstract 

Transient temperature response of a parallel-flow three-fluid heat exchanger 

with the thermal capacitance of the walls and the longitudinal heat conduction through 

the walls is investigated numerically, by the implicit MacCormack method, for a step 

change in flow rate of one fluid. The impact of thermal properties of the walls on 

temperature field is examined. The results of calculations show that as the thermal 

diffusivity of the walls decreases, the effect of the walls increases. 
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Nomenclature 

A  - diagonal matrix of thermal diffusivity, 2m s  

iA  - cross-sectional area of channel no. i, m2 

a - thermal diffusivity, 2m s  

b  - interconnection vector, s/1  

c  - specific heat at constant pressure, ( )J kgK  

lw - characteristic dimension dependent on the shape of the wall, m 

L  - length of channels, m  

q�  - heat flux vector, 2W m  

T  - temperature vector, o C  

T  - temperature, o C  

t  - time, s  

V  - diagonal matrix of fluid velocity, m s  

iv  - fluid velocity in channel no. i, m s  

u  - interconnection vector, s/1  

w  - coefficient resulting from replacing the heat conducted in the y direction 

    by an equivalent heat source, s/1  

x  - spatial co-ordinate, m  

X  - dimensionless spatial co-ordinate 

y  - spatial co-ordinate, m  

α  - heat transfer coefficient, ( )2W m K  

δ  - implicit temporal difference operator 

wδ  - wall thickness, m  
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∆  - explicit temporal difference operator 

Θ  - dimensionless temperature 

λ  - thermal conductivity, ( )W mK  

ρ  - density, 3kg m  

φ  - stability parameter, sm /  

τ  - dimensionless time 

Ω  - heat transfer perimeter, m 

subscripts 

w  - wall 

superscripts 

a, b - labels of the nodes situated on the opposite surfaces of the wall 

o - initial steady state distribution of temperature 

x - in the x direction 

y - in the y direction 

 

1. Introduction 

In the general design process of multi-fluid heat exchangers, the stationary 

operating conditions are of decisive importance, however, in reality heat exchangers 

frequently undergo transients resulting from external load variations and regulations. 

Knowledge of dynamic behaviour of heat exchangers is necessary for designing control 

and regulation systems of different industrial processes and operations, such as in 

nuclear reactors, cryogenic and petrochemical process plants and HVAC systems. 

A lot of attention has been given to mathematical modelling of three- and multi-

fluid heat exchangers in the literature. However, in most cases, the solutions presented 
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refer to the determination of steady-state temperature fields [1 - 7]. According to the 

best knowledge of the authors, the available literature gives little information regarding 

mathematical modelling of transient behaviour of such exchangers [8-21]. Sekulic and 

Herman [8] solved numerically the set of partial differential equations describing 

temperature field in a counter-flow three-fluid heat exchanger. They used the Wendroff 

implicit finite difference approximation and steady state initial conditions. In Reference 

[9] Sekulic et al. studied experimentally and numerically transient temperature fields in 

a three-fluid heat exchanger with two thermal connections. The experiments confirmed 

the accuracy of the method used in Reference [8].  A semi-analytical solution for a 

three-fluid parallel-flow heat exchanger with two thermal communications and the 

steady state initial conditions was formulated by Bielski and Malinowski [10]. The 

authors applied the Laplace transform technique with numerical inversion. The same 

authors [11] derived fully analytical expressions for temperatures in a parallel-flow 

three-fluid heat exchanger with two heat connections between the fluids, constant 

temperature in one channel, the uniform temperature initial conditions, and a step 

increase in the inlet temperature of one fluid. Luo et al. [12] investigated semi-

analytically and numerically dynamic responses to temperature and flow transients in 

multi-stream parallel- and counter-flow heat exchangers taking into account the heat 

capacities of walls. They used the uniform temperature initial conditions or steady-state 

conditions. For linear and linearized cases, the governing equations were solved by the 

semi-analytical Laplace transform method with numerical inversion. Non-linear cases 

were solved numerically. Malinowski [13] formulated equations for transient behaviour 

of multi-fluid heat exchangers and solved numerically, by the MacCormack explicit 

predictor-corrector method, a four-fluid case. He analysed the response of the exchanger 
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to a step change in temperature or flow rate of one fluid using the uniform temperature 

initial condition or steady state initial condition. 

It is worth mentioning that an n-fluid heat exchanger characterizes itself by n 

separate channels in which can flow up to n different fluids. A two-fluid n-channel heat 

exchanger, e.g. multipass heat exchanger, can be considered mathematically as an n-

fluid heat exchanger, i.e. the temperature field is described by n differential equations. 

Dynamic behaviour of n-channel two-fluid heat exchangers is studied in References 

[14-21]. Among References [1-21], only the authors of Reference [19] have accounted 

for the thermal capacity of the walls and the conduction of heat along the walls in their 

mathematical model of transient temperature field in a plate-type heat exchanger (they 

have, however, omitted the impact of heat resistance on the heat transfer across the 

walls). 

In the present paper we solve numerically, by the implicit MacCormack 

predictor-corrector method, the system of partial differential equations describing the 

transient temperature field in a parallel-flow three-fluid heat exchanger with three heat 

connections between the fluids. The model accounts for the thermal capacitance of the 

walls, the longitudinal heat conduction through the walls, and the conductive resistance 

across the walls. Exemplary calculations are carried out to determine the unsteady 

response of the heat exchanger, initially at steady-state, to a step change in flow rate of 

one fluid. 

 

2. Mathematical model 

A parallel-flow three-fluid heat exchanger with three heat connections between 

the fluids is illustrated schematically in Fig. 1. For deriving the governing partial 
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differential equations describing the transient temperature field in such an exchanger, 

the following assumptions are made: 

− physical properties of the fluids and walls materials are constant, 

− the heat transfer coefficients are independent on temperature, but they depend on 

the flow rate, 

− mass flow and fluid temperature in each channel are taken to be uniform over 

the cross-section perpendicular to the flow direction, 

− no heat is lost to the ambient. 

With these assumptions, the model equations for heat transfer can be stated as 

t x
∂ ∂+ + =
∂ ∂
T TV b 0  (1) 

2 2

2 2
x y
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∂ ∂ ∂
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Anisotropic walls are assumed for calculations in order to allow for the impact 

of heat conduction across or/and along the walls being accounted for or not. 

In this study a transient response of the heat exchanger is determined for a step 

change in flow rate of fluid no 1. For the case under consideration, the initial conditions 

are given by 

( ) ( ),0x x=T ϕϕϕϕ  (14) 

( ) ( ), ,0 ,x y x y=w wT ϕϕϕϕ  (15) 

where 
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The ( )xiϕ  and ( )yxwi ,ϕ  are functions of spatial co-ordinates outlining the steady-state 

temperature field in the analysed heat exchanger at a start time 0 t s= . The boundary 

conditions to be applied to set (1) – (2) are 

• for fluids 
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3

0,

in

in

in

T

t T
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� �
� �
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where the in
iT , for 1,  2,  3,i =  are the constant inlet temperatures of the fluids 

• for walls 

( ) ( )0, ,
0, , 0x y t

y t
x
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∂

= − =
∂

wT
q�  (19) 

( ) ( ), ,
, , 0x L y t

L y t
x

λ
∂

= − =
∂

wT
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Conditions (19) and (20) mean that the edges of the walls are thermally insulated. 

 

3. Numerical solution 

The set of partial differential equations given by Egs. (1) – (13) is solved 

numerically by means of the MacCormack implicit predictor-corrector method [22 - 

24]. This two-step finite difference method of second order accuracy is very effective 
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for solving classical transient heat transfer problems in heat exchangers, both for a step 

change in flow rate and for a step change in inlet temperature [10, 11, 13]. 

While meshing the walls we used only two node points in the y direction, 

situated on the surfaces of the walls, because Lw <<δ . These nodes are designated as 

“a” and “b” (see Fig. 2). To simplify the solution of the problem given by Eqs. (1) and 

(2), we replaced the two-dimensional equation of heat conduction (2) with a one-

dimensional equation in which the heat conducted in the y direction is considered as the 

heat generated by an equivalent heat source. 

 0bTVT * =+
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∂+
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The source term, u*, in Eq. (22) takes into account the heat exchanged in the y direction 

both by conduction and by convection. A numerical scheme for solving Eqs. (21) and 
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(22) is developed on the basis of expressions formulated by MacCormack [22]. The 

finite-difference representations of Eqs. (21) and (22) are 
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• corrector (final value) 

( )

( )
( )

11 1 1 *
1

1
1 1 1

1

1 11

11 1 1 1 *
2 1 1

1
1 1

0.5

2

nn n n
j j j j

n n n
j j j

n nn n
j jj j

nn n n nx
j

j j j j

n n

j j j

t
t

x

t t
x x

t
t

x

t t
x x

δ δ

δ

δ δ

++ + +
+

−
+ + +

+

+ ++

++ + + +

+ −

−
+ +

+

∆∆ = − − + ∆
∆

∆ ∆	 
 	 
= + ∆ +� � � �∆ ∆ �  �

= + +

∆∆ = − + + ∆
∆

∆ ∆	 
= + ∆ +� �∆ ∆ �

w w w w

w w w w w

T V T T b

T I � T � T

T T T T

T A T T T u

T I � T � T

( )
1

1

1 11 0.5

n

n nn n
j j j j

δ

+

+ ++

�
�
�
�
�
�
�
�
�
�
�
�
�
� 	 


� ��
 ��

� = + +��
w w w wT T T T

 (26) 

In equations (25) and (26), n is a time step, j is a grid point, δ  and  ∆  are implicit and 

explicit temporal difference operators, respectively. The entries of  matrixes �  and w�  

are determined from the conditions for the method’s stability formulated by 

MacCormack [22]. 
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Interconnections vectors *b  and *u  have the form 
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� �
� �
� �
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 (32) 

The value of coefficient iw  results from the equality of heat conducted to a cell and the 

heat generated in the cell by an equivalent volumetric heat source with capacity viq . 

( )ab
i

wiwi

vi TTw
c

q −=
ρ

  (33) 
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bT  and aT  are the temperatures of  nodes a and b, respectively. The general expression 

for iw  is as follows 

 
wiwwiwi

y
wi

i lc
w

δρ
λ=  (34) 

where wil  is a characteristic dimension dependent on the shape of the wall. For a flat 

wall 2/wwil δ= . 

 The 
1 1
,  

n n
j

j

+ +
wT T  are predicted, and the 1n

j
+T , 1n

j
+

wT  are final values of 

temperatures at time step 1.n +  In the predictor equation we use a backward difference 

for x∂ ∂ , while in the corrector equation a forward difference is used. A second 

derivative, 2 2x∂ ∂ , is approximated with a central difference both in the case of 

predictor and corrector equations. In the implicit MacCormack method the calculation 

for each time step is divided into two stages. In the first stage, the explicit MacCormack 

method is used to calculate the changes in temperatures. In the second stage these 

changes are used in the implicit difference formula to determine the final temperatures 

for a given time step. Such two stages take place both at the predictor and corrector 

steps. During all calculations performed in this paper, we use the spatial step equal to 

0.001 x m∆ =  to achieve good accuracy of the results. 

 

4. Validation of the model and method 

The correctness of the mathematical model adopted and the method of solution 

used is verified by comparing the results obtained from the numerical method with 

those from a semi-analytical solution for the case of a co-current three-fluid heat 

exchanger with two thermal couplings [10]. The present model with three thermal 
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couplings, accounting for the thermal capacity of the walls and heat conduction along 

the walls, is reduced to the model analysed in the work [10] by the adoption of the 

following data for calculations: ,  0x
w wi i

c λ → , for 1,  2,  3i =  (heat is neither transferred 

along the walls nor accumulated in them), y
wi

λ → ∞ , for 1,  2i =  (heat resistance of walls 

no. 1 and no. 2 in the direction perpendicular to the axis of the heat exchanger equals 

zero) and 3 0y
wλ →  (wall no. 3 also does not conduct heat in the y direction). 

Verifying calculations are carried out assuming that the system, initially at 

steady-state, undergoes an exponential rise of the inlet temperature of the fluid flowing 

through channel no. 1. The temperature profiles calculated using the semi-analytical 

method and the implicit MacCormack method are compared pictorially in Fig. 3. Very 

good consistency of the results is observed for the two methods applied. 

 

5. Sample calculations 

Sample calculations for the heat exchanger presented schematically in Fig. 1 are 

carried out using the implicit MacCormack method. The calculations account for the 

thermal capacity of the walls, longitudinal heat conduction through the walls, as well as 

the walls thermal resistance in the direction perpendicular to the heat exchanger axis. 

We consider a case where heat is transferred from a hot fluid to two cold fluids. Such a 

case is encountered in various technological processes where one heating agent is used 

to warm two different fluids (or the same fluids to different temperatures). Our 

calculations do not concern one specific practical process. The date was selected to be 

representative and to enable us to best illustrate the influence of walls on temperatures 

of fluids. 
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The steady-state distributions of fluids temperatures, ( ) o
ii Tx =ϕ , and walls 

temperatures, ( ) o
wiwi Tx =ϕ , for 3,2,1=i , are assumed to be known. The following 

values of fluids temperatures at the exchanger inlet are chosen: o
1 60inT C= , o

2 20inT C= , 

o
3 10inT C= . The remaining data taken for the calculations are: 1 0.05 D m= , 2 0.09 D m= , 

0.50 L m= , 0.001 w mδ = , 1 0.20 m sν = , 2 0.10 m sν = , 3 0.15 m sν = , 

)/(3692 2
1 KmW=α , )/(2271 2

2 KmW=α , )/(3150 2
3 KmW=α . The thermophysical 

parameters of the fluids correspond with the values for water. The thermophysical 

parameters of the walls have values corresponding to typical materials used for 

construction of heat exchangers: copper alloy C24000, stainless steel AISI 410 and 

titanium alloy Ti6Al4V. The thermal properties of these constructional materials are 

presented in Table 1. 

In Figures 4-7 the transient response of the sample heat exchanger is presented 

for the case of a step-like twofold increase of fluid inlet velocity in channel no. 1. In our 

calculations we took into account the increase of heat transfer coefficient in channel 

no.1 resulting from the increase in the fluid velocity. Figure 4 shows the dimensionless 

exit temperatures of fluids, ( )[ ] ( )minmaxmin /, TTTtLTii −−=Θ , for 3,2,1=i , versus 

dimensionless time max/ tt=τ . minT  and maxT  are the minimum and maximum 

temperatures in the exchanger, respectively, st 10max =  is the observation time. Time 

transients of the dimensionless average walls temperatures at the exchanger outlet, 

( )[ ] ( )minmaxmin /, TTTtLTwiwi −−=Θ , are demonstrated in Fig. 5. The average wall 

temperature is calculated as ( )b
wi

a
wiwi TTT += 5.0 . It is seen in Figs. 4 and 5 that as the 

time elapses, the fluids temperatures at the outlet and the walls temperatures at the 

outlet cross-section approach the steady-state values. It appears from Figs. 4 and 5 that 



 

 

 

ACCEPTED MANUSCRIPT 

 

 15 

the durations of transients depend on the wall material. The exchanger reaches the 

steady state in about 8 - 10 s. 

Figure 6 presents unsteady fluids temperature profiles, ( )txTi , , for 3,2,1=i , for 

time st 75.0= . Figure 7 presents unsteady average walls temperature profiles, ( )txTwi , , 

for 3,2,1=i , for the same time st 75.0= . The results of research into the impact of 

walls on the steady-state temperature field (unsteady temperature field for observation 

time t → ∞ ) in the analysed heat exchanger are shown in Fig. 8. The calculated 

temperature profiles are compared with those determined without taking into account 

the heat capacity of walls and heat conduction along and across the walls (solid lines). It 

is found that for the values of thermal diffusivity, ( )w w wa cλ ρ= , characteristic for good 

heat conductors, such as copper alloy C24000 and stainless steel AISI 410, the impact of 

walls on the temperature field in the heat exchanger is negligibly small. The lower the 

value of thermal diffusivity (e.g. for titanium alloy Ti6Al4V), the higher the impact of 

walls on the temperature field in the heat exchanger. 

 

6. Conclusions 

Transient and steady state temperature fields have been determined, by the 

MacCormack implicit method, in a parallel-flow three-fluid heat exchanger with regard 

to the transverse resistance and thermal capacitance of the walls, as well as the 

longitudinal walls conduction. Impact of the walls material on the transient temperature 

profiles has been examined. This impact is not very large. The walls influence the fluids 

temperatures in three ways: (1) they resist heat conduction in the transverse direction, 

(2) they accumulate heat during transient process, (3) they conduct heat longitudinally. 

Good thermal conductivity of the walls increases the influence of longitudinal heat 
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conduction and at the same time it decreases the effect of resistance in transverse 

direction. An increase in specific heat always enlarges the effect of the walls on the 

transient temperature field in the exchanger. Low thermal conductivity and high specific 

heat result in low thermal diffusivity. It has been observed that the impact of walls on 

the temperature of fluids flowing in the channels of the exchanger is the higher, the 

lower is the value of thermal diffusivity of walls. Obviously, this impact increases with 

the increase of the wall thickness.  
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Figure captions 

Fig. 1 

Schematic representation of the three-fluid heat exchanger under consideration. 

Fig. 2 

Cross section of the three-fluid heat exchanger. 

Fig. 3 

Comparison of transient temperature profiles calculated by the numerical and semi-

analytical methods for 1.25 t s= .  

Fig. 4 

Dimensionless outlet temperatures of fluids versus time in the sample three-fluid heat 

exchanger. ( )[ ] ( )minmaxmin /, TTTtLTii −−=Θ , max/ tt=τ , LxX /= . 

Fig. 5 

Dimensionless average temperatures of walls at the exchanger outlet versus time. 

( )[ ] ( )minmaxmin /, TTTtLTwiwi −−=Θ , max/ tt=τ , LxX /= . 

Fig. 6 

Transient temperature profiles of fluids for the sample three-fluid heat exchanger for 

0.75 t s= . 

Fig. 7 

Transient average temperature of walls, ( )b
wi

a
wiwi TTT += 5.0 , versus co-ordinate along the 

exchanger for the sample three-fluid heat exchanger for 0.75 t s= .  

Fig. 8 

Steady-state temperature profiles of fluids for the sample three-fluid heat exchanger 

(transient model for t → ∞ ). The solid lines represent the case where the heat capacity 

of the walls and heat conduction along and across the walls are not taken into account. 
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Table 1 

Selected thermophysical properties of typical materials used for construction of heat 

exchangers 

Material 
ρ  

3kg m� �� �  

wc  

( )J kgK� �� �  

wλ  

( )W mK� �� �  

610a ⋅  

2m s� �� �  

Copper alloy C24000 8530 380 111 34.20 

Stainless steel AISI 410 7770 460 25 7.00 

Titanium alloy Ti6Al4V 4420 610 5.80 2.15 
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FIG. 1 
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