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1 Introduction

Numerical simulation of turbulent flows in complex geometries is one of the most
investigated fields in computer science in the last decades. But even though the
power of supercomputers has regularely increased for many years, it has been un-
derstood that the numerical simulation of realistic flows at high Reynolds number
would require too many efforts in term of memory and CPU time if one discretizes
directly the Navier-Stokes equation.

In this paper we present an extension of the spectral multilevel method applied
for 3D periodic turbulence and the channel flow (see [2], [3]) to the case of nu-
merical simulation of two-dimensional flows past obstacles. In [5], these mutlilevel
methods have first been adapted to the context of the finite difference discretization
of the Navier-Stokes equations on staggered cartesian grids. Here, this approach is
coupled with the immersed boundary (IB) method proposed in [4], which allows
to handle complex geometries, and numerical results are presented and compared to
“one-level” (or direct) simulations where no multilevel strategy is used. At Reynolds
number 9500, comparisons are shown between the mutlilevel method on a 5122

mesh and a direct simulation on a 30722 mesh. At Reynolds number 500 000, the
multilevel method is robust, while the corresponding direct simulation (same grid,
same time-step) blows up in the first time-iterations of the solution.

François Bouchon, Thierry Dubois and Nicolas James
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2 Description of the problem

2.1 The governing equations and their discretization

We consider an incompressible viscous flow in a domain Ω ⊂ R
2 described by the

non-dimensional Navier-Stokes equations:

∂t u−Re−1 ∆u+∇ · (u⊗u)+∇p = f , (1)
∇ ·u = 0, (2)

u(x, t = 0) = u0, (3)

where Re denotes the Reynolds number, f the external volume force and u0 the
initial condition.

This system is completed with boundary conditions. The case of periodic flow
will be addressed, as well as Dirichlet boundary conditions for the velocity field.

We now describe the numerical method corresponding to the case of periodic
boundary conditions, the numerical treatment near the boundary is detailed in sec-
tion 2.3. For the points away from ∂Ω , all terms in equations (1) and (2) are dis-
cretized in space by using second-order centered finite volume schemes. The dis-
crete unknowns are given on a staggered grid (see [7]): discrete pressure values are
located at the center of mesh cells, velocity values are located at the center of edges
(see Figure 1).
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We define the vector uk ∈ R
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i, j where N is the number of
unknowns in each direction, and similarly, vk ∈R
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Ũk+1
+

2δ t
3Re AŨk+1
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where the matrix A is the discrete approximation of the operator −∆ , G is the one
of the gradient, NL are the discrete nonlinear operators and φ k+1 = Pk+1 −Pk.

The discretization of the incompressibility constraint is achieved by integrating
(2) over the pressure cell Ki− 1

2 , j− 1
2
, leading to

DUk+1 = 0, (6)

where D = GT is an approximation of the divergence operator. Combining (5) and
(6), we deduce the linear system satisfied by φ , namely:

DGφ k+1 = −
3

2δ t DŨk+1
. (7)

Once (7) is solved, the velocity is updated with (5). This implementation ensures that
the discrete divergence of the updated velocity is zero up to the computer accuracy.

2.2 The multilevel methodology

The multilevel method for the MAC scheme (marker and cell) has been detailed in
[5], it consists in adapting to the physical space the methods of [2] and [3].

We introduce grid operators corresponding to some spatial filtering of the ve-
locity field. Let us consider two embedded grids (see Fig. 2): G1 = {(xi,y j), i =
1, . . . ,N, j = 1, . . . ,N} and G2 = {(x2i,y2 j), i = 1, . . . ,N/2, j = 1, . . . ,N/2}. Let
U = (U,V ) be a velocity field defined on the fine grid G1. As in [5], we use the
restriction operator R which defines a filtered velocity field R(U) on the grid G2,
this velocity field being extended on the grid G1 to a velocity field P ◦R(U) via a
prolongation operator P . The velocity field U can be splitted using these operators
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Fig. 2 Locations of the compontents of U (filled style) and of R(U) (empty style)

P and R:
U = Y +Z = P ◦R(U)+Z. (8)
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It has been shown in [5] that if DU = 0, then D ·P ◦R(U) = 0. The component
P ◦R(U) corresponds to the large scales of the flow, and Z to the smallest ones.
Extending this procedure to four embedded grids, we define the following decom-
position of the velocity field U :

U = U1 +U2 +U3 +U4. (9)

The numerical simulation consists in advancing in time U as described in section
2.1 and dynamically correcting the energy contained in the smallest scales U 4 to
maintain a linear discrepency of the energy spectrum in the log-log scale, following
the ideas of [2] and [3] (see [5] for further details).

2.3 A second-order immersed boundary method

To take into accound the presence of a solid boundary embedded in Ω , we use an
immersed boundary technique where the unknown are placed at the middle of the
part of the edges located in the fluid (see Figure 3).

Γh

ui j

ui−1, j

vi j

pi, j

xi−1 xi xi+1

y j−1

y j

Fig. 3 Arrangement of the unknowns in cut-cells.

The Laplacien operator is then approximate at first order on these points, but due
to a superconvergence property (see [8]), the numerical method is globally second
order.

3 Numerical results

3.1 2D periodic flows

We first present numerical results to show the efficiency of the multilevel methodol-
ogy for 2D periodic flows, by comparing on Figure 4 the spectra at Reynolds number
500 000 for a direct numerical simulation on 40962 points, and a multilevel method
on 2562 points. A finer analysis in this context can be found in [5].



A multilevel method applied to the numerical simulation of two-dimensional... 5

Fig. 4 Energy spectrum. DNS4096 (plain), DNS256 (long-dashed) and ML256 (dashed)

3.2 Flow past a 2D cylinder at Reynolds number 9 500

In the present application, we consider a flow in the domain Ω = (−5,5) ×
(−2.5,2.5) \D , where D denotes the ball centered in M(0,0) of radius 1. The
boundary conditions are then u = (1,0) on Σ = ∂Ω and u = (0,0) on Γ = ∂D .
DNS have been run and results have been compared to experimental results in [1]
and [6]. For N = 768, the DNS is stable but the numerical results seem inaccu-
rate. For N = 512, a direct numerical simulation is unstable. For the same grid, the
multi-level strategy gives numerical results close to those of the direct numerical
simulation at N = 3072 (see figure 5).

4 Conclusion

A multilevel method has been successively developped for two-dimensional turbu-
lent flows at high Reynolds numbers. Comparisons with DNS on finer meshes show
the efficiency of the method. A numerical simulation on a flow past obstacles at
Reynolds number 500 000 has also been done on a 30722 mesh, while a DNS per-
formed on the same mesh for the same Reynolds number leads to overflows. An
analysis of this simulation and many other ones will be the subject of future works.
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