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A second-order immersed boundary
method for the numerical simulation of
two-dimensional incompressible viscous
flows past obstacles

Frangois Bouchon, Thierry Dubois and Nicolas James

Abstract We present a new cut-cell method, based on the MAC scheme on
cartesian grids, for the numerical simulation of two-dimensional incompress-
ible flows past obstacles. The discretization of the nonlinear terms, written
in conservative form, is formulated in the context of finite volume methods.
While first order approximations are used in cut-cells the scheme is globally
second-order accurate. The linear systems are solved by a direct method based
on the capacitance matrix method. Accuracy and efficiency of the method are
supported by numerical simulations of 2D flows past a cylinder at Reynolds
numbers up to 9 500.

1 Introduction

Avoiding the use of curvilinear or unstructured body-conformal grids, im-
mersed boundary (IB) methods provide efficient solvers, in terms of compu-
tational costs, on Cartesian grids for flows in complex geometries. IB methods
can be classified in two groups. Classical IB methods add in the momentum
equation a forcing term accouting for the presence of a solid obstacle in the
computational domain. Cut-cell methods discretize the momemtum and con-
tinuity equations in mesh cells cut by the solid. The scheme proposed in this
paper lies in this class of IB methods and differs from other cut-cell methods
in the treatment of the diffusive and convective terms in cut-cells. The scheme
is globally second-order accurate for the velocity and pressure variables.

This paper is organized as it follows. The first section is devoted to the
description of the problem. Then the IB/cut-cell method is detailed and finaly
some numerical simulations are given.
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2 The settings of the problem

Let 2 be a rectangular domain. We consider an irregular fluid domain 2F
which is embedded in the computational domain 2 and its complement £2°,
the solid domain. The interface between solid and fluid is denoted I'. The
decoupling between velocity and pressure variables is achieved by applying a
second-order (BDF) projection scheme to the incompressible Navier-Stokes
equations. First, the prediction step consists in computing the velocity field
uF*t1 which is solution of the following equation :

3aFt! — quf + uF-!
20t

— A" /Re = —VpF + 5 — 2 div(u* @ u) (1)
+ div(u* ' @ut?) (2)

with appropriate boundary conditions on 9£2F". Then we solve the projection
step :

uktl — At 2?5’5 V(karl 7pk:)7 (3)
div u* ! =0, (4)
(uk“ — flk—H) |g)Q .n=0. (5)

3 The IB/cut-cell method

3.1 Staggered arrangement of the unknowns

As in Cheny and Botella [1], a signed distance to the obstacle d is used
to represent solid boundaries in the computational domain. The pressure is
placed at the center of every cartesian cell either filled by the fluid or cut
by the solid boundaries (see Figure 1). The velocity components are placed
at the middle of the part of the edges located in the fluid. Unlike for cells
located in the fluid part of the computational domain, velocity and pressure
are not aligned in cut-cells. Cell-face ratios r}’ ;, r; ; are calculated from the

distance of the mesh point to the obstacle, denoted d;, j. The interface I,
linear in each cell, approaches the regular solid boundary I" (see Figure 1).

3.2 Discretization of the prediction step

In fluid cells, the classical five-point stencil approximation of the viscous
terms is used. In cells sharing a face with a cut-cell, we propose a first-
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Fig. 1 Staggered arrangement of the unknowns in cells cut by an obstacle

order Finite Difference approximation. More precisely, we consider V =
{O,N,S,E,W, P} with O the position of u;;, N,S,E,W are the location
of unknowns close to O or on the boundary, and P is arbitrarily chosen (see
Figure 2). Then, we search coefficients aps such that /o, anu(M) is a first

Fig. 2 Six points are
used for the discretization S
of the diffusive term in P
mesh cells cut by the solid
boundary

order approximation of Au(O). This leads to a linear system of six equations
with six unknowns.

In fluid cells, a second-order centered approximation for the nonlinear
terms is used. In cells sharing a face with a cut-cell, we propose a first-
order Finite Volume approximation of nonlinear terms. The integral of the
first component of the nonlinear term over a cut-cell K’l” ;= KN 2F is
expressed in terms of fluxes through cell edges, namely :

/~ (Gm(u2) + Oy (uv)) dx = / (u2nx + (uv)ny) dS (6)

Kz‘+%,j 6Kz‘+%,j

= FEH,;‘ - FZE] + FzN] - Fi],vjfl + Fi,Bj' (7)
Second-order interpolations of velocity components are used to approximate
the fluxes at the center of cut-edges (see Figure 3). This leads to a pointwise
first-order approximation of the convective terms.
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Fig. 3 Discretization of the convective term using fluxes reconstruction

3.3 Discretization of the projection step

The continuity equation is decomposed as the net mass flux through each
face of the computational cells. Due to the locations of velocity components,
a second-order approximation follows immediately. The discretization of (4)
on a cut-cell is (Dopsu); j = (DY u); ; + D;*f" = 0, where the linear part of
the discrete divergence is

(DopsW)i, j = by (rf* jui j —rity juica, ) + ha(rf joi s =) _qvijo1)  (8)

and the contribution to the divergence due to the boundaries is D;"/" =
4; ;g(M).n; ;. Note that ¢; ;, M and n; ; are respectively the length, the
middle point and the external normal of the edge of the cut-cell shared with
the boundary (see Figure 1). In the case of a fluid cell, this expression reduces
to the standard MAC discretization.

The velocity correction step requires the computation of the pressure gra-
dients at the location of the velocity. For faces cut by solid boundaries, a
second-order interpolation Py is used. As in the classical MAC scheme, a
discrete Poisson-type equation for the pressure increment 5pk+1 = phtl _ pk
is obtained by applying the discrete divergence operator to the velocity cor-
rection equations :

3 h?

Doy (Po(Gop* 1)) = S Dons (1), 9)

with the classical discrete gradient
(Gop* )i = (O = pE ") b+ (O9F 5Ly = 0pE5Y) /Ry ). (10)
It follows that the velocity correction

k1 20t
3 h?

ubtl = @ Py(Gop™Tt) (11)
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ensures that the incompressibility condition Dyps(u**!) = 0 is satisfied in

the whole domain up to computer accuracy.

3.4 Computational efficiency

The non-symmetric linear systems are efficiently solved by a direct method,
based on the capacitance matrix method [2]. First, we solve a preprocess-
ing step, requiring O(n?) operations. Assuming that the obstacle does not
move, this step is solved once per simulation. Then, at every time step, this
technique allows to reduce the overall cost of the resolution to O(n2log(n))
operations, which is the number of operations needed to solve the linear
systems corresponding to five-point stencil operators on the whole cartesian
mesh without obstacle.

The method is tested on the Taylor-Couette flow between two concentric
cylinders : second-order spatial convergence for velocity and pressure is found.
In Figure 4, we have reported the L* error for the velocity, when the error is
measured on the whole fluid computational domain. Unlike in [1], the second-
order accuracy is also satisfied in cut-cells.
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Fig. 4 Error for the ve- 0,001+
locity versus grid size ¥
h. Present study (cir-
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ted).
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Numerical simulations of 2D flows past a cylinder have been performed
at Reynolds numbers up to 9 500. As it is shown on Figure 5, an excellent
agreement is found with the experimental results presented in Bouard and
Coutenceau [3]. Streamlines of the flow past a cylinder at Re = 9 500 at time
t =0.75,1.0 and 1.25 are represented on Figure 5. We have also studied the
flow past a NACA aerofoil at Re = 1 000. Like in [4], a Karman vortex street
develops behind the obstacle (see Figure 6) : the flow is well resolved even
near the sharp ending edge. For these numerical simulations, the mesh size
near the obstacle is 1.6 1073, The value of the time step, satisfying a CFL
stability condition, is 1074,
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Fig. 5 Evolution of the boundary layer : comparison with experimental results at
Re =9 500.

Fig. 6 Flow behind a NACA aerofoil at Re = 1 000 : comparison with experimental
results.
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