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THE GEVREY HYPOELLIPTICITY FOR A CLASS
OF KINETIC EQUATIONS

HUA CHEN, WEI-XI LI, AND CHAO-JIANG XU

ABSTRACT. In this paper, we study the Gevrey regularity of weak solutions for
a class of linear and semi-linear kinetic equations, which are the linear model
of spatially inhomogeneous Boltzmann equations without an angular cutoff.

1. INTRODUCTION

In this paper, we study the following kinetic operator:

(1.1) P=0+v-0p +alt,z,v)(—Ly)°, (tzx,v) € RxR"xR",
where 0 < 0 < 1, v- 9, = ¥ ,0;0,;, a(t,z,v) € C®(R**!) and a(t,z,v) > 0

I] )

on R x R™ x R", the notation (—Av)" denotes the Fourier multiplier of symbol
p(n) = { nl” wn) + Inl (1 = w(m)}, with w(n) € C=(R™), 0 < w < 1. Moreover,
we have w = 1 if || > 2 and w = 0 if |n| < 1. Throughout the paper, we denote by
@(7, &,n) the Fourier transform of u with respect to the variables (¢, z,v). P is not a
classical pseudo-differential operator in R?"+!; for the coefficient in the kinetic part
is not bounded in R?"*1. When o = 1, the operator (1.1) is the so-called Vlasov-
Fokker-Planck operator (see [@, B]), it is then a Hoérmander type operators, and
we can apply the Gevrey hypoellipticity results of M. Derridj and C. Zuily [E] and
M. Durand [E], see also [5] for the optimal G3-hypoelliptic results.

As is well known, the operator (1.1) is a linear model of the spatially inhomo-
geneous Boltzmann equation without an angular cutoff (cf. [[L5]). This is the main
motivation for the study of the regularizing properties of the operator (1.1) in this
paper. In the past several years, a lot of progress has been made in the study
of the spatially homogeneous Boltzmann equation without an angular cutoff, (see
, E, E, @] and references therein), in which the authors have proved that the
singularity of the collision cross-section yields certain gain on the regularity for the
weak solution of the Cauchy problem in the Sobolev space frame. That implies
that there exists a C°° smoothness effect of the Cauchy problem for the spatially
homogeneous Boltzmann equation without an angular cutoff. The Gevrey regular-
ity of the local solutions has been constructed in [R{] for the initial data having
the same Gevrey regularity, and the propagation of Gevrey regularity is proved re-
cently in [H] In @], the Gevrey smoothness effect of the Cauchy problem has been
established for the spatially homogeneous linear Boltzmann equation. In [E], they
obtain the ultra-analytical effect results for the non linear homogeneous Landau
equations and inhomogeneous linear Landau equations.
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However, there is no general result for the smoothness effect of the spatially
inhomogeneous problem, which is actually related with the regularity of the ki-
netic equation with its diffusion part a nonlinear operator in the velocity variable
v. Under the singularity assumption on the collision cross section, the behavior
of the Boltzmann collision operator is similar to a fractional power of the Lapla-
cian (—A,)7 . In [fl], by using the uncertainty principle of the micro-local analysis,
the authors obtained C'*° regularity for the weak solution of the linear spatially
inhomogeneous Boltzmann equation without an angular cutoff.

On the other hand, in [@], the existence and the C*° regularity have been
proved for the solutions of the Cauchy problem for linear and semi-linear equations
associated with the kinetic operators (@) In this paper, we shall consider the
Gevrey regularity for such problems.

Let us first recall the definition for the functions in the Gevery class. Let U be
an open subset of R and 1 < s < 400, we say that f € G*(U) if f € C(U) and
for any compact subset K of U, there exists a constant (say Gevrey constant of f)
C = Cg, depending only on K and f, such that for all multi-indices a € N¢,

(1.2) 10° f || oo iy < O ().

If W is a closed subset of RY, G*(W) denote the restriction of G*(W) on W where
W is an open neighborhood of W. The condition ([L.) is equivalent to the following

estimate (e.g. see [f or [[L§)):
107 f ey < ORI (ol

We say that an operator P is G® hypoelliptic in U if v € D'(U) and Pu €
G*(U), then it follows that u € G*(U). Likewise, we say that the operator P is C*°
hypoelliptic in U if u € D'(U) and Pu € C*(U), then it follows that u € C*(U).

In [@], Morimoto-Xu proved that the operator (1.1) is C* hypoelliptic if 1/3 <
o < 1. Our first main result of this paper is the following;:

Theorem 1.1. Let 0 < 0 < 1 and § = max{%, g - %} Then the operator P
given by ) is G° hypoelliptic in R*"+1 for any s > % , provided the coefficient
a(t,z,v) € G*(R®*"*Y) and a(t,z,v) > 0.

Compared with what is obtained in [L5], the result of Theorem 1.1 implies that
the operator (1.1) is also C*° hypoelliptic in the case of 0 < o < 1/3.
Next, we consider the following semi-linear equation:

(1.3) 8tu+v~Vzu+a(—ﬁv)au:F(t,z,v;u)

where F' is a nonlinear function of the real variables (¢, x, v, ¢). The following is the
second main result of the paper, which implies that the weak solution of equation
(1.3) has Gevrey regularity:

Theorem 1.2. Let 0 < 0 < 1 and § = max{%, Z - %} Suppose that u €
L2 (R?+1) s a weak solution of Equation ([[.3). Then u € G*(R**1) for any
s > 2, provided that the coefficient a € G*(R**1), a(t,z,v) > 0 and the nonlinear

function F(t,z,v,q) € G*(R*"+2).

Remark 1.1. Our results here are local interior regularity results. This implies
that if there exists a weak solution in D', then the solution is in Gevrey class in
the interior of the domain. Thus, the interior regularity of a weak solution does
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not depend much on the regularity of the initial Cauchy data. Also, without loss of
generality, we can assume that cal < a(t,z,v) < ¢ for all (¢,z,v) € R+ with ¢
a positive constant, and all derivatives of the coefficient a are bounded in R?"+1,

The paper is organized as follows: in section E, we prove that P is subelliptic
by using the method of subelliptic multiplier developed by J. Kohn [@] Section E
is devoted to the study of the commutator of (—Av)” with the cut-off function in
the v variable. In section H, we use the subelliptic estimates to prove the Gevrey
hypoellipticity of the operator P. Section E is devoted to the proof of the Gevrey
regularity for the weak solution of the semilinear kinetic equation (1.3).

2. SUBELLIPTIC ESTIMATES

In this paper, the notation, || - ||, x € R, is used for the classical Sobolev norm
in H*(R?"t1) and (f, g) is the inner product of f,g € L?*(R*"*1). Moreover if
f, g € C°(R?™+1) it is easy to see that

2 2
2.) (. )l < 170lgl—n < B0y D912
€

We have also the interpolation inequality in Sobolev space: For any € > 0 and
ry <re <rs,

(2:2) 1Fllrs < €llfllry +e= 20/ Tamr2))

Let © be an open subset of R?"*! and S™(£2), m € R, be the symbol space of the
classical pseudo-differential operators (when there is no risk to cause the confusion,
we will simply write S™ for S™(Q2)). We say P = P(t,x,v, Dy, D, D,) € Op(S™)
to be a pseudo-differential operator of order m, if its symbol p(t, x,v;7,&,n) € S™.
If P € Op(S™), then P is a continuous operator from H/(Q) to H;. ™ (), where
HE(Q) is the subspace of H®(R*"*1) which consists of the distributions having
their compact support in Q. H;, ™(Q2) consists of the distributions h such that
oh € H*™(R?*"T1) for any ¢ € C§°(£2). For more details on the pseudo-differential
operators, we refer to Treves [Ig]. Observe that if P; € Op(S™), P, € Op(S™2),

then [P, P,] € Op(Smitmz—1),

We study now the operator P given by (m) For simplicity, we introduce the
following notations
Kg:(_ﬁv)%; XOZat+U'aIa X]: Ujajzla"'ana

A" = (14 Do + | Dol + | Do ?)/2.

Then P can be written as P = Xo+a(t, z,v)A?, and 8,, = [X;, Xo]. The following
simple fact is used frequently: For any compact K C R?"*! and r > 0, there exists
Ck . > 0 such that for any f € C§°(K),

(2.3) IAS Il < Crn{IPFllr +11F]l}-

In fact, a simple computation gives that

IASFI2 = Re(Pf, a 'A*f) — Re(Xof, a”'A¥f)
Re(PS, a™ A% ) = 3/, la™'A™, Kolf)
Crer{IIPFllr + 1£11+},

(f, [A*, a™'] Xof)

1
2

IN
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where Xo = 9, + 1(v)v - 8, and ¢ € C5°(R") is a cutoff function in the v variable
such that ¢ = 1 in the projection of K on R}. Remark that, with the choice of
such a cutoff function, we have that

j(\:OP(ta x,, Dta DI) D’U)f = XOP(ta X, v, Dta Dla Dv)f
for any f € C§°(K) and any partial differential operator P(¢,z,v, Dt, D, D,).
First we show P is a subelliptic operator on R?"*! with a gain of order § =
max {§, § -3}
Proposition 2.1. Let K be a compact subset of R?™+1. For any r > 0, there exists
a constant Cr ., depending only on K and r, such that for any f € C§°(K),

(2.4) [fllr+s < Crer{ IPfllr + 1 fllo },
where § = max{%, Z - é}
In order to prove Proposition , we need the following two lemmas.

Lemma 2.2. Let K be any compact subset of R*" L. Then for any f € C°(K),

we have

(2:5) IA=3Xofllo < Cx ([P fllo + [I£llo ),

and

(2.6) A2 X flle < Cx(IPfllo+ 10 ), =1, ,n.

This is the result of Proposition 3.1 in [[L5]. The following lemma is to estimate
the commutators, which is different from the calculation in [[L] for the second part
of the lemma.

Lemma 2.3. Let K be a compact subset of R* 1. Then for any f € C§°(K), we

have

(2.7) 11X, A" Xo)fllojo—1/6 < Cx (IPFlo+1fllo ). d=1,+",n,
and

(2.8) 1A X, Xolflosa < Cx(IPflo+Ifllo ), 5 =1, ,n.

Proof. We denote Q; = A7~ /371X, Xo] = A°~1/3719, . € Op(S°~1/3). Note that
[Xk, Q;] =0 for any 1 <k < n. Therefore for any f € C§°(K),

11X, AT X0l 112 jo—1/6 = 11X, A7 X £112)2-1/6

< (XA Xof, Qif) + (A XoXf, Qif)|

(A" Xof, QX 1)+ [(X;f, XoA™'Q; /)]

< AT Xof sl QX fll—2ys + (X5 f, [Xo, ATIQIN|+ (X5 f, A7'Q; X0 )]
< Cr{ IATVBX0f I3 + AT X5 £112 + 1£15 3

where we have used the simple fact that [X, A~'Q,] € Op(S?~1/3-1). Then (R.5)

and (R.6) give immediately (R.7).
We now study (R.§). First of all, we have

IAT'XG, XolflZs = (AT'X;Xof, AAT1X;, Xolf)
_(‘)’ZOAilXjfa AU/2[A71XJ” )’ZO]f)

VANVAN
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By a straightforward calculation, it follows that
(XoA™' X5 f, ATPATVXG, Xolf)l = (AT X, f, XoA7*[AT'X;, Xo]f)]
<|ATIXGf APATIXG, XolXof)| + (AT [ATPATIXG, Ko, Xolf)]
< Cr{ |(AT'Xf, APATYXG, XolXof)| + ||A_1Xjf||§/2 + 1115}
< O { [ATIXGf ATPIATLXG, Xol Xof)| + IPAIIG + /15 -

In the last inequality, we have used (P.) in Lemma P.2
Denote P, /5 = A%/2[A1X;, Xo] € Op(S?/2). Recall that X = P — aA27. We
have

(AT'XGf, ATPIATNXG, XolXof) = (A XS f, PopaXof)|
<|AT'XGf, PoppPh)| +1(AT'X f, Prjpall? f)|

< Cr{ AT X F12 )0+ IPFIG+ (ATAT X £, AS7 P, j2aA27 f)] }
< Cr{ AT X £112 )0+ IPAIG+ IATAT X 1125 + IAZ£I3 }

< Crf{ IAZAT2ATIXG FIIS + 1P FIG + 11115 3

For the last inequality, we used results from (R.3) and (2.6). Clearly, A7, A71X il =
[AZ, A°/?] = [A"1X;, A?/?] =0. Then we get

JAZAT2PATIX; fII2 = —Re(Pf, a *ATAT2X2f) + Re(Xof, a 'A"AT2X?f)
< O IPFIR + AT 12 + 517, [AA2X2, o Kol )
Pl a7 RoJATAXE] )
< O LIPS + ISR+ IAT X1 + 1, AT XGAAT X, 0™ Kol )
I AT, o KolATAT X )] )

< Cx{ IPFIG+ AT X F15 + IS 3
< Cx{ IPFIIG + I£1I5 3-

The above three estimates show immediately

(XoA™"X5f, Poypaf)l < Cr{ IPFIG+ IIFIIE }-

Similarly, we can prove

|(A71Xj)~(0f; PN < Cx{ IPfIIG+ 1FIIG }-

This completes the proof of Lemma @ (]

The rest of this section is devoted to the proof of proposition :
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Proof of Proposition [2.]. Notice that Oz; = [Xj, Xo] and 0y = Xo — > v -
=1
[X;, Xo]. Hence, for any f € C§°(K), we have

IF1IZ = 10uf 12y + 3 1100, FI20 + 3 1100, FI3y + [I£112
j=1 j=1
< Cr {IAT' Xof13+Y (I [X;, XolfII3_,

j=1

16, Xolfl3-0 + IAT"X5£13) + 1113 }-

Since § = max{c/4, 0/2—1/6} < min{2/3, o}, applying (P-5) and (P.6) to
Lemma @, we have that

I~ Xoflls + S~ 1A' X, £lls < Coel 1P Fllo+ 17110 }

j=1
and

1(0)0 X, Xolflls—1 < Cr{lI1X;, Xolflls—1+ [1F]lo}-
It remains to treat the term [|[X;, Xo]f|ls_1. We consider the following two cases.

Case (i). 6 = max{o/4, 0/2—-1/6} =0c/2—1/6.
We apply (-7) in Lemma P-3 to get

1, A7 Xolflls + 115, A~ Xof s
Cre{ IPfllo+ A" Xoflls + 15 }-

11X, Xolflls-1

IA A

Since § < 2/3, then applying (E) again, we get immediately
11X5, Xolflls—1 < Cx{ IPfllo+ I fllo }-

Case (i1). 6 =max(c/4,0/2—1/6) = c/4.
By (B-§) in Lemma .3, it follows that

X5, Xolflls—1 < [AT'X;, Xolflls + A7, Xo]X;fls
< Cr{IPflo+ A" X Flls + 11 £ 1l }-

Note that § < o, and hence from (R.4), we have
10, Xolflls—1 < Cx{ IPfllo+ I £llo }-
A combination of Case (i) and Case (ii) yields that for 6 = max {c/4, ¢/2 —1/6},

1%, Xolflls—1 < Cx{ IPfllo+ I £llo }-

Then we get

(2.9) 1flls < Cx{ [P fllo+ 1110 }-
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Choose now a cutoff function ¢ € C§°(R?*"*1) such that ¢|x = 1 and Supp ¥
is a neighborhood of K. Then for any r > 0, ¢ > 0 and f € C3°(K), by (.9), we
have

[ fllr+s = A" flls < 1PA" flls + [[A", Plflle < Cr{ IPYA"fllo+ [If]- }-
Furthermore, notice that
[aA27 pA") = 2a[AT, YA"]AT + a[AT, [AT, YA"] ]+ [a, PAT]AZ.
Hence
IPYA™fllo < IlWA™Pfllo + [I[Xo, A" fllo + llafAg, [AZ, AT 1f]lo
+2[|la[A7, PATIAT fllo + [[[a, DATIAZ fllo
< Cral IPfllr + IFIl- + AT fIl- 3
Combining with (R.3), we have
[PYA" fllo < Cro{ IPfll- + I fll+ }-
The above three estimates show that
[fllr+s < Crn{ (IPfll+ (1 f]l5 3
Applying the interpolation inequality (@), it follows that
[ fllr+s < Cerc { IPfllr + I fllo } +ellfllr+o-

Taking € small enough, we get the desired subelliptic estimate (@) This completes
the proof of Proposition .

IN

Since the subelliptic estimate in Proposition is true for 0 < ¢ < 1, we can
now improve the C°-hypoellipticity result of [[L§]( which is for 1/3 < o < 1) as in
the following Theorem:

Theorem 2.4. Let 0 < o < 1. Then the operator P given by (IE) is C*° hypoel-
liptic in R*"*1 provided that the coefficient a(t,x,v) is in the space C°°(R?*"+1)
and a(t,z,v) >0 .

In fact, if we consider only the local regularity problem, as in Proposition 4.1
of [Lg], we can prove that if f € Hp (R>"*1) u € D'(R***!) and Pu = f then
u € HEPP(R?™+1). By using the subelliptic estimate (R.4), the estimate for the
commutators between the operator P and the mollifiers are exactly the same as
in Section 4 of [@] This gives the C'* hypoellipticity by the Sobolev embedding
theorem. The same argument applies to the semi-linear equations.

Remark that the results of [LJ] are not only regularity results. The authors also
proved a global estimate with weights (the moments). This is another important
problem for the kinetic equation.

3. CUTOFF FUNCTIONS AND COMMUTATORS

To prove the Gevrey regularity of a solution, we have to prove an uniformly
iteration estimate ([.J). Our only tool is the subelliptic estimate (2.4). Since
it is a local estimate, we have to control the commutators between the operator
P and the cutoff functions. This is always the technical key step in the Gevrey
regularity problem. Our additional difficulty comes from the complicated nature of
the operator P.
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Since the Gevrey hypoellipticity is a local property, it suffices to show P is Gevrey
hypoelliptic in the open domain Q C R?"*+! given by

Q=0"x 0 ={(t,2) e R" £ + [2]* <1} x {v € R™; || < 1}.
Define W by setting
W =20 = {(t.a,0); 1 +|of <22 o] < 2}
For 0 < p <1, set Q, = Q) x Q2 with Q} and Q2 to be given by
Q}) = {(t,:c) eR™L (£ 4 |x|2)1/2 <1- p} , Qi = {veR™ lv]> <1— p}.

Let x, be the characteristic function of the set Qﬁ, and let ¢ € C§°(Q?) be a
function satisfying 0 < ¢ < 1 and fRn ¢(v)dv = 1. For any ¢, £ > 0, setting
p(v) =" "¢ (g) and @ z(v) = @< /2 * Xc/242(v). Then for a small g, & > 0,
Pz €CP(N2); pee=1 in Q?-l—é;
sup |D%. z(v)] < Cue™®l for any o € N".
UER”’
In the same way, we can find a function . (¢, z) € C5°(2}) such that 1. = 1 in
QL and sup |D¥). | < Cpelol.
Now for any N € NN > 2 and any 0 < p < 1, we set
(I)PaN(ta xz, U) = wﬂ (N—-1p (ta ZC)(Pﬂ N—-1)p (U)
N N N> N
Then we have,
(I)p,N S CgO(Q N§1p)
(3.1) O, N(t,z,v) =1, (t,z,v)€Q,,
sup | D@, x| < Co(N/p)lel.

For such cut-off functions, we have the following Lemma (see Corollary 0.2.2 of
[La)).

Lemma 3.1. There exists a constant Cy,, depending only on n, such that for any
0<pu<n+2, and f € S(R™), we have

(32) 102w £l < Co [N/ 7], + (/) £l <2

We study now the commutator of above cutoff function with the operator P.
Since the operator is a differential operator with respect to the (¢, z) variables, it is
enough to consider the commutator of Kg with a cut-off function in the v variable.
We set ¢, n(v) = Pp (V1o (v). The proof of the following Lemma is very similar

to that of M. Durand ] Since our calculus is much easier and much more direct,
we repeat it here.

Lemma 3.2. There exists a constant Cy ,,, depending only on n and o, such that
for any k with 1 <k <n+ 3, and f € S(R?"*1),

(33) AL @pnlSle < Com {(N/p) IF1L + (N1 1171}

and
(3:4) A7, (A7, @pn) 1flle < Con {(N/0)*" 171+ (/)2 Iy}
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Remark 3.1. Observe for p = %, gapﬁNT\g(l —N)f = —pp N [7\‘;,90;,1]\;] f.

Then as a consequence of (B.3), we have

00 AT = 05,5l < Coun {(N/0) £+ (N0) £}
Hence, in the following, we omit the detailed discussions for such terms.

Proof. To simplify the notation, in the course of the proof, we shall use C' to denote
a constant which depend only on n and o and may be different in different contexts.
We denote by (7, &, n) the Fourier transformation variable of (¢, z,v). F; »(9), Fu(g)
are the partial Fourier transforms, and g is the full Fourier transform with respect
to (¢,x,v). Set

h = [Aga (pp,N]fa H(U) = H‘r,ﬁ(v) :]:t,m(f)(TagaU)

In the following discussion, we always write H(v) for Hr ¢(v), if there is no risk of
causing the confusion. It is clear that

(35) ‘Ft,x(h)(Tagvv) = [ng Sﬁp,N]ft,z(f)(vaa ’U) = [ng QOP,N]H(’U)'
Observe that the desired inequality (@) will follow if we show that, for each fixed

pair (7,§),
(3.6)

A%, oo OO <l (N/) IHO e gagy + (N0 NH O ey -
H ——

Indeed, a direct computation yields that
i3 2
I = [ G e Py o) ardsan

<c [ QTR+ ) | €n) | drdedn

R2n+1

= C/Rn,+1(1 + [P </R (1+n*)" |B(T,§,n)\2dn> drdg

o[ et el (H (A7, @ ()] Hee )|

This along with (B.6) yields the desired inequality (B.d).
Next, we shall prove @) First, for any g € S(R™), we have

) drde.

He(RE)

(3.7) 1D, [7 g(v) = Co w o
R~ v

with C, # 0 being a complex constant depending only on ¢ and the dimension n.
In fact,

_ - . 1 — e t0m
[ A=t [ mgee ([ ) a

- -l
On the other hand, it is clear that

1—et0n - 1— e twmr

i
Observe that fRn ﬁj‘Ty‘ du # 0 is a complex constant depending only on ¢ and

the dimension n, but independent of 7. Then the above two equalities give (@)
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Next, we use (B.7) to get

H©)ppn(v) = H(v = 0)ppn(v - 0)

o "

1Dy|” (H(v)pp,n(v) = Co
R™

H(v - f’) (Sﬁp,N(U) - ‘PP,N(U - {’))
o

= @o.N(0)[Do|” H(v) + Cs A

dv,
which gives that

H(U — ) (‘PP,N(U) - ‘Pp,N(U - 'D))
o

dv.

38) (D7 eon@]HE) =C, [

Let X,/n be the characteristic function of the set {v; [v| < p/N}. By the above
expression, we compute
2

dv

dv

n

/ H(v - {’) (‘PP,N(U> - ‘PP,N(U - f’))

e

11Dl @on] H 2 = 1Co 2 /

s2|cg|2/
+2|Cg|2/
Xon @) [H@w—5) \
SC(sup|8Ug0p,N|)2/ </ Xp/qujln_w_Ul Y df)) dv
n \ JR» v

+ C’(Sup |©p,N| )2 /]Rn (/n (1 - ;p/]\]é?_),’_LH(U —9) df)) dv

= A + .AQ,

For the term A;, Young’s inequality for convolutions gives

2
Xp/n(0) [Hv —0)|
/ </ P/ |,D|n+<7—1 d’U d?) S HH||§/2(R1})

Then (B.1) with |a| = 1 and the following inequality

2 2
p/N
<c ( / d—Z) < C o/
Li(R,) o 7

A1 < C(N/p)* ”H”iz(]R;}) :
Similarly, we can use (B.1)) with |a| = 0 and the inequality

/n (/ E XP/N|1(~;T3)+,|;H(U 9 dﬁ) dv < ||H| 72 g,

< C(p/N)"* |H 2,

2
dv

[ T @A Do) - eano= )

o™

2
dv

/ (1= Xy () HE = ) (20 (0) ~ ppn (v — 1)

o™

Xp/N (V) ‘ 2
EliaadairACH)

Xp/N (V)
n+o—1

||

deduce that

2

’ 1= Xp/n(v)
|v|n+o'

L' (Ry)

to get
20 2
Az < C(N/p)™ [ H |2 () -
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On the other hand, it is trivial to see

IL(1Dol” = A7), @pn ] Hllzey) < CIH 2y -
Now we combine these inequalities to conclude
(3.9) AT, ¢pn]HllL2gn) < C(N/p)” | HI 12y -

Next we treat || [/NXZ, ©o,N | H| = (wny- Similar to the above argument, we study
only the commutator ||[|Dy|?, ©pn]H||gx(®n). First, we consider the case when
is a positive integer. Let « be an arbitrary multi-index with || < k. Then taking
derivatives in (@), and then using Leibnitz’s formula; we get

9y ([IDo]”, @p,n ()] H(v))
_ CO' Z Cg/ (aEH(U — ’D)) ) (83_,8 ((,Dp,N(’U) B (p/LN(U B 6))) du.

i

Thus similar arguments as above show that

|0z (1ol eon@]H®)| | <0 ST W/p) P 021 oy
Bla

Together with the interpolation inequality (E), we obtain
||63 ([IDo]7, @PaN(UﬂH(’U))HLQ(Rg)
< C{(N/D) IH | inqrgy + N/ 9) ™7 1 H o } -
Since «, |a| < k, is arbitrary, we conclude
TP s @08 @TH )| e gy < C {ON/0) 1 H | pgn oy + (N0 | oy | -

This implies (@), when « is a positive integer.
Now we consider the case when « is not a integer. Without loss of generality, we
may assume 0 < Kk < 1. Write Kk + 0 =1+ p. Then 0 < p < 1, and

|0, ol B, < NP oo @] HO) s gy

[P, o @)] 1D H()

L2(R})

L2(Rnp

L2(Rp)

We have treated the first term on the right, that is,
1D o @) H ) 1 gy < € {0V 1H L1 gy + (V/0) 5 1 H sy }-
On the other hand, one has

|0Dul", o)) 1D H ()]

ey < C ) H 15

For the proof of this estimate, we refer to [[[J] for instance. Hence
K+o 1
| o @H@)|| < O NI N s gy + (N/0) ™ IH oy

L2(Rp)
+ (N/0) 1 H g -
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Notice that x > 1,. The interpolation inequality (@) gives
|07 pn @) B,
< L (V/0)" 1l gy + N/ o)™ 1 ey |-
Since 0 < k < 1, then
{1201 @on (0)] [Du]” H©)[] 12 g
< O (N/D)" N g gy + (N0 I oy }
< C{ (/)7 1| e gy + (/0 I H | ) |-

In the last inequality, we have used the interpolation inequality @) The above
two inequalities yield that

1D (1017, 20y ) o,
<[[iper . en@l @),
FLD™ 2o @] D HO)| ey,

< C{ (N/P)a HH||H~(R3) + (N/P)KJFU HHHLQ(RZ}') }

Hence
11247 2o @ @) o
< LDl [1Do]7 0 (0] HO) | e
D" s o @] HO)| ey |
< L (N/P) I H gy + (N/2)™ 7 I H | oy, -

This implies (B.6) for general x,1 < k < n+2, and thus (B.g) follows. The inequality
(E) can be handled quite similarly. Thus the proof of Lemma @ is complete.
O

4. GEVREY REGULARITY OF LINEAR OPERATORS

In this section, we prove the Gevrey hypoellipticity of P. We will follow the idea
of M.Durand [[L(]. We consider the following linear equation

(41)  Pu=0du+v-0pu+alt,z,v)(—A,)u=f, (t,z,v)€RxR"xR",

where 0 < 0 < 1. From Theorem @, any weak solution of the above equation is
in C°(R2"*1) if f € C°°(R?"*!) . Hence, we start from a C'° solution, and prove
the Gevrey hypoellipticity in the following proposition, where (2 and W = 2Q) are
open domains of R2"+! defined in the section B,

Proposition 4.1. Set § = max{%, g — %} and let s > %. Suppose the coefficient

a(t,z,v) € G*(Q),a > 0, and u € C°(W) be such that Pu = f € G*(Q). Then
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there exits a constant L such that for any r € [0,1] and any N € N, N > 4,

1D s 4 18 AT D g
N Llal-1 s (N

< PGFMal=3) ((|0<| - 3)!) (7)
holds for any o € N>+l |a| = N and any 0 < p < 1. Here and in the sequel we
denote A° = A% = (=) % for simplification.

Remark 4.1. Here the Gevrey constant L of u is determined by the Gevrey con-
stants B, and By of the functions a, f € G*(Q), and depends only on s, o, n, |\uHHn+6(W)
and [[al|g2n+2(qy- This can be seen in the proof of Lemma .3, Lemma [1.4 and
Lemma }.5. .

As an immediate consequence of the above proposition, we have

Proposition 4.2. Under the same assumption as in Proposition E, we have u €

G*(9).

Indeed, for any compact subset K of €2, we have K C €, for some pg, 0 < pg <
1. Then for any o € N>t |a| = N >4, (E)o n gives

ol —1 x|
ID*ull2) < 1Rpo, v Dullngr < oimmary (o = 3))" < (55=) " (lef)*.

Taking Cx = pos% + [[ull ga ) » then for all o,

| D%ull ey < C (o)
The conclusion of Proposition @ follows.
Proof of Proposition Q We prove the esitimate (E), n by induction on N.
In the proof, we use C,, to denote constants which depend only on n, which may
be different in different contexts. Let ® be an arbitrary fixed function compactly

supported in W such that ® = 1 in . First, we prove the first step of the induction
for N = 4. For all |a| = 4, we use (B.J) in Lemma B.1] to compute

H(I)pﬁDauHT-i-n-i-l + H(I)pﬁAaDa“Hr—g-f-n-i-l

3 n+2 _
< (2) (1o ulinin 419800l g}
On the other hand , since |a| = 4,

1®D“ullyasr + |9A7Dul,_s 1y < Callullsnsoqun-

The term on the left side is bounded by the smoothness of u. Combing these, we
obtain

CnHu|‘Hn+6(W) Lg
r—S4n+1 = p(n+2) = pstn

(E)ra 193D %ullrrni1 + (|2 307 Dl

Thus (E), 4 is true if we take L > Cy||ul| gn+s(wy + 1. Let now N > 4 and assume
that (E), y—1 holds for any r € [0,1]. We need to show (E), y still holds with a
constant L independents of N or r € [0, 1]. We denote

1D7ull = Y [D7ull..

[vI=4
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In the following discussion, we fix N. For each 0 < p < 1, define p = %p, p =
N=2p. Let ®, n be the cutoff function constructed in the previous section which
satisfies the property (EI) The following fact will be used frequently, for k =
1,2,--+ N with N >4,

1 1 11 N\ (s+n)k _ 365t
p(s+n)k = p*(s-l-n)k = ﬁ(s-i-n)k - p(s—i-n)k X (N? 2) = p(s-‘rn)k'

(4.2)

We shall proceed to prove the truth of (E), y by the following four lemmas.
The first one is a technical lemma, and the second lemma is devoted to the proof
of the truth of (E), y for r = 0. In the third one, we prove that (E), x holds for
0<r< g, and in the last one we prove that (E)T,N holds for all » with 0 < < 1.

Lemma 4.3. Let s > 3 be a given real number and k > 5 be any given integer.
Assume the estimate (E)q.m, holds, i.e.

Lm—l

’-g+n+l < ey (m=3)))

holds for all v with |y| =m < k, and all0 < p < 1. Then if L > 4”+3(|\u||Hn+6(W)+
1), one has, for all B with |B| = k,

(43) [ PpmDul, s + |[@pm AT DM

. Lk—2 s
(4.4) (k/p)"* || @, D%ul, + (k/p)"* Hq>p,kA°'DﬂuHO < o (k=3

Proof. Without loss of generality, we may assume k > n + 4, for, otherwise, in the
case when 5 < k < n+ 4, it is obvious that for all § with |5] =k < n + 4,

(k/ )"+ | @5 D%l + (k/p)"+ | @5 Ro D7

< (1/p) T EI2 IR ]| o gy -

Then the desired inequality () follows if L > 43 (|Jull oo, + 1)
Now for all 5,|8] = k > n + 4, we can find a multi-index B < B such that

|3 = n + 1. First we treat (k/p)" 3 ||y x DPul|, . Since oy, = 10
Supp @, k, then the following relation is clear:

H(I)PakDBUHO = H(I)kaDﬂq)(kfkl)p,k—n—lDB_ﬂuHO S H(b(kfkl)ch_n_lDﬂ_Bu

n+1 '
Observe ‘ﬁ — B‘ =k —n — 1, then we use the above relation and the assumption

(B) to compute, for L > 47+3 (HUHHn%(W) + 1) )

(k/p)"* @D ully < (K/p)"* | @, D7

n+1
k—nm—2

< (/c/p)””W ((k—n—4))

5(n/L)"LF~2 .
Sermg (k=3)Y

1 Lk72 s
§p(s+n)(k73) ((k B 3)!) :

S

A

IN
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In the same way, we can get the estimate on the term (k/p)"*3 HCI)pﬁkj\"Dﬂu‘
that is,

)

1 Lk72

n+3 Ao B _ _ _ 8
(k/p) H(I)A,CA D UHO < 2p(5+n)(k_3)((k H)°.

Thus by the above two inequalities, we get the desired inequality (Q) This com-
pletes the proof. O

Lemma 4.4. Assume that (E), y—1 is true for any r € [0,1]. Then there exists a
constant Cy, depending only on the Gevrey index s and the dimension n, such that,

if L > 4n+3 (HUHHM(W) n 1) ,

ClL|a\72

(45) 1o n D ullnsr + 128 ATD 0l g iy < —argy ((lod = 3))

for any a € N1 || = N, and any 0 < p < 1.

Remark 4.2. In fact, this is (E), ny for » = 0 if we choose L such that L > C4
and L > 47+3 (HUHHM(W) + 1).

Proof. We choose a multi-index 8 with |a| = || + 1. Then || = N — 1. Recall
p= %p. By the construction, ®; y—1 = 1 in Supp ®, n. Thus

1) NDullns1 < 1@ v DPull1ns1 + DDy ) D41
<@ NP5 N-1D Ul 1401 + (DD N) P51 D |41
< Co {||®5.n-1Dull1ni1 + (N/p)|®5 v -1 DPullni1 + (N/p)" 2| @5 5 -1 DPullo}

In the last inequality, we have used Lemma @ For the third term on the right-hand
side, we use Lemma with £k = N — 1 to obtain

N-1/[/N=-1\""
(N/p)"*2(|®5 v 1D ullo = e { (T) ||@ﬁ’N—1DﬂuHO}

N—-1[/N=-1\"" 5
<—q |l — [®@5,n-1D"ullo
p p

N-1 N3

< e (V=4

2L\a|72 s
Srmtar (el =3))"

<

Applying the relation ([£9), we get

s+n al—2
(N o) 20551 DPullo < 22 E 2 1) gy
P AN-1 0= p(s+n)(lal=3) Yo
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On the other hand, by the induction assumption that (E), y—1 holds for any r
with 0 < r <1, we have immediately

@55 1D ull 14041 + (N/p)| @58 1D ul[ 41

I181-1 . | Lot S

gy (91 = 1 (N7 + (NP sy (U1 =90
la|—2 )
%(ﬂal = 3)1)°(N/(N = 3))°

3os+nL\a|—2 s
Sermtars ((lal =3))"

IN

IN

Thus "
308+nCnL al—2 s
Sermtarg (ol =3))"

By exactly the same calculation, we obtain

308+nCnL\a|—2 s
S4nt1 S W(Ual =3))".

1®p, v D41 <

15, A7 Dl

Taking C; = 605T"C,, with C,, being the constant appearing in Lemma @, we
obtain ([.J). This completes the proof of Lemma [£.4.
O

Lemma 4.5. Assume that (E), ny—1 is true for any r € [0,1]. Then there exists
a constant Cy, depending only on o, the Gevrey index s, the dimension n and
lull grovsqwry s llallonszgqy > such that for any 0 < r < S, if

L > max {275 By, By, % (Jull ooy + 1) }
with Bg, By being the Gevrey constants of a, f € G*(Q0), we have that

(4.6)
a Ao o CQL'&‘_2 s s
(@, N DUy gns1 + ([ Qo N AT DYl _5 1y < W((M =3)1)7(N/p)",

for any o € N1 || = N.

Remark 4.3. The assumption that L > 257! B, will be needed in Step 2 of the
following proof of this lemma, while that L > By will be required in Step 3. That
L > 4nt3 (||u|\Hn+6(W) + %is required because in the sequel we will use frequently

the conclusion of Lemma where such a assumption is presented.

Proof. In this proof, we shall use E'j, j > 0, to denote different constants which
are greater than 1 and depend only on s,0,n, [[ull gu+ey and [[al|g2as2q) - The
conclusion will follow if we prove that

[¢] Ao o 5011‘04_2 s 88
(4.7) [ o nDull5 4 pyyy + | Pp N AT D |41 < W((W —3)1) (N/p)=.

Indeed, from ([.7) we know that ([L.§) is true for 7 = £. The truth of ([L.6) for the
general 7,0 < r < %, follows from the interpolation inequality (@) and Lemma

4

To prove (@), we shall proceed in the following four steps.
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Step 1. In this step we prove

<20 N C,Llal—2 s
(4.8) 1a[A*7, @ N DTull_s5 4 pyy < m((w = 3)1) " (N/p)

Recall ®, n(t,z,v) = ¥, N(t,2)p, n(v) With 1, n, ¢, v being the cut-off func-
tions constructed in Section 3. First, notice that 13 5y = 1 in the support of 9, n,
and ¢z v = 1 in the support of ¢, y. It then follows that

la[A%7, @p,NDO‘]u||7g+n+l = [la[A*, ‘PP7N]1/JP,NDQU||7g+n+1
< Cu IR, B A Dl g s + K, 1R, ] W Dl 1}
< Cu{IR", pnlihois 50 950K D0l g s
+|[[A%, [A?, o n] Yo, N V5N @p,NDQUH,gMH}
= Ca{ IR, @pnUp N @A DUl gy iy
A7, (A7, ] 1p N DN DUl g s }
=:(51) + (S2),
where C, is a constants depending only on the coefficient a through [|allcni2(g) -

To estimate the term (S1), we apply the inequality (B.3) in Lemma .9 and then
(B.9) in Lemma B.1. This gives

(Sl) < Caca,n{ (N/p)a Q/JP,N(I)@NKUD&“

8
2

‘—%-‘,—n-‘,—l

nt+1—2 40 Ao na
+ (N/p)"™ 7447 v Ao D

< CyCon {(N/p)“ ®; v A7 D ‘ ot (N/p)" 17247 |3, yA7 Do ‘O}
—5t+tn+
= (Sl), + (Sl)”.
First, the estimate ([LH) in Lemma [£.4 yields

N\  [lal=2 s
(S1) < CoCfr ., Cy (;) W((M -3))

CyLlel=2 LNV
SW((Ialfs)!) N

wfs,

p

In the last inequality, we used the fact % > 1> 0. Next, we treat (Sl)”. By virtue
of the induction assumption, the required condition (@) in Lemma E is satisfied
with k£ = N. It thus follows from ([L.4) that

N) 7 Llel=2

(Sl) < Caca,n (; m((lal - 3)')8
86

GQL\aIﬂ /NN
el g N
= pls+n)(jal=3) ((|a| 3)) p .
Thus

£9

s

ol

CyLlel—2 s (N
(1) < m(ﬂal—@!) (;)
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Now it remain to treat the term (S3). By the similar arguments as above, the
inequality (B.4) in Lemma B.g gives

~ ~ 3 o o
(S2) < Cu (N/p)* ||®5,n D ul| _ +Cu (N/p)" 172127 @5 N Dul|y = N+ N

S4n+1

We first estimate N7. Choose a multi-index 3 with |a| = || 4+ 1. Then the similar
arguments as the proof of Lemma Q give

H(I)ﬁyNDau||7g+n+1 < Cn{||®5,N—1Dﬁu”(1—g)+n+l
nto_ 8
+ (N/PN|®j 51 DPull g s+ (N p)™ 275 |0 5 DOulo .

We recall p = N=2p By the interpolation inequality ,
N

n42-2
VN D g nir < 10 D0l i+ (5) 195 aD ulo)
Therefore
[@5n D ull_s 41 < Cu{ 195 51 DPull 1 sy + (N/p)" 27510 DPulo }
Hence N7 < Nj 1+ N2 with Mp 1, Vi 2 given by

N N n+2—%+2<7
) 125, DPullo.

20
N =05 (;) 19501 D ull =gy pnsrs N2 = Cs (;

Since (E), n—1 holds for all r € [0, 1], then it follows that

" N 20 L‘al_Q s N—1 s(l—%)
N <8 () i el - (552

o ;
88
~ N 20— % L\a|—2 /N —3 s
& L o N-3
= Co ( p ) PN ((la| = 4)) p )
~ (N E Ilal-2 "
= Co <?> m((lal —3))°.

In the last inequality, we used again the fact 5—25 > o. For the term N 2, we use
Lemma [L.3 with k = N — 1. This gives

_ /N—9 n+2—4+20 N—1 —(n+3) N—1 (n+3)
Moz =G (F52) (%) (F572) 12Dl
p p p

S
~ (N—1\ ‘72t [N-3 s
<Gs (T) Sormm—g (VD)

Since —1 — % + 20 < s, then it follows from the above inequality that

57L\a|72 s
Nig < Srm(al=3) ((lal = 3)1)".

With the estimate on N 1, one has
sd

CyLlal-2 (N\Z
N =M+ N2 < W((W - 3)!) ; :
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In the following, we treat Ny = Cy (N/p)"+1_%+20 |®5 8D, . Using Lemma
@with k=N, we get

~ /N n+2—2+20 N\~ (3 N\ (+3)
Ny < Cy <—> <T> <T) |®5 5 D%ullo
p p p

~ N\ L‘O‘|—2 S
=G (?) m((lal—sﬂ)
CyLlol—2 (N "
< Sormar (ol =3)) (?) |
Thus,
C 38
ChoLl*l=2 /NN E
(S2) = N1 + N3 < W((m —3)) =

With the estimate on (S1), we get the desired inequality (@) This completes the
proof of Step 1.

Step 2. In this step, we prove

a 5 L|a‘72 s s8
(@9) P B Dl i1 < ey (ol = 3)) (/) 2

Recall P = Xy + al?? with Xy =0;+v-0,. Then a direct computation deduces
that
[P, ©onDJull_s4piq I[Xo, @p,nDull_spyy + a[A*, @y nDul|_
+[1@,,nla, DJA*ul|

= (I)+ (II) + (III).

2 4n+1

We have already handled the second term in Step 1. It remains to treat the first
term (I) and the third term (I17).
Observe that [Xg, D] equals to 0 or D for some ap with |ag| < |af. A direct
verification yields
(1) < [I[Xo, ®pN]D%ullns1 + |®p, N D ullnt2
< (D®p,n) 25N Dullnt1 + [|Rp,n D™ ullns1

< Co{ (N/p) 1B D ullnss + (/)" 2@ x D¥ulo + [y D™l 1}

For the first term and the third term on the right-hand side, using (@) in Lemma
@, and noting that 52—5 > 1, we obtain

C”{ (N/p) @58 DY ullnt1 + |, N DUl g1 }

C, Llel—2 s
< Cu(N/p+ 1)%(@4 —3)!)

5 L\a|72 s
< m((w =3)1)"(N/p)

8
2

%—i—n—i—l
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On the other hand, we use Lemma @ with £ = N to get

n a CigLlol—2 s 8
Cu(N/p)" 2| @58 Dullo < W((W =3)!)(N/p)=.

Thus

Ch4Llo1=2 s 58
(1) < 5 (ol = 31)° (/) %

Now it remains to eatimate (I1I). The Leibniz’ formula yields

(I < > Cl|®,n(DYa)A* D ul|

L 4n+1
0<|v[<la]
(4.10) ~ v A 20 Ha—vy
<C, Z CallD a”cnﬁ((z)'”@p,NA D qungnJrl’
0<|y[<] el

where C7 = ﬁlv)' are the binomial coefficients. Since a € G*(Q), letting B, be

the Gevrey constant of Gevrey function a on Q, we have
(4.11)

IDYallcnszgy < BYTH(M =2) i |y 22, [D7allgnsaqy < Ba if 7] =0, 1.
On the other hand, observe that
1@, N A% D" ul sy <A, @, n]A7D Tl s s
1195 AT Dl g
We have handled in Step 1 the first term on the right hand. This gives

- S Oy Llal=Ivl-2 s .5
A7, @y NJATD || g4y < m(ﬂ‘ﬂﬂﬂ*?’)!) (N/p)=.

For the second term, note that |a| — |y| < N —1 for v # 0. We use the induction
hypothesis that (E), y—_1 holds for all r € [0, 1], to get, for 7,0 < |y| < |a| — 3, that

o a—ny L|04\—W|—1 s S(O’—é)

1@, N A7 D ull (5 5y 1 py1 < m((w — [y =3)) (N/p)* 2.

Observe that
2°(N — |v| —2)° +2° 2)°
pé

< 16°(2°) VU N — |y = 2)%p7,

Thus for v with 0 < |y| < |a] =3 = N — 3, we have

Lo pa— 16°(2%) =1 Llel=hl=1 .
|, nA°D ml\(a—%>+n+1 < ) (al=FT=2) ((|a| — | - 2)!) )

Note that the above inequality still holds for v with |y| = |a| — 2 if we take L >
gn+1 (HuHHHG(W) + 1) . Consequently, we combine these inequalities to obtain, for

- B 6‘16(25)W|*1L|0“*W|*1 s .
20 pHa—y _ — 2!
||q)P1NA D uH—%—i—n—i—l S p(5+n)(‘a|7|7‘,2) ((|Oé| |7| 2)) (N/p> 2.
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This together with (f.11) yields

S CIDalenia [tonE D

S
—5s+n+1
2<]y|< el -2 2

)

s

E N & s [v]-1 _ s
<(3) X e -2

2<]yI< el -2

CgLlel=1 s
x m((lal — I -2))

516L|0“*2 55 25, [v[-1 | ot
S St (Vo) ? > 7 laf!((Ja] - 4)!)

2<|y[< e =2

516L|a‘72 ne s 2°B, =t |Oz|3
W((W =3)1)" (N/p) > T (a[—3)—1"

2<]yI<]al -2

Observe that s —1 > 3 and thus the series in the last inequality is bounded from
above by a constant depending only on n if we take L > 2571 B,. Then we get

Z Ca D7 allgniay - H(I)AN/N\QUDO‘_W

’73+n+1

2<]y|<|a| -2
617L|a‘_2 s 568
< - 0 — | 2
= Sern(al=3) (ol =3)1) (N/p)
For |[v| =1, |a| — 1 or |a|, we can compute directly
A 20 Ha—
Z CalIDall gnragq) - H‘I)p,NA D V“H_%Jrnﬂ

[vI=1,]al=1,]a]

518L‘a|_2 s S8
_ —_ | 2
< etars (ol = 3) (/) %,

Combination of the above two inequalities and () gives that

5 L|a‘72 S 39
(I11) < m((w =3)) (N/p)=.

Consequently, the desired inequality @) follows. This completes the proof of Step
2.

Step 3. In this step, we prove that if Pu = f € G5(Q) and if L > B with B the
Gevrey constant of f,

égoL‘a|72 s
Sqng1 S W((M = 3)!)"(N/p)

8
2

(4.12) P, nDYul _
Indeed, observe that
PPy nDull _s iy <Py @pnDull s 4y yy + 1RpnDPul| _s 41y q-
Since Pu = f € G*(Q), then | DYPf| jyus2(qy < B if [y| < n+5, and

IDYP £l ggusagy < B2 (4] == 5))°, if |y = n+ 5.
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Hence,

e} n « 6213'&‘72 s
128 D Pull _s 4 g1 < CulN/p)" 2D P £l 2y < W((W =3)1)".

We take L such that L > B. Then the above inequality together with (@) in Step
2 yields immediately the inequality ([£13).

Step 4. In the last step we show ([L7). And hence the proof of Lemma [L.5 will
be complete.

First we apply the subelliptic estimate (@), which is needed only here, to get
H(I)/LNDaquJ,-nJ,-l < C(Q){H,P(I)p,NDaull—%-i-nJ,-l + H(I)/J,NDQUHH-H}

with C'(Q2) a constant depending only on the set Q. Combining Lemma Q with
() in Step 3, we have

522L|a\—2

[e% S 88
(4.13) @, ND%ull5 1 < W((W —3))"(N/p)=.
Next, we prove

Ao o 6;23L|D“72 s 58
(4.14) [ @, NATD%ul|5 5 1 yy < W((W =3)) (N/p)=.

Observe that
1@ w7 D%ulls s ooy < A7 @] Dullns + 1A70,n Dl

By the same method as that in Step 1, we get the estimate on the first term of the
right side, that is,

~5 o 6 4L|a\—2 s s
||[A ’ (I)p,N]D u||n+1 < m(ﬂfﬂ - 3)!) (N/p) 2.

Then it remains to estimate the second term. A direct calculation gives that

IA®, n D¥ull7 4

=Re (P&, D, a 'A*"*2®, y D) — Re (Xo®, D%, a ' A*" 28, v Du)
1 ~

=Re(P®, nDu, a” "A*"?®, yDu) — 5(<1>,),ND%, A2 a7 X0 @, vy DY u)

1 - n v [e3
5(<I>pJVJ)C¥u, [a™'A*" 2 Xo]@, v D)

< Con{ PR, ND ul g,y + 1o v D ullh, 1y, )

This along with ([.19) and ([L13) shows at once

GVQGL\a|72

58
i1 = e (al=3) i

HT\“@,J,ND%

((Jal = 3))"(N/p)
and hence ([L.14) follows if we choose Cag = Cay + Cag. Now by ({:13) and (.14,

we obtain the desired inequality (@) if we choose Cy = Cas + Cos. This completes
the proof of Step 4.
(Il

In quite the similar way as that in the proof of Lemma @, we can prove by
induction the following
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Lemma 4.6. Assume that (E), n—1 is true for any r € [0, 1], then there exists a
constant C3, depending only on o, s, n, |[ull gravsqyry and ||allgeniz(qy , such that for
any r € [g, o), if L > maX{QSJrlBa, By, 473 (||u||Hn+6(W) + 1) }, we have, for
all a, |a] = N,
~ C L1ol=2 s ,

[®p. 8D ullrnt1 + 1R NAT D], 541y < W((W = 3)1) (N/p)*"

Inductively, For any m € N such that mTS <1+ %, the above inequality still holds
iy (m—=1)¢ ) :

for any r with ~"5=2 <r < 1% and hence for all v with 0 < r < 1.
Proof. Since the arguments are quite similar as that in the previous lemma, we

only present here a sketch of the proof. Assuming (E)%aN with m > 0 is valid,
that is, for any «, |a| = N,

o o CQL‘O‘l_Q s sms
[®p,nD* U||m5+n+1+H‘I)pNA D%ul| tm-ns =LY < W((|a|_3)!) (N/p) 2,

we need to show the validity of (E)wm+ns 5, and the validity of (E), n for r €

[md W] can be obtained by using interpolation inequality (2.2). To get the

2
truth of (E) m+ns y, it suffices to prove
5

CorLlo1—2

s s(m+1)8
(4.15) 190, 8 D%l enirs g < W((lal —3))(N/p)~ >
and
Ao Do CogL1ol—2 stmins
(4.16) 1@, N AT Dl 135 41y g < m((w =3)1)°(N/p)

First, we repeat the procedure in which (@) is deduced from the validity of (E)o n,
then we use the estimate of (E)stN to get

C~V29L‘Ot|_2 s
I[P, @p,n D ull gons )y < W((W —3)1)"(N/p)

Similar to the arguments as (f.19) to get

s(m+1)8
2

é3OL|a\—2 s
(4.17) PPy nDul| nonis ey < W((W —3)1)"(N/p)

s(m+1)5
2

This together with the subelliptic estimate

10,5 D ul| ntnrs DPy N D ull anons 1,y + 1 ®p, N D[t}

1 S +n+1

yields the required estimate () Moreover we can deduce that
1@ v AT D"t s,y < Car{[PLp.v Dl ennrs g + 1 @p N D ull ngnrs g }-

In fact we have shown that the above inequality for m = 0 in Step 4 of the proof of
Lemma @, and the validity of the above inequality for general m can be deduced
similarly without any additional difficulty. Consequently, the required estimate

([£149) follows from (.17) and (f.17). Thus the proof of Lemma [t.6)is completed. [
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Recall that the constants Cy,Cs, C3 in Lemma, Q, Lemma @ and Lemma @
depend only on s,0,n, [[ull gnrsyy and [|allgenizq). Now take L in such a way
that L > maX{C’l, Ca, Cs, 2+ By, By, 4"3(lull govoquy) + 1)}. Then by the

above three Lemmas, we get the truth of (E), n for any r € [0, 1]. This complete
the proof of Proposition .

5. GEVREY REGULARITY OF NONLINEAR EQUATION

In this section, C;,j > 4, will be used to denote suitable constants depending
only on o, the Gevrey index s, the dimension n and the Gevrey constants of the
functions a, F'. The existence and the Sobolev regularity of weak solutions for non-
linear Cauchy problems was proved in [@] Now let u € L (R?*"*1) be a weak
solution of ([[.g). We first prove u € C>°(R?*"*+1), and we need the following stability
results by nonlinear composition (see for example [PF)).

Lemma 5.1. Let F(t,z,v,q) € C®(R* x R) and r > 0. [fu € L (R*)n
Hy, (R2HY), then F(-,u(-)) € Hy, (R,

loc
In fact, if uy,us € H"(R?"1) N L (R?*"+1), then
Juruzlr < Cu{llurl[elluallr + lluzllzes luall-}-
Thus if » > (2n + 1)/2, the Sobolev embedding theorem implies that
(5.1) [urusllr < Cllullr[luzl.

Suppose that v € L7S, (R?7+1) is a weak solution of ) Then by the subelliptic
estimate (R.4), one has

(5.2) [¥rullrrs < C{GE(ul) e + 1d2ullr 3,

where 11,12 € C§°(R*T1) and 15 = 1 in the support of ¢;. Combining Lemma
and the above subelliptic estimate (f.2), we have u € HS,(R?"+1) by standard
iteration. We state this result in the following Proposition:

Proposition 5.2. Let u € L2 (R?*"*1) be a weak solution of ({.3). Then u €
Coo(RQn-‘,—l)'

In this section we keep the same notations that we have set up in the previous

sections. We prove the Gevrey regularity of the smooth solution u of Equation (E)
1/2
on Q. Set W =20 = {(t,z); (t* + |£L'|2) <2} x {veR", |v| <2} and

M= max _|u(t,z,v)]|.
(t,z,v)eEW
Let {M;} be a sequence of positive coefficients. We say that it satisfies the mono-
tonicity condition if there exists By > 0 such that for any j € N,

J! . .

(53) WMZM],Z SBOM]' (7,*172,... ,])'

Let [[ul|cx(q) be the classic Horder norm, that is, [Jul|cw gy = Z?:o HDjuHLw(Q) .
We study now the stability of the Gevrey regularity by the non linear composi-

tion, which is an analogue of Lemma 1 in Friedman’s work [[L1].
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Lemma 5.3. Let N > n+2 and 0 < p < 1 be given. Let {M;} be a positive
sequence satisfying the monotonicity condition (@) and that for some constant Cy,
depending only on n,

N n+2 .
(5.4) (;) My _n_o <CpMn_2; M;>p™, j=2.

Suppose that there exists C4 > 1, depending only on the Gevrey constant of F, such
that:

1) the function F(t,x,v; q) satisfies the following conditions: HF‘
Cyq and for any k,l withk+1>1,

Cn 2 QX[ M,M]) =

(55) ||D <CyM Mo Mo, Y |y =k,

tv,z,lelJFHC"*Z(QX[fMyM])

where we assume M_; =1 for nonnegative integer j.
2) the smooth function g(t,x,v) satisfies the following conditions: HQHLoo(W) <
M and

(5.6) ||ng||cn+3(W) <H,, 0<j<I,
and for any 0 < p <1 and any j,2 < j < N, one has
(5.7) |1@p; D7l snir < H{ ?Mj—a, ¥V 7| =3,

where v is a real number satisfying —1/2 < v < 1, and Ho,H, > 1, H; >
(42, H)® .

Then there exists Cs > 1, depending only the Gevrey constant of F and the
dimension n, such that for all p,0 < p < 1, and all o € N?*"*! with |a| = N,

(58) H(I)PJVD& [F(90))] Hu+n+1 < CsHGHY' "> My .

Proof. In the proof, we use C), to denote constants which depend only on n and
may be different in different contexts. In the following, for each p, we always denote

(N —-1)p

- (N —2)p
pf N 9 .

N

u

Observe that for p, p, p, we have the relation (@) Since ®; 3 = 1 in the support
of ®, n, then by Lemma B.1, one has

|20 n DL gDy = 2N Brs D EC 9O
n+1+v
< {1 oM e + () I#5a0F GO, )

The proof will be completed if we can show that there exists a constant £ depending
only the Gevrey constant of F' and the dimension n, such that

(5.9) T, <EHZHY My _s.
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Indeed, choose a multi-index & < « such that |&| = n. Then

I

N n+l+v B -
o (3)" b a0l

n+l1+v
<, (%) @5, D°5[F (- g())]]],
N n+2 s
<, (;) 1950 [F (g,

Assuming that (f.9) holds, then by virtue of the condition (5.4), we have

N n+2 R N n+2
IQ S Cn <;> ||(I)573Da7a[F(.,g(.))]||y+n+1 S Cn <;> 5H3HN7H72MN77172

< CLEHZHN My _s.

With (5.9), the conclusion follows at once.

The rest is devoted to the proof of (5.9). By Faa di Bruno’ formula, Q;3D[F(-, 9(-))]
is the linear combination of terms of the form

l
(5.10) 8 (DL104F) (9()) - T DV,
j=1

where |8] +1 < |a| and y1 + 92+ + v = a— §, and if 7; = 0, DY g doesn’t
appear in (.10).

Next we estimate the Sobolev norm of the form (.10). Take a function ¥ €
C5°(W) such that ¥ = 1 in Q. Note that n + 1+ v > (2n+ 1)/2. We apply (b.1)
to compute

l
1@55 (D220 0LF) (o900 - TT D gllvsnsn

j=1
l
< [[@5 (DFandhF) (o ps - TTIE D8]

j=1
where W; is given by setting ¥; = W if [y;| = 1, and ¥; = @5 ] A vl > 2.
Moreover a direct computation yields
@5 (D), 0L F) (- g(- <||®s3 (D}, ,OLF) (- g(-
H p3 \ Ftx,0% (- 9( ))Hy+n+1 = H P33 \ Htx,0% (- 9( ))Hn+2

< CnHo {SUP | D" 2P 5] - HDEIWQZIFHC(QXFM,M]) + HDE%UG!IJFHC"+2(Q><[7M,M])}

3 n+2
< C, Hy { () 108l leqae oy + HD:ix,vazF||m+2mx[_M,MD}

In the last inequality, we have used @) Without loss of generality we may assume
|B] > n + 2. Then we may choose 8 < 8 such that ‘ﬁ| = |8] = (n + 2). Thus by
(5.4), (.5) and the monotonicity condition (5.9), one has

HDﬁ al

t,x,v QFHCT"+2(Q><[—M,M]) < M|,6\—2Ml72;
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and

3 n+2 3 n+2 ﬁ :
<;) Hthv qFHC(Qx[ M, M]) = (;) HDtrvaqF||c"+2(Qx[—M,M])

<3 n+2M\B\ ng 2
< 3" Mg _o M.

Hence,
1955 (D22 0bF) gD, g < CoHoMis)-2Mi-.
Hence
(5.11)
l l
@53 (Dfx WO F )( 9 T DV gllvrnsr < CuHoMig oMz [T 1W;D7g], 1
J=1 Jj=1

By virtue of (F.6)-(p.7) and (5.10)-(5.11)), the situation is now similar to [L]. In

fact, we work with the Sobolev norm, and we shall follow the idea of to prove
(E) First we define the polynomial functions w, X7, X5 in R as follows:

HI™ 2M
w = w(y) = Ho y+z ”y , yER

C M] g’wj.

X()—1+C4w+z T

CIM;_oy
Xa(y) = 1+C4y+z4+2y, y € R.

j=2
By the conditions (b.6) and (b.7), we have
; dw(y) : .
H‘I]J’DJgHernJrl < dyl  ly=0’ Visjs N
Define X (y, w) = X;(w)X2(y). Then by virtue of (5.3), it follows
"X (y, w)
My oM, < L2010 C V2<k I<N.
R = kWl |y )=(0,0) -
By (b.11]) and the above two inequalities, we get that for all a, || = N,
N

o d
Il = Cn||(1)ﬁ,3D [F(vg(>>]H,/+n+1 = C HOd NX(yaw(y)) y:O'
Hence, the proof of @) will be complete if we show that,
daN ‘

(5.12) a — (X1 (w(y)) Xa(y)) o < T2C4HoHN "2 My _s.

To prove the above inequality, we need to treat Xj(-k)(O) = %Xj(y) ,0<
y

k<N, j=1,2. We say w(y) < h(y) if the following relation holds:
w?(0) < A9 (0), 0<j<N.
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Observe that
Hi2M;_oy
w(y) < w(y) = Ho y+z J 2y

We can prove that

HI 73 Mgy
(5.13) w?(y) < 35H2 | y +27”3y
= -

In fact, a direct verification shows that

2HJ 3M T2 M oMy
w?(y) = HY +Z Sy Z.!(jﬂ.)f 1y ¢ 0N,
1=2

Since {M;} satisfies the monotonicity condition (f.3), we compute

ij{—‘*Mi,gM]—,H<4H{‘4Mj,4§ 52 32HI M, _3
LT G- S Goa? ZRG-ir S G-

Combing these, we obtain () Inductively, we have the following relations:

N j—i—1 1
; ; A HY M;_; 1y’ .
w'(y) < 35T H] | o + L , 2<i<N-1,
0 ]_;1 (j—i+1)!

N(y) < 35NV HY yN
Thus by the definition of X7, it follows that
Xi1(y) = X1 (w(y)) < 1+ CaHoy + (HoMo/2 + 35C; Mo H{y /2) y*
N j—2 i—1p,7 177 J=1 Gri—1p6 i pri—i—1
+ Z <HOH{ Mj_g + 357 1CiH3Mj_2 + Z 35 IC4HOHf Mi—2Mj—i—1> yj.
1=2

= J! J! il —i+1)!

This gives
X1(0) =1, X{(0) < CaHo, X{”(0) < HoMo + 35C; MoH,

and moreover for j > 3,

1350 1CLH H] ™ T My o M L
AG -t 1)

X9(0) < CoHoHI™>M;_o+35"1CLHI M, 2+Zj

=2

Observe that H; > (35C4Hp)?, and hence X§2) < 2C4HyH1 My, and for j > 3,

ACy(j — 2)\ HoH? 7 M;_4 Z

x90) < 20, HoHI 2 M, _5 + 9

2(5—1)
< 6CyHoHI > M;_».
On the other hand, it is clear that

Xo(0) =1, X5(0)<Ci, X$(0)<CIM; o, 2<j<N.
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By virtue of the above relations, we have, for H; > (3564H0)2 ,

aN NN G N
=X =3 ——— _x0)xN (0
N (www)| j:zoj!(N*j)! 1 (0)X577(0)
<CNMy_o +CNNHoMy_3+2N(N — 1)CY " HoHiMoMpy_4 + 6C2HoHY "My _3
N-—-2 NI
N-2 . Jj—2 ) N—j )
+6CsHoHY "> My _5 + 6Cy ;3 T HoH{ > M;_2C) T My_;_»

< 72C4HoHY My 5.
This gives (f.19), and hence (5.9). This completes the proof of Lemma [f.3. O

Now starting from the smooth solution u, we prove the Gevrey regularity result
as follows:

Proposition 5.4. Let 6 = max {%, Z - %} , and let s > % be a real number. Let

W =20 = {(t,:c,v); (%,%,%) € Q} Suppose that u € C®(W) is a solution of
@) where a(t,z,v) € G*(Q),a > 0 and F(t,z,v,q) € G*(Q x [-M, M]). Then
there exits a constant R such that for any r € [0,1] and any N € N, N > 4,

, @0, N DYl pms1 + [P, NAT D], _s 4
(E)r N Rlel—1

LT
< et (o] = 3)!) (%)
holds for all o, || = N and all 0 < p < 1. Thus, u € G*(Q).

Remark 5.1. Here the Gevrey constant L of u is determined by the Gevrey con-
stants B, and Bf of the functions a, F', and depends only on s, o, n, Hu||Hn+6(W)

a,nd ||a||czn+2(9) .

Proof. We prove the estimate (E); n by induction on N. We shall follow the same
procedure as that in the proof of Proposition @ First, the truth of (E);., can
be deduced by the same argument as that in the proof of (E), 4 in the previous
section.

Let now N > 4 and assume that (£);. y_; holds for any r € [0,1]. We need to
prove the truth of (E);N for 0 < r < 1. In the following discussion, we fix N and

foreach0<p<1,deﬁneﬁ:%p,p::¥
which satisfies the property (@)
First, the same argument as the proof of Lemma @ yields

(5.14)

p. Let ®, n be the cutoff function

o oo ClRla‘72 s
H(I)PyND u||n+1+H(I)p,NA D uH_g_,’_n_’_l S W((|O&|*3)') y V0 < p < 1.

Next we prove, for all 7,0 < r < %,
(5.15)

a Ao o C6R|a‘_2 s sr
(@, N D wlrgns1 + ([ Qo N AT DYl _5 4y < W((M =3)1) (N/p)™".

Observe that we need only to show the above inequality in the case when r = %,
that is

C6R|oz\—2

(e Ao pa s Er
(5.16) [|®p,n Dl 5 1+ Pp N AT D |pg1 < W((W—?’)!) (N/p)=,
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and the truth of ) for general r €]0, g[ follows by the interpolation inequality

()}

To prove (), we first show the following inequality

a C7R|a‘_2 s 88
(G1T)  IPLND g i1 < ey (0 = 3)) (V)%

In fact,
||P(I)P7NDQU||—g+n+1 <[P, q)PqNDa]uH—%-HH-l + ||(I)p7NDaPu||—§+n+1
<P, @pnDull sy + 12 N D [F (s ul )l =5 41

Since there is no nonlinear form involved in the first term of the right-hand side of
the above inequality, the same argument as in the proof of (@) gives that

o CgR'MiQ s 58
519 P LoD ul_gpnr < S (ol = 3) (/) ¥,

Thus we need only to treat the second term |[|[®, yD*[F(-,u(-))]
smoothness of u gives

||7%+n+1' The

(5.19) D7 ull gnraqriry < [l sy, 0<5<2,
and by the induction hypothesis, for any 3 < j < N and any 0 < p < 1,

Cle_2 . s
s4m1 < 180D ullngn < W((J =3)!)

Cle_2 . S/ . 58 .
S — | 2 =

12,507l
(5.20)

Similarly, by (), we have for any 0 < p < 1,

o C RN -2 s 55
(521) ||(I)p,ND UH_%+n+1 S m((N— 3)') (N/p) 2, A4 a, |Oé| = N.

Since F € G*(Q2 x [~ M, M]), then
(5.22)  [|Df, 0L F lonz@xi—nnm < BT ((k=3))°((1=3)1)°, k,1>3.
Define M;, Hy, Hy by setting

G-1y" @
Hy = Ry Ho = [ullgnsswy + 1 Mo=1; M; = W((] +2)/p)2, j=1.

We can choose R large enough such that H; = R > (4"T'BpHg)?. Then (5.19)-
(b-29) can be rewritten as

(5.23) ID7ul|gnsaqiy < Ho, 0<j <1,

(5.24)
||q)P1jD’Yu||7%+n+1 SHOH{?ZMJ'*% V0<P< 17 V |7|:.77 2§]§N5

(5.25) IDF 4 wOhFllomiz@x—mam) < BEH My_oMi_a, k1> 2.
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For each j, note that s > %. Hence we compute

J! . s—1,,. . s=1 _(stn)(i—1) —(s+n)(j—i—1)
7M1M_l = — - —1 | —i-1 | j
G — )T T G ) (=N (G=i=1) p p

X (i4+2)F(G—i+2)Tp
. . s—1 _(s4+n)(ji— . 58 . 8 _g
<G =20 p IR 4 2) 5 (j+2) % p*°

i
wfg,

S —(s+n)(j— ; 8 _ 58 sip—
— 1)) MG (4 2) 7 pF pot

< C,M;.

In the last inequality we used the fact that s —1 > 1+ 5—25, where Cj is a constant
depending only on s. Moreover, it is easy to verify that, M; > pstmG=1) > =i
for each j > 2, and

(ﬁ)nﬂ My = <ﬁ>n+2 M((N —n)/p)%

P p p(ern)(anfB)

(N -1))°
<G -0

Thus {M;} satisfies the monotonicity condition (p.3) and the condition E.4). By
virtue of (5.23)-(5-26), we can use Lemma p.g with v = —§ > —1 to obtain

a al—2
1@, DY[EC a5 i1 < CHEH™ Mg

(N +2)/p)% =CoMny_o.

2 R‘al_Q s 56
S 2C5 (1 + ||’UJHCTL+3(W)) W(ﬂcﬂ — 3)') (N/p) 2,

This along with (5.1§) yields (p.17), if we choose C7 = Cs + 2Cs (1 + HUH2cn+3(W))-
By virtue of (p.17), we can repeat the discussion as in Step 4 in the previous section.
This gives (f.16), and hence (f.17).

Similarly, we can prove that for any r with % <r <y,

o Ao o C9R|a‘72 s sr
D U||r+n+1,9p +[|A°D u|\r—g+n+1,np < W((W *3)!) (N/p)*.

Inductively, for any m € N with ’%‘5 <1+ %, the above inequality still holds for

any r with @ <r< ’"75. Hence, for » with 0 < r < 1, we obtain the truth of
(E);. n- This completes the proof of Proposition .4 O
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