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THE GEVREY HYPOELLIPTICITY FOR A CLASS

OF KINETIC EQUATIONS

HUA CHEN, WEI-XI LI, AND CHAO-JIANG XU

Abstract. In this paper, we study the Gevrey regularity of weak solutions for
a class of linear and semi-linear kinetic equations, which are the linear model
of spatially inhomogeneous Boltzmann equations without an angular cutoff.

1. Introduction

In this paper, we study the following kinetic operator:

(1.1) P = ∂t + v · ∂x + a(t, x, v)(−△̃v)
σ, (t, x, v) ∈ R× R

n × R
n,

where 0 < σ < 1, v · ∂x = Σn
j=1vj∂xj

, a(t, x, v) ∈ C∞(R2n+1) and a(t, x, v) > 0

on R× R
n × R

n, the notation (−△̃v)
σ denotes the Fourier multiplier of symbol

p(η) =
{
|η|σ ω(η) + |η| (1 − ω(η))

}2
, with ω(η) ∈ C∞(Rn), 0 ≤ ω ≤ 1. Moreover,

we have ω = 1 if |η| ≥ 2 and ω = 0 if |η| ≤ 1. Throughout the paper, we denote by
û(τ, ξ, η) the Fourier transform of u with respect to the variables (t, x, v). P is not a
classical pseudo-differential operator in R

2n+1; for the coefficient in the kinetic part
is not bounded in R

2n+1. When σ = 1, the operator (1.1) is the so-called Vlasov-
Fokker-Planck operator (see [12, 13]), it is then a Hörmander type operators, and
we can apply the Gevrey hypoellipticity results of M. Derridj and C. Zuily [7] and
M. Durand [10], see also [5] for the optimal G3-hypoelliptic results.

As is well known, the operator (1.1) is a linear model of the spatially inhomo-
geneous Boltzmann equation without an angular cutoff (cf. [15]). This is the main
motivation for the study of the regularizing properties of the operator (1.1) in this
paper. In the past several years, a lot of progress has been made in the study
of the spatially homogeneous Boltzmann equation without an angular cutoff, (see
[2, 3, 8, 21] and references therein), in which the authors have proved that the
singularity of the collision cross-section yields certain gain on the regularity for the
weak solution of the Cauchy problem in the Sobolev space frame. That implies
that there exists a C∞ smoothness effect of the Cauchy problem for the spatially
homogeneous Boltzmann equation without an angular cutoff. The Gevrey regular-
ity of the local solutions has been constructed in [20] for the initial data having
the same Gevrey regularity, and the propagation of Gevrey regularity is proved re-
cently in [9]. In [17], the Gevrey smoothness effect of the Cauchy problem has been
established for the spatially homogeneous linear Boltzmann equation. In [16], they
obtain the ultra-analytical effect results for the non linear homogeneous Landau
equations and inhomogeneous linear Landau equations.
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However, there is no general result for the smoothness effect of the spatially
inhomogeneous problem, which is actually related with the regularity of the ki-
netic equation with its diffusion part a nonlinear operator in the velocity variable
v. Under the singularity assumption on the collision cross section, the behavior
of the Boltzmann collision operator is similar to a fractional power of the Lapla-
cian (−△v)

σ
. In [1], by using the uncertainty principle of the micro-local analysis,

the authors obtained C∞ regularity for the weak solution of the linear spatially
inhomogeneous Boltzmann equation without an angular cutoff.

On the other hand, in [15], the existence and the C∞ regularity have been
proved for the solutions of the Cauchy problem for linear and semi-linear equations
associated with the kinetic operators (1.1). In this paper, we shall consider the
Gevrey regularity for such problems.

Let us first recall the definition for the functions in the Gevery class. Let U be
an open subset of Rd and 1 ≤ s < +∞, we say that f ∈ Gs(U) if f ∈ C∞(U) and
for any compact subset K of U , there exists a constant (say Gevrey constant of f)
C = CK , depending only on K and f , such that for all multi-indices α ∈ N

d,

‖∂αf‖L∞(K) ≤ C
|α|+1
K (α!)s.(1.2)

If W is a closed subset of Rd, Gs(W ) denote the restriction of Gs(W̃ ) on W where

W̃ is an open neighborhood ofW . The condition (1.2) is equivalent to the following
estimate (e.g. see [6] or [18]):

‖∂αf‖L2(K) ≤ C
|α|+1
K (|α|!)s.

We say that an operator P is Gs hypoelliptic in U if u ∈ D′(U) and Pu ∈
Gs(U), then it follows that u ∈ Gs(U). Likewise, we say that the operator P is C∞

hypoelliptic in U if u ∈ D′(U) and Pu ∈ C∞(U), then it follows that u ∈ C∞(U).

In [15], Morimoto-Xu proved that the operator (1.1) is C∞ hypoelliptic if 1/3 <
σ ≤ 1. Our first main result of this paper is the following:

Theorem 1.1. Let 0 < σ < 1 and δ = max
{

σ
4 ,

σ
2 − 1

6

}
. Then the operator P

given by (1.1) is Gs hypoelliptic in R
2n+1 for any s ≥ 2

δ , provided the coefficient

a(t, x, v) ∈ Gs(R2n+1) and a(t, x, v) > 0.

Compared with what is obtained in [15], the result of Theorem 1.1 implies that
the operator (1.1) is also C∞ hypoelliptic in the case of 0 < σ ≤ 1/3.

Next, we consider the following semi-linear equation:

(1.3) ∂tu+ v · ∇xu+ a(−△̃v)
σu = F (t, x, v;u)

where F is a nonlinear function of the real variables (t, x, v, q). The following is the
second main result of the paper, which implies that the weak solution of equation
(1.3) has Gevrey regularity:

Theorem 1.2. Let 0 < σ < 1 and δ = max
{

σ
4 ,

σ
2 − 1

6

}
. Suppose that u ∈

L∞
loc(R

2n+1) is a weak solution of Equation (1.3). Then u ∈ Gs(R2n+1) for any
s ≥ 2

δ , provided that the coefficient a ∈ Gs(R2n+1), a(t, x, v) > 0 and the nonlinear

function F (t, x, v, q) ∈ Gs(R2n+2).

Remark 1.1. Our results here are local interior regularity results. This implies
that if there exists a weak solution in D′, then the solution is in Gevrey class in
the interior of the domain. Thus, the interior regularity of a weak solution does
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not depend much on the regularity of the initial Cauchy data. Also, without loss of
generality, we can assume that c−1

0 ≤ a(t, x, v) ≤ c0 for all (t, x, v) ∈ R
2n+1 with c0

a positive constant, and all derivatives of the coefficient a are bounded in R
2n+1.

The paper is organized as follows: in section 2, we prove that P is subelliptic
by using the method of subelliptic multiplier developed by J. Kohn [14]. Section 3

is devoted to the study of the commutator of (−△̃v)
σ with the cut-off function in

the v variable. In section 4, we use the subelliptic estimates to prove the Gevrey
hypoellipticity of the operator P . Section 5 is devoted to the proof of the Gevrey
regularity for the weak solution of the semilinear kinetic equation (1.3).

2. Subelliptic estimates

In this paper, the notation, ‖ · ‖κ, κ ∈ R, is used for the classical Sobolev norm
in Hκ(R2n+1), and (f, g) is the inner product of f, g ∈ L2(R2n+1). Moreover if
f, g ∈ C∞

0 (R2n+1), it is easy to see that

|(f, g)| ≤ ‖f‖κ‖g‖−κ ≤
ε‖f‖2κ

2
+

‖g‖2−κ

2ε
.(2.1)

We have also the interpolation inequality in Sobolev space: For any ε > 0 and
r1 < r2 < r3,

‖f‖r2 ≤ ε‖f‖r3 + ε−(r2−r1)/(r3−r2)‖f‖r1.(2.2)

Let Ω be an open subset of R2n+1 and Sm(Ω),m ∈ R, be the symbol space of the
classical pseudo-differential operators (when there is no risk to cause the confusion,
we will simply write Sm for Sm(Ω)). We say P = P (t, x, v,Dt, Dx, Dv) ∈ Op(Sm)
to be a pseudo-differential operator of order m, if its symbol p(t, x, v; τ, ξ, η) ∈ Sm.
If P ∈ Op(Sm), then P is a continuous operator from Hκ

c (Ω) to H
κ−m
loc (Ω), where

Hκ
c (Ω) is the subspace of Hκ(R2n+1) which consists of the distributions having

their compact support in Ω. Hκ−m
loc (Ω) consists of the distributions h such that

φh ∈ Hκ−m(R2n+1) for any φ ∈ C∞
0 (Ω). For more details on the pseudo-differential

operators, we refer to Treves [19]. Observe that if P1 ∈ Op(Sm1), P2 ∈ Op(Sm2),
then [P1, P2] ∈ Op(Sm1+m2−1).

We study now the operator P given by (1.1). For simplicity, we introduce the
following notations

Λ̃σ
v = (−△̃v)

σ
2 , X0 = ∂t + v · ∂x, Xj = ∂vj , j = 1, · · · , n,

Λκ = (1 + |Dt|
2 + |Dx|

2 + |Dv|
2)κ/2.

Then P can be written as P = X0+a(t, x, v)Λ̃
2σ
v , and ∂xj

= [Xj , X0]. The following

simple fact is used frequently: For any compact K ⊂ R
2n+1 and r ≥ 0, there exists

CK,r > 0 such that for any f ∈ C∞
0 (K),

‖Λ̃σ
vf‖r ≤ CK,r

{
‖Pf‖r + ‖f‖r

}
.(2.3)

In fact, a simple computation gives that

‖Λ̃σ
vf‖

2
r = Re(Pf, a−1Λ2rf)− Re(X0f, a

−1Λ2rf)

= Re(Pf, a−1Λ2rf)−
1

2
(f, [a−1Λ2r, X̃0]f)−

1

2
(f, [Λ2r, a−1] X̃0f)

≤ CK,r

{
‖Pf‖r + ‖f‖r

}
,
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where X̃0 = ∂t + ψ̃(v)v · ∂x and ψ̃ ∈ C∞
0 (Rn

v ) is a cutoff function in the v variable

such that ψ̃ = 1 in the projection of K on R
n
v . Remark that, with the choice of

such a cutoff function, we have that

X̃0P (t, x, v,Dt, Dx, Dv)f = X0P (t, x, v,Dt, Dx, Dv)f

for any f ∈ C∞
0 (K) and any partial differential operator P (t, x, v,Dt, Dx, Dv).

First we show P is a subelliptic operator on R
2n+1 with a gain of order δ =

max
{
σ
4 ,

σ
2 − 1

6

}
.

Proposition 2.1. Let K be a compact subset of R2n+1. For any r ≥ 0, there exists
a constant CK,r, depending only on K and r, such that for any f ∈ C∞

0 (K),

‖f‖r+δ ≤ CK,r{ ‖Pf‖r + ‖f‖0 },(2.4)

where δ = max
{

σ
4 ,

σ
2 − 1

6

}
.

In order to prove Proposition 2.1, we need the following two lemmas.

Lemma 2.2. Let K be any compact subset of R2n+1. Then for any f ∈ C∞
0 (K),

we have

(2.5) ‖Λ−1/3X0f‖0 ≤ CK( ‖Pf‖0 + ‖f‖0 ),

and

(2.6) ‖Λ−1Xjf‖σ ≤ CK( ‖Pf‖0 + ‖f‖0 ), j = 1, · · · , n.

This is the result of Proposition 3.1 in [15]. The following lemma is to estimate
the commutators, which is different from the calculation in [15] for the second part
of the lemma.

Lemma 2.3. Let K be a compact subset of R2n+1. Then for any f ∈ C∞
0 (K), we

have

(2.7) ‖[Xj, Λ−1X̃0]f‖σ/2−1/6 ≤ CK( ‖Pf‖0 + ‖f‖0 ), j = 1, · · · , n,

and

(2.8) ‖[Λ−1Xj , X̃0]f‖σ/4 ≤ CK( ‖Pf‖0 + ‖f‖0 ), j = 1, · · · , n.

Proof. We denote Qj = Λσ−1/3−1[Xj , X0] = Λσ−1/3−1∂xj
∈ Op(Sσ−1/3). Note that

[Xk, Qj] = 0 for any 1 ≤ k ≤ n. Therefore for any f ∈ C∞
0 (K),

‖[Xj, Λ
−1X̃0]f‖

2
σ/2−1/6 = ‖[Xj, Λ

−1X0]f‖
2
σ/2−1/6

≤ |(XjΛ
−1X0f, Qjf)|+ |(Λ−1X̃0Xjf, Qjf)|

≤ |(Λ−1X0f, QjXjf)|+ |(Xjf, X̃0Λ
−1Qjf)|

≤ ‖Λ−1X0f‖2/3‖QjXjf‖−2/3 + |(Xjf, [X̃0, Λ
−1Qj]f)|+ |(Xjf, Λ

−1QjX0f)|

≤ CK{ ‖Λ−1/3X0f‖
2
0 + ‖Λ−1Xjf‖

2
σ + ‖f‖20 },

where we have used the simple fact that [X̃0, Λ
−1Qj ] ∈ Op(Sσ−1/3−1). Then (2.5)

and (2.6) give immediately (2.7).
We now study (2.8). First of all, we have

‖[Λ−1Xj , X̃0]f‖
2
σ/4 = (Λ−1XjX̃0f, Λ

σ/2[Λ−1Xj, X̃0]f)

−(X̃0Λ
−1Xjf, Λ

σ/2[Λ−1Xj , X̃0]f).
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By a straightforward calculation, it follows that

|(X̃0Λ
−1Xjf, Λ

σ/2[Λ−1Xj , X̃0]f)| = |(Λ−1Xjf, X̃0Λ
σ/2[Λ−1Xj , X̃0]f)|

≤ |(Λ−1Xjf, Λ
σ/2[Λ−1Xj , X̃0]X̃0f)|+ |(Λ−1Xjf, [Λ

σ/2[Λ−1Xj, X̃0], X̃0]f)|

≤ CK

{
|(Λ−1Xjf, Λ

σ/2[Λ−1Xj , X̃0]X0f)|+ ‖Λ−1Xjf‖
2
σ/2 + ‖f‖20

}

≤ CK

{
|(Λ−1Xjf, Λ

σ/2[Λ−1Xj , X̃0]X0f)|+ ‖Pf‖20 + ‖f‖20
}
.

In the last inequality, we have used (2.6) in Lemma 2.2.

Denote Pσ/2 = Λσ/2[Λ−1Xj , X̃0] ∈ Op(Sσ/2). Recall that X0 = P − aΛ̃2σ
v . We

have

|(Λ−1Xjf, Λ
σ/2[Λ−1Xj, X̃0]X0f)| = |(Λ−1Xjf, Pσ/2X0f)|

≤ |(Λ−1Xjf, Pσ/2Pf)|+ |(Λ−1Xjf, Pσ/2aΛ̃
2σ
v f)|

≤ CK{ ‖Λ−1Xjf‖
2
σ/2 + ‖Pf‖20 + |(Λ̃σ

vΛ
−1Xjf, Λ̃

−σ
v Pσ/2aΛ̃

2σ
v f)| }

≤ CK{ ‖Λ−1Xjf‖
2
σ/2 + ‖Pf‖20 + ‖Λ̃σ

vΛ
−1Xjf‖

2
σ/2 + ‖Λ̃σ

vf‖
2
0 }

≤ CK{ ‖Λ̃σ
vΛ

σ/2Λ−1Xjf‖
2
0 + ‖Pf‖20 + ‖f‖20 }.

For the last inequality, we used results from (2.3) and (2.6). Clearly, [Λ̃σ
v , Λ

−1Xj ] =

[Λ̃σ
v , Λ

σ/2] = [Λ−1Xj, Λ
σ/2] = 0. Then we get

‖Λ̃σ
vΛ

σ/2Λ−1Xjf‖
2
0 = −Re(Pf, a−1ΛσΛ−2X2

j f) + Re(X̃0f, a
−1ΛσΛ−2X2

j f)

≤ CK{ ‖Pf‖20 + ‖Λ−1Xjf‖
2
σ +

1

2
|(f, [ΛσΛ−2X2

j , a
−1X̃0]f)|

+
1

2
|(f, [a−1, X̃0]Λ

σΛ−2X2
j f)| }

≤ CK{ ‖Pf‖20 + ‖f‖20 + ‖Λ−1Xjf‖
2
σ + |(f, Λ−1Xj [Λ

σΛ−1Xj , a
−1X̃0]f)|

+ |(f, [Λ−1Xj , a
−1X̃0]Λ

σΛ−1Xjf)| }

≤ CK{ ‖Pf‖20 + ‖Λ−1Xjf‖
2
σ + ‖f‖20 }

≤ CK{ ‖Pf‖20 + ‖f‖20 }.

The above three estimates show immediately

|(X̃0Λ
−1Xjf, Pσ/2f)| ≤ CK{ ‖Pf‖20 + ‖f‖20 }.

Similarly, we can prove

|(Λ−1XjX̃0f, Pσ/2f)| ≤ CK{ ‖Pf‖20 + ‖f‖20 }.

This completes the proof of Lemma 2.3. �

The rest of this section is devoted to the proof of proposition 2.1:
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Proof of Proposition 2.1. Notice that ∂xj
= [Xj , X0] and ∂t = X0 −

n∑
j=1

vj ·

[Xj, X0]. Hence, for any f ∈ C∞
0 (K), we have

‖f‖2δ = ‖∂tf‖
2
δ−1 +

n∑

j=1

‖∂xj
f‖2δ−1 +

n∑

j=1

‖∂vjf‖
2
δ−1 + ‖f‖20

≤ CK { ‖Λ−1X0f‖
2
δ +

n∑

j=1

(
‖ψ̃(v)vj [Xj , X̃0]f‖

2
δ−1

+‖[Xj, X̃0]f‖
2
δ−1 + ‖Λ−1Xjf‖

2
δ

)
+ ‖f‖20 }.

Since δ = max {σ/4, σ/2− 1/6} ≤ min {2/3, σ} , applying (2.5) and (2.6) to
Lemma 2.2, we have that

‖Λ−1X0f‖δ +
n∑

j=1

‖Λ−1Xjf‖δ ≤ CK{ ‖Pf‖0 + ‖f‖0 }

and

‖ψ̃(v)vj [Xj , X̃0]f‖δ−1 ≤ CK{‖[Xj, X̃0]f‖δ−1 + ‖f‖0}.

It remains to treat the term ‖[Xj , X̃0]f‖δ−1. We consider the following two cases.

Case (i). δ = max {σ/4, σ/2− 1/6} = σ/2− 1/6.
We apply (2.7) in Lemma 2.3 to get

‖[Xj , X̃0]f‖δ−1 ≤ ‖[Xj, Λ
−1X̃0]f‖δ + ‖[Xj , Λ

−1]X̃0f‖δ

≤ CK{ ‖Pf‖0 + ‖Λ−1X0f‖δ + ‖f‖20 }.

Since δ < 2/3, then applying (2.5) again, we get immediately

‖[Xj, X̃0]f‖δ−1 ≤ CK{ ‖Pf‖0 + ‖f‖0 }.

Case (ii). δ = max(σ/4, σ/2− 1/6) = σ/4.
By (2.8) in Lemma 2.3, it follows that

‖[Xj , X̃0]f‖δ−1 ≤ ‖[Λ−1Xj , X̃0]f‖δ + ‖[Λ−1, X̃0]Xjf‖δ

≤ CK{ ‖Pf‖0 + ‖Λ−1Xjf‖δ + ‖f‖0 }.

Note that δ < σ, and hence from (2.6), we have

‖[Xj, X̃0]f‖δ−1 ≤ CK{ ‖Pf‖0 + ‖f‖0 }.

A combination of Case (i) and Case (ii) yields that for δ = max {σ/4, σ/2− 1/6} ,

‖[Xj, X̃0]f‖δ−1 ≤ CK{ ‖Pf‖0 + ‖f‖0 }.

Then we get

‖f‖δ ≤ CK{ ‖Pf‖0 + ‖f‖0 }.(2.9)
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Choose now a cutoff function ψ ∈ C∞
0 (R2n+1) such that ψ|K ≡ 1 and Supp ψ

is a neighborhood of K. Then for any r ≥ 0, ε > 0 and f ∈ C∞
0 (K), by (2.9), we

have

‖f‖r+δ = ‖Λrψf‖δ ≤ ‖ψΛrf‖δ + ‖[Λr, ψ]f‖δ ≤ CK{ ‖PψΛrf‖0 + ‖f‖r }.

Furthermore, notice that

[aΛ̃2σ
v , ψΛr] = 2a[Λ̃σ

v , ψΛ
r]Λ̃σ

v + a[Λ̃σ
v , [Λ̃

σ
v , ψΛ

r] ] + [a, ψΛr]Λ̃2σ
v .

Hence

‖PψΛrf‖0 ≤ ‖ψΛrPf‖0 + ‖[X̃0, ψΛ
r]f‖0 + ‖a[Λ̃σ

v , [Λ̃
σ
v , ψΛ

r] ]f‖0

+2‖a[Λ̃σ
v , ψΛ

r]Λ̃σ
vf‖0 + ‖[a, ψΛr]Λ̃2σ

v f‖0

≤ CK,r{ ‖Pf‖r + ‖f‖r + ‖Λ̃σ
vf‖r },

Combining with (2.3), we have

‖PψΛrf‖0 ≤ CK,r{ ‖Pf‖r + ‖f‖r }.

The above three estimates show that

‖f‖r+δ ≤ CK,r{ ‖Pf‖r + ‖f‖r }.

Applying the interpolation inequality (2.2), it follows that

‖f‖r+δ ≤ Cε,r,K{ ‖Pf‖r + ‖f‖0 }+ ε‖f‖r+δ.

Taking ε small enough, we get the desired subelliptic estimate (2.4). This completes
the proof of Proposition 2.1.

Since the subelliptic estimate in Proposition 2.1 is true for 0 < σ < 1, we can
now improve the C∞-hypoellipticity result of [15]( which is for 1/3 < σ < 1 ) as in
the following Theorem:

Theorem 2.4. Let 0 < σ < 1. Then the operator P given by (1.1) is C∞ hypoel-
liptic in R

2n+1, provided that the coefficient a(t, x, v) is in the space C∞(R2n+1)
and a(t, x, v) > 0 .

In fact, if we consider only the local regularity problem, as in Proposition 4.1
of [15], we can prove that if f ∈ Hs

loc(R
2n+1), u ∈ D′(R2n+1) and Pu = f then

u ∈ Hs+δ
loc (R2n+1). By using the subelliptic estimate (2.4), the estimate for the

commutators between the operator P and the mollifiers are exactly the same as
in Section 4 of [15]. This gives the C∞ hypoellipticity by the Sobolev embedding
theorem. The same argument applies to the semi-linear equations.

Remark that the results of [15] are not only regularity results. The authors also
proved a global estimate with weights (the moments). This is another important
problem for the kinetic equation.

3. Cutoff functions and commutators

To prove the Gevrey regularity of a solution, we have to prove an uniformly
iteration estimate (1.2). Our only tool is the subelliptic estimate (2.4). Since
it is a local estimate, we have to control the commutators between the operator
P and the cutoff functions. This is always the technical key step in the Gevrey
regularity problem. Our additional difficulty comes from the complicated nature of
the operator P .
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Since the Gevrey hypoellipticity is a local property, it suffices to show P is Gevrey
hypoelliptic in the open domain Ω ⊂ R

2n+1 given by

Ω = Ω1 × Ω2 = {(t, x) ∈ R
n+1; t2 + |x|2 < 1} ×

{
v ∈ R

n; |v|2 < 1
}
.

Define W by setting

W = 2Ω =
{
(t, x, v) ; |t|2 + |x|2 ≤ 22, |v| ≤ 2

}

For 0 ≤ ρ < 1, set Ωρ = Ω1
ρ × Ω2

ρ with Ω1
ρ and Ω2

ρ to be given by

Ω1
ρ =

{
(t, x) ∈ R

n+1;
(
t2 + |x|2

)1/2
< 1− ρ

}
, Ω2

ρ =
{
v ∈ R

n; |v|2 < 1− ρ
}
.

Let χρ be the characteristic function of the set Ω2
ρ, and let φ ∈ C∞

0 (Ω2) be a

function satisfying 0 ≤ φ ≤ 1 and
∫
Rn φ(v)dv = 1. For any ε, ε̃ > 0, setting

φε(v) = ε−nφ
(
v
ε

)
and ϕε,ε̃(v) = φε/2 ∗ χε/2+ε̃(v). Then for a small ε, ε̃ > 0,

ϕε,ε̃ ∈ C∞
0 (Ω2

ε̃); ϕε,ε̃ = 1 in Ω2
ε+ε̃;

sup
v∈Rn

|Dαϕε,ε̃(v)| ≤ Cαε
−|α| for any α ∈ N

n.

In the same way, we can find a function ψε,ε̃(t, x) ∈ C∞
0 (Ω1

ε̃) such that ψε,ε̃ = 1 in

Ω1
ε+ε̃ and sup |Dαψε,ε̃| ≤ Cαε

−|α|.
Now for any N ∈ N, N ≥ 2 and any 0 < ρ < 1, we set

Φρ,N (t, x, v) = ψ ρ
N

, (N−1)ρ
N

(t, x)ϕ ρ
N

, (N−1)ρ
N

(v).

Then we have,

(3.1)






Φρ,N ∈ C∞
0 (ΩN−1

N
ρ)

Φρ,N (t, x, v) = 1, (t, x, v) ∈ Ωρ,

sup |DαΦρ,N | ≤ Cα(N/ρ)
|α|.

For such cut-off functions, we have the following Lemma (see Corollary 0.2.2 of
[10]).

Lemma 3.1. There exists a constant Cn, depending only on n, such that for any
0 ≤ µ ≤ n+ 2, and f ∈ S(Rn+1), we have

(3.2) ‖(DγΦρ,N ) f‖µ ≤ Cn

{
(N/ρ)|γ| ‖f‖µ + (N/ρ)|γ|+µ ‖f‖0

}
, |γ| ≤ 2.

We study now the commutator of above cutoff function with the operator P .
Since the operator is a differential operator with respect to the (t, x) variables, it is

enough to consider the commutator of Λ̃σ
v with a cut-off function in the v variable.

We set ϕρ,N (v) = ϕ ρ
N

, (N−1)ρ
N

(v). The proof of the following Lemma is very similar

to that of M. Durand [10]. Since our calculus is much easier and much more direct,
we repeat it here.

Lemma 3.2. There exists a constant Cσ,n, depending only on n and σ, such that
for any κ with 1 ≤ κ ≤ n+ 3, and f ∈ S(R2n+1),

(3.3) ‖[Λ̃σ
v , ϕρ,N ]f‖κ ≤ Cσ,n

{
(N/ρ)

σ ‖f‖κ + (N/ρ)
κ+σ ‖f‖0

}

and

‖[Λ̃σ
v , [Λ̃σ

v , ϕρ,N ] ]f‖κ ≤ Cσ,n

{
(N/ρ)

2σ ‖f‖κ + (N/ρ)
κ+2σ ‖f‖0

}
.(3.4)



THE GEVREY HYPOELLIPTICITY FOR KINETIC EQUATIONS 9

Remark 3.1. Observe for ρ̃ = (N−1)ρ
N , ϕρ,N Λ̃σ

v (1 − ϕρ̃,N)f = −ϕρ,N [Λ̃σ
v , ϕρ̃,N ] f.

Then as a consequence of (3.3), we have

‖ϕρ,N Λ̃σ
v (1− ϕρ̃,N)f‖κ ≤ Cσ,n

{
(N/ρ)

σ ‖f‖κ + (N/ρ)
κ+σ ‖f‖0

}
.

Hence, in the following, we omit the detailed discussions for such terms.

Proof. To simplify the notation, in the course of the proof, we shall use C to denote
a constant which depend only on n and σ and may be different in different contexts.
We denote by (τ, ξ, η) the Fourier transformation variable of (t, x, v). Ft,x(g), Fv(g)
are the partial Fourier transforms, and ĝ is the full Fourier transform with respect
to (t, x, v). Set

h = [Λ̃σ
v , ϕρ,N ]f, H(v) = Hτ,ξ(v) = Ft,x(f)(τ, ξ, v)

In the following discussion, we always write H(v) for Hτ,ξ(v), if there is no risk of
causing the confusion. It is clear that

(3.5) Ft,x(h)(τ, ξ, v) = [Λ̃σ
v , ϕρ,N ]Ft,x(f)(τ, ξ, v) = [Λ̃σ

v , ϕρ,N ]H(v).

Observe that the desired inequality (3.3) will follow if we show that, for each fixed
pair (τ, ξ),
(3.6)∥∥∥
[
Λ̃σ
v , ϕρ,N (·)

]
H(·)

∥∥∥
Hκ(Rn

v )
≤ C

{
(N/ρ)σ ‖H(·)‖Hκ(Rn

v )
+(N/ρ)κ+σ ‖H(·)‖L2(Rn

v )

}
.

Indeed, a direct computation yields that

‖h‖2κ =

∫

R2n+1

(1 + τ2 + |ξ|2 + |η|2)κ
∣∣ĥ(τ, ξ, η)

∣∣2dτdξdη

≤ C

∫

R2n+1

{
(1 + τ2 + |ξ|2)κ + |η|2κ

} ∣∣ĥ(τ, ξ, η)
∣∣2dτdξdη

≤ C

∫

Rn+1

(1 + τ2 + |ξ|2)κ
(∫

Rn

(
1 + |η|2

)κ ∣∣ĥ(τ, ξ, η)
∣∣2dη

)
dτdξ

= C

∫

Rn+1

(1 + τ2 + |ξ|2)κ
(∥∥∥
[
Λ̃σ
v , ϕρ,N (·)

]
Hτ,ξ(·)

∥∥∥
Hκ(Rn

v )

)
dτdξ.

This along with (3.6) yields the desired inequality (3.3).
Next, we shall prove (3.6). First, for any g ∈ S(Rn), we have

(3.7) |Dv|
σ g(v) = Cσ

∫

Rn

g(v)− g(v − ṽ)

|ṽ|n+σ dṽ

with Cσ 6= 0 being a complex constant depending only on σ and the dimension n.
In fact,

∫

Rn

g(v)− g(v − ṽ)

|ṽ|n+σ dṽ =

∫

Rn

Fv(g)(η) e
i v·η

(∫

Rn

1− e−i ṽ·η

|ṽ|n+σ dṽ

)
dη

On the other hand, it is clear that
∫

Rn

1− e−i ṽ·η

|ṽ|n+σ dṽ = |η|σ
∫

Rn

1− e−i u· η
|η|

|u|n+σ du.

Observe that
∫
Rn

1−e
i u·

η
|η|

|u|n+σ du 6= 0 is a complex constant depending only on σ and

the dimension n, but independent of η. Then the above two equalities give (3.7).
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Next, we use (3.7) to get

|Dv|
σ
(
H(v)ϕρ,N (v)

)
= Cσ

∫

Rn

H(v)ϕρ,N (v)−H(v − ṽ)ϕρ,N (v − ṽ)

|ṽ|n+σ dṽ

= ϕρ,N (v)|Dv|
σH(v) + Cσ

∫

Rn

H(v − ṽ)
(
ϕρ,N (v) − ϕρ,N (v − ṽ)

)

|ṽ|n+σ dṽ,

which gives that

[
|Dv|

σ, ϕρ,N (v)
]
H(v) = Cσ

∫

Rn

H(v − ṽ)
(
ϕρ,N (v)− ϕρ,N (v − ṽ)

)

|ṽ|n+σ dṽ.(3.8)

Let χ̃ρ/N be the characteristic function of the set {v; |v| ≤ ρ/N} . By the above
expression, we compute

‖
[
|Dv|

σ, ϕρ,N

]
H‖2L2(Rn

v )
= |Cσ|

2

∫

Rn

∣∣∣∣∣

∫

Rn

H(v − ṽ)
(
ϕρ,N (v)− ϕρ,N (v − ṽ)

)

|ṽ|n+σ dṽ

∣∣∣∣∣

2

dv

≤ 2|Cσ|
2

∫

Rn

∣∣∣∣∣

∫

Rn

χ̃ρ/N (ṽ)H(v − ṽ)
(
ϕρ,N (v)− ϕρ,N (v − ṽ)

)

|ṽ|n+σ dṽ

∣∣∣∣∣

2

dv

+ 2|Cσ|
2

∫

Rn

∣∣∣∣∣

∫

Rn

(
1− χ̃ρ/N (ṽ)

)
H(v − ṽ)

(
ϕρ,N (v)− ϕρ,N (v − ṽ)

)

|ṽ|n+σ dṽ

∣∣∣∣∣

2

dv

≤ C
(
sup |∂v ϕρ,N |

)2
∫

Rn

(∫

Rn

χ̃ρ/N (ṽ) |H(v − ṽ)|

|ṽ|n+σ−1 dṽ

)2

dv

+ C
(
sup |ϕρ,N |

)2
∫

Rn

(∫

Rn

(
1− χ̃ρ/N (ṽ)

)
|H(v − ṽ)|

|ṽ|n+σ dṽ

)2

dv

=: A1 +A2,

For the term A1, Young’s inequality for convolutions gives

∫

Rn

(∫

Rn

χ̃ρ/N (ṽ) |H(v − ṽ)|

|ṽ|n+σ−1 dṽ

)2

dv ≤ ‖H‖2L2(Rv)

∥∥∥
χ̃ρ/N (v)

|v|n+σ−1

∥∥∥
2

L1(Rv)
.

Then (3.1) with |α| = 1 and the following inequality
∥∥∥∥∥
χ̃ρ/N (v)

|v|n+σ−1

∥∥∥∥∥

2

L1(Rv)

≤ C

(∫ ρ/N

0

dr

rσ

)2

≤ C (ρ/N)
2(1−σ)

deduce that

A1 ≤ C (N/ρ)
2σ ‖H‖2L2(Rn

v )
.

Similarly, we can use (3.1) with |α| = 0 and the inequality

∫

Rn

(∫

Rn

(
1− χ̃ρ/N (ṽ)

)
|H(v − ṽ)|

|ṽ|n+σ dṽ

)2

dv ≤ ‖H‖2L2(Rv)

∥∥∥
1− χ̃ρ/N (v)

|v|n+σ

∥∥∥
2

L1(Rv)

≤ C (ρ/N)
−2σ ‖H‖2L2(Rv)

to get

A2 ≤ C (N/ρ)2σ ‖H‖2L2(Rn
v )
.
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On the other hand, it is trivial to see

‖
[ (

|Dv|
σ − Λ̃σ

v

)
, ϕρ,N

]
H‖L2(Rn

v )
≤ C ‖H‖L2(Rn

v )
.

Now we combine these inequalities to conclude

(3.9) ‖
[
Λ̃σ
v , ϕρ,N

]
H‖L2(Rn

v )
≤ C (N/ρ)

σ ‖H‖L2(Rn
v )
.

Next we treat ‖
[
Λ̃σ
v , ϕρ,N

]
H‖Hκ(Rn

v )
. Similar to the above argument, we study

only the commutator ‖
[
|Dv|σ, ϕρ,N

]
H‖Hκ(Rn

v )
. First, we consider the case when κ

is a positive integer. Let α be an arbitrary multi-index with |α| ≤ κ. Then taking
derivatives in (3.8), and then using Leibnitz’s formula; we get

∂αv
([
|Dv|

σ, ϕρ,N (v)
]
H(v)

)

= Cσ

∑

β≤α

Cβ
α

∫

Rn

(
∂βvH(v − ṽ)

)
·
(
∂α−β
v

(
ϕρ,N (v) − ϕρ,N (v − ṽ)

))

|ṽ|n+σ dṽ.

Thus similar arguments as above show that
∥∥∥∂αv

([
|Dv|

σ, ϕρ,N (v)
]
H(v)

)∥∥∥
L2(Rn

v )
≤ C

∑

β≤α

(N/ρ)
|α−β|+σ ∥∥∂βvH

∥∥
L2(Rn

v )
.

Together with the interpolation inequality (2.2), we obtain
∥∥∂αv

([
|Dv|

σ, ϕρ,N (v)
]
H(v)

)∥∥
L2(Rn

v )

≤ C
{
(N/ρ)

σ ‖H‖Hκ(Rn
v )

+ (N/ρ)
|α|+σ ‖H‖L2(Rn

v )

}
.

Since α, |α| ≤ κ, is arbitrary, we conclude

∥∥[ |Dv|
σ
, ϕρ,N (v)

]
H(v)

∥∥
Hκ(Rn

v )
≤ C

{
(N/ρ)

σ ‖H‖Hκ(Rn
v )

+ (N/ρ)
κ+σ ‖H‖L2(Rn

v )

}
.

This implies (3.6), when κ is a positive integer.
Now we consider the case when κ is not a integer. Without loss of generality, we

may assume 0 < κ < 1. Write κ+ σ = 1 + µ. Then 0 ≤ µ < 1, and
∥∥∥
[
|Dv|

κ+σ
, ϕρ,N (v)

]
H(v)

∥∥∥
L2(Rn

v )
≤
∥∥[ |Dv|

µ
, ϕρ,N (v)

]
H(v)

∥∥
H1(Rn

v )

+
∥∥∥
[
|Dv|

1
, ϕρ,N (v)

]
|Dv|

µ
H(v)

∥∥∥
L2(Rn

v )
.

We have treated the first term on the right, that is,
∥∥[ |Dv|

µ
, ϕρ,N (v)

]
H(v)

∥∥
H1(Rn

v )
≤ C

{
(N/ρ)

µ ‖H‖H1(Rn
v )

+ (N/ρ)
1+µ ‖H‖L2(Rn

v )

}
.

On the other hand, one has
∥∥∥
[
|Dv|

1
, ϕρ,N (v)

]
|Dv|

µ
H(v)

∥∥∥
L2(Rn

v )
≤ C (N/ρ) ‖H‖Hµ(Rn

v )
.

For the proof of this estimate, we refer to [10] for instance. Hence
∥∥∥
[
|Dv|

κ+σ
, ϕρ,N (v)

]
H(v)

∥∥∥
L2(Rn

v )
≤ C

{
(N/ρ)

µ ‖H‖H1(Rn
v )

+ (N/ρ)
1+µ ‖H‖L2(Rn

v )

+ (N/ρ) ‖H‖Hµ(Rn
v )

}
.
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Notice that κ ≥ 1,. The interpolation inequality (2.2) gives
∥∥∥
[
|Dv|

κ+σ
, ϕρ,N (v)

]
H(v)

∥∥∥
L2(Rn

v )

≤ C
{
(N/ρ)

σ ‖H‖Hκ(Rn
v )

+ (N/ρ)
κ+σ ‖H‖L2(Rn

v )

}
.

Since 0 < κ < 1, then
∥∥[ |Dv|

κ
, ϕρ,N (v)

]
|Dv|

σ
H(v)

∥∥
L2(Rn

v )

≤ C
{
(N/ρ)

κ ‖H‖Hσ(Rn
v )

+ (N/ρ)
κ+σ ‖H‖L2(Rn

v )

}

≤ C
{
(N/ρ)

σ ‖H‖Hκ(Rn
v )

+ (N/ρ)
κ+σ ‖H‖L2(Rn

v )

}
.

In the last inequality, we have used the interpolation inequality (2.2). The above
two inequalities yield that

∥∥|Dv|
κ [ |Dv|

σ , ϕρ,N (v)
]
H(v)

∥∥
L2(Rn

v )

≤
∥∥∥
[
|Dv|

κ+σ
, ϕρ,N (v)

]
H(v)

∥∥∥
L2(Rn

v )

+
∥∥[ |Dv|

κ , ϕρ,N (v)
]
|Dv|

σH(v)
∥∥
L2(Rn

v )

≤ C
{
(N/ρ)

σ ‖H‖Hκ(Rn
v )

+ (N/ρ)
κ+σ ‖H‖L2(Rn

v )

}
.

Hence
∥∥[ |Dv|

σ
, ϕρ,N (v)

]
H(v)

∥∥
Hκ(Rn

v )

≤ C
{∥∥|Dv|

κ [ |Dv|
σ
, ϕρ,N (v)

]
H(v)

∥∥
L2(Rn

v )

+
∥∥[ |Dv|

σ
, ϕρ,N (v)

]
H(v)

∥∥
L2(Rn

v )

}

≤ C
{
(N/ρ)

σ ‖H‖Hκ(Rn
v )

+ (N/ρ)
κ+σ ‖H‖L2(Rn

v )

}
.

This implies (3.6) for general κ, 1 ≤ κ ≤ n+2, and thus (3.3) follows. The inequality
(3.4) can be handled quite similarly. Thus the proof of Lemma 3.2 is complete.

�

4. Gevrey regularity of linear operators

In this section, we prove the Gevrey hypoellipticity of P . We will follow the idea
of M.Durand [10]. We consider the following linear equation

(4.1) Pu = ∂tu+ v · ∂xu+ a(t, x, v)(−△̃v)
σu = f, (t, x, v) ∈ R× R

n × R
n,

where 0 < σ < 1. From Theorem 2.4, any weak solution of the above equation is
in C∞(R2n+1) if f ∈ C∞(R2n+1) . Hence, we start from a C∞ solution, and prove
the Gevrey hypoellipticity in the following proposition, where Ω and W = 2Ω are
open domains of R2n+1 defined in the section 3.

Proposition 4.1. Set δ = max
{

σ
4 ,

σ
2 − 1

6

}
and let s ≥ 2

δ . Suppose the coefficient

a(t, x, v) ∈ Gs(Ω̄), a > 0, and u ∈ C∞(W̄ ) be such that Pu = f ∈ Gs(Ω̄). Then
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there exits a constant L such that for any r ∈ [0, 1] and any N ∈ N, N ≥ 4,

(E)r,N
‖Φρ,ND

αu‖r+n+1 + ‖Φρ,N Λ̃σDαu‖r− δ
2+n+1

≤ L|α|−1

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s (N
ρ

)sr

holds for any α ∈ N
2n+1, |α| = N and any 0 < ρ < 1. Here and in the sequel we

denote Λ̃σ = Λ̃σ
v = (−△̃v)

σ
2 for simplification.

Remark 4.1. Here the Gevrey constant L of u is determined by the Gevrey con-
stantsBa andBf of the functions a, f ∈ Gs(Ω̄), and depends only on s, σ, n, ‖u‖Hn+6(W )

and ‖a‖C2n+2(Ω) . This can be seen in the proof of Lemma 4.3, Lemma 4.4 and

Lemma 4.5. .

As an immediate consequence of the above proposition, we have

Proposition 4.2. Under the same assumption as in Proposition 4.1, we have u ∈
Gs(Ω).

Indeed, for any compact subset K of Ω, we have K ⊂ Ωρ0 for some ρ0, 0 < ρ0 <
1. Then for any α ∈ N

2n+1, |α| = N ≥ 4, (E)0,N gives

‖Dαu‖L2(K) ≤ ‖Φρ0,ND
αu‖n+1 ≤

L|α|−1

ρ0
(s+n)(|α|−3)

(
(|α| − 3)!

)s
≤
(

L
ρ0

s+n

)|α|
(|α|!)s.

Taking CK = L
ρ0

s+n + ‖u‖C4(K) , then for all α,

‖Dαu‖L2(K) ≤ C
|α|+1
K (|α|!)s.

The conclusion of Proposition 4.2 follows.

Proof of Proposition 4.1. We prove the esitimate (E)r,N by induction on N .
In the proof, we use Cn to denote constants which depend only on n, which may
be different in different contexts. Let Φ be an arbitrary fixed function compactly
supported inW such that Φ = 1 in Ω. First, we prove the first step of the induction
for N = 4. For all |α| = 4, we use (3.2) in Lemma 3.1 to compute

‖Φρ,3D
αu‖r+n+1 + ‖Φρ,3Λ̃

σDαu‖r− δ
2+n+1

≤ Cn

(
3

ρ

)n+2 {
‖ΦDαu‖r+n+1 + ‖ΦΛ̃σDαu‖r− δ

2+n+1

}
,

On the other hand , since |α| = 4,

‖ΦDαu‖r+n+1 + ‖ΦΛ̃σDαu‖r− δ
2+n+1 ≤ Cn‖u‖Hn+6(W ).

The term on the left side is bounded by the smoothness of u. Combing these, we
obtain

(E)r,4 ‖Φρ,3D
αu‖r+n+1 + ‖Φρ,3Λ̃

σDαu‖r− δ
2+n+1 ≤

Cn‖u‖Hn+6(W )

ρ(n+2)
≤

L3
0

ρs+n
.

Thus (E)r,4 is true if we take L ≥ Cn‖u‖Hn+6(W ) + 1. Let now N > 4 and assume
that (E)r,N−1 holds for any r ∈ [0, 1]. We need to show (E)r,N still holds with a
constant L independents of N or r ∈ [0, 1]. We denote

‖Dju‖r =
∑

|γ|=j

‖Dγu‖r.
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In the following discussion, we fix N. For each 0 < ρ < 1, define ρ̃ = N−1
N ρ, ˜̃ρ =

N−2
N ρ. Let Φρ,N be the cutoff function constructed in the previous section which

satisfies the property (3.1). The following fact will be used frequently, for k =
1, 2, · · · , N with N ≥ 4,

(4.2)
1

ρ(s+n)k
≤

1

ρ̃(s+n)k
≤

1

˜̃ρ
(s+n)k

=
1

ρ(s+n)k
×
( N

N − 2

)(s+n)k
≤

36s+n

ρ(s+n)k
.

We shall proceed to prove the truth of (E)r,N by the following four lemmas.
The first one is a technical lemma, and the second lemma is devoted to the proof
of the truth of (E)r,N for r = 0. In the third one, we prove that (E)r,N holds for

0 ≤ r ≤ δ
2 , and in the last one we prove that (E)r,N holds for all r with 0 ≤ r ≤ 1.

Lemma 4.3. Let s ≥ 3 be a given real number and k ≥ 5 be any given integer.
Assume the estimate (E)0,m holds, i.e.

(4.3) ‖Φρ,mD
γu‖n+1 +

∥∥∥Φρ,mΛ̃σDγu
∥∥∥
− δ

2+n+1
≤

Lm−1

ρ(s+n)(m−3)

(
(m− 3)!

)s

holds for all γ with |γ| = m < k, and all 0 < ρ < 1. Then if L ≥ 4n+3(‖u‖Hn+6(W )+

1), one has, for all β with |β| = k,

(4.4) (k/ρ)n+3
∥∥Φρ,kD

βu
∥∥
0
+ (k/ρ)n+3

∥∥∥Φρ,kΛ̃
σDβu

∥∥∥
0
≤

Lk−2

ρ(s+n)(k−3)

(
(k − 3)!

)s
.

Proof. Without loss of generality, we may assume k > n+ 4, for, otherwise, in the
case when 5 ≤ k ≤ n+ 4, it is obvious that for all β with |β| = k ≤ n+ 4,

(k/ρ)n+3
∥∥Φρ,kD

βu
∥∥
0
+ (k/ρ)n+3

∥∥∥Φρ,kΛ̃
σDβu

∥∥∥
0

≤ (1/ρ)(s+n)(k−3)2(n+3)k ‖u‖Hn+6(W ) .

Then the desired inequality (4.4) follows if L ≥ 4n+3
(
‖u‖Hn+6(W ) + 1

)
.

Now for all β, |β| = k > n + 4, we can find a multi-index β̃ ≤ β such that

|β̃| = n + 1. First we treat (k/ρ)n+3
∥∥Φρ,kD

βu
∥∥
0
. Since Φ (k−1)ρ

k
,k−n−1

= 1 in

SuppΦρ,k, then the following relation is clear:

∥∥Φρ,kD
βu
∥∥
0
=
∥∥∥Φρ,kD

β̃Φ (k−1)ρ
k

,k−n−1
Dβ−β̃u

∥∥∥
0
≤
∥∥∥Φ (k−1)ρ

k
,k−n−1

Dβ−β̃u
∥∥∥
n+1

.

Observe
∣∣∣β − β̃

∣∣∣ = k − n − 1, then we use the above relation and the assumption

(4.3) to compute, for L ≥ 4n+3
(
‖u‖Hn+6(W ) + 1

)
,

(k/ρ)n+3
∥∥Φρ,kD

βu
∥∥
0
≤ (k/ρ)n+3

∥∥∥Φ (k−1)ρ
k

,k−n−1
Dβ−β̃u

∥∥∥
n+1

≤ (k/ρ)n+3 Lk−n−2

ρ(s+n)(k−n−4)

(
(k − n− 4)!

)s

≤
5(n/L)nLk−2

ρ(s+n)(k−3)

(
(k − 3)!

)s

≤
1

2

Lk−2

ρ(s+n)(k−3)

(
(k − 3)!

)s
.
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In the same way, we can get the estimate on the term (k/ρ)n+3
∥∥∥Φρ,kΛ̃

σDβu
∥∥∥
0
,

that is,

(k/ρ)n+3
∥∥∥Φρ,kΛ̃

σDβu
∥∥∥
0
≤

1

2

Lk−2

ρ(s+n)(k−3)

(
(k − 3)!

)s
.

Thus by the above two inequalities, we get the desired inequality (4.4). This com-
pletes the proof. �

Lemma 4.4. Assume that (E)r,N−1 is true for any r ∈ [0, 1]. Then there exists a
constant C1, depending only on the Gevrey index s and the dimension n, such that,

if L ≥ 4n+3
(
‖u‖Hn+6(W ) + 1

)
,

(4.5) ‖Φρ,ND
αu‖n+1 + ‖Φρ,N Λ̃σDαu‖− δ

2+n+1 ≤
C1L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s

for any α ∈ N
2n+1, |α| = N, and any 0 < ρ < 1.

Remark 4.2. In fact, this is (E)r,N for r = 0 if we choose L such that L ≥ C1

and L ≥ 4n+3
(
‖u‖Hn+6(W ) + 1

)
.

Proof. We choose a multi-index β with |α| = |β| + 1. Then |β| = N − 1. Recall
ρ̃ = N−1

N ρ. By the construction, Φρ̃,N−1 = 1 in SuppΦρ,N . Thus

‖Φρ,ND
αu‖n+1 ≤ ‖Φρ,ND

βu‖1+n+1 + ‖(DΦρ,N )Dβu‖n+1

≤ ‖Φρ,NΦρ̃,N−1D
βu‖1+n+1 + ‖(DΦρ,N )Φρ̃,N−1D

βu‖n+1

≤ Cn

{
‖Φρ̃,N−1D

βu‖1+n+1 + (N/ρ)‖Φρ̃,N−1D
βu‖n+1 + (N/ρ)n+2‖Φρ̃,N−1D

βu‖0
}
,

In the last inequality, we have used Lemma 3.1. For the third term on the right-hand
side, we use Lemma 4.3 with k = N − 1 to obtain

(N/ρ)n+2‖Φρ̃,N−1D
βu‖0 =

N − 1

ρ̃

{(
N − 1

ρ̃

)n+2

‖Φρ̃,N−1D
βu‖0

}

≤
N − 1

ρ̃

{(
N − 1

ρ̃

)n+3

‖Φρ̃,N−1D
βu‖0

}

≤
N − 1

ρ̃

LN−3

ρ̃(s+n)(N−4)

(
(N − 4)!

)s

≤
2L|α|−2

ρ̃(s+n)(|α|−3)

(
(|α| − 3)!

)s
.

Applying the relation (4.2), we get

(N/ρ)n+2‖Φρ̃,N−1D
βu‖0 ≤

20s+nL|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
.
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On the other hand, by the induction assumption that (E)r,N−1 holds for any r
with 0 ≤ r ≤ 1, we have immediately

‖Φρ̃,N−1D
βu‖1+n+1 + (N/ρ)‖Φρ̃,N−1D

βu‖n+1

≤
L|β|−1

ρ̃(s+n)(|β|−3)

(
(|β| − 3)!

)s
(N/ρ̃)s + (N/ρ)

L|β|−1

ρ̃(s+n)(|β|−3)

(
(|β| − 3)!

)s

≤
2L|α|−2

ρ̃(s+n)(|α|−3)

(
(|α| − 3)!

)s(
N/(N − 3)

)s

≤
30s+nL|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
.

Thus

‖Φρ,ND
αu‖n+1 ≤

30s+nCnL
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
.

By exactly the same calculation, we obtain

‖Φρ,N Λ̃σDαu‖− δ
2+n+1 ≤

30s+nCnL
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
.

Taking C1 = 60s+nCn with Cn being the constant appearing in Lemma 3.1, we
obtain (4.5). This completes the proof of Lemma 4.4.

�

Lemma 4.5. Assume that (E)r,N−1 is true for any r ∈ [0, 1]. Then there exists
a constant C2, depending only on σ, the Gevrey index s, the dimension n and
‖u‖Hn+6(W ) , ‖a‖Cn+2(Ω̄) , such that for any 0 ≤ r ≤ δ

2 , if

L ≥ max
{
2s+1Ba, Bf , 4

n+3
(
‖u‖Hn+6(W ) + 1

)}

with Ba, Bf being the Gevrey constants of a, f ∈ Gs(Ω̄), we have that
(4.6)

‖Φρ,ND
αu‖r+n+1 + ‖Φρ,N Λ̃σDαu‖r− δ

2+n+1 ≤
C2L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)rs,

for any α ∈ N
2n+1, |α| = N .

Remark 4.3. The assumption that L ≥ 2s+1Ba will be needed in Step 2 of the
following proof of this lemma, while that L ≥ Bf will be required in Step 3. That

L ≥ 4n+3
(
‖u‖Hn+6(W ) + 1

)
is required because in the sequel we will use frequently

the conclusion of Lemma 4.3 where such a assumption is presented.

Proof. In this proof, we shall use C̃j , j ≥ 0, to denote different constants which
are greater than 1 and depend only on s, σ, n, ‖u‖Hn+6(W ) and ‖a‖C2n+2(Ω) . The

conclusion will follow if we prove that

(4.7) ‖Φρ,ND
αu‖ δ

2+n+1 + ‖Φρ,N Λ̃σDαu‖n+1 ≤
C̃0L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Indeed, from (4.7) we know that (4.6) is true for r = δ
2 . The truth of (4.6) for the

general r, 0 ≤ r ≤ δ
2 , follows from the interpolation inequality (2.2) and Lemma

4.4.
To prove (4.7), we shall proceed in the following four steps.
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Step 1. In this step we prove

(4.8) ‖a[Λ̃2σ, Φρ,ND
α]u‖− δ

2+n+1 ≤
C̃1L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Recall Φρ,N (t, x, v) = ψρ,N (t, x)ϕρ,N (v) with ψρ,N , ϕρ,N being the cut-off func-
tions constructed in Section 3. First, notice that ψρ̃,N = 1 in the support of ψρ,N ,
and ϕρ̃,N = 1 in the support of ϕρ,N . It then follows that

‖a[Λ̃2σ, Φρ,ND
α]u‖− δ

2+n+1 = ‖a[Λ̃2σ, ϕρ,N ]ψρ,ND
αu‖− δ

2+n+1

≤ Ca

{
‖[Λ̃σ, ϕρ,N ]ψρ,N Λ̃σDαu‖− δ

2+n+1 + ‖[Λ̃σ, [Λ̃σ, ϕρ,N ] ]ψρ,ND
αu‖− δ

2+n+1

}

≤ Ca

{
‖[Λ̃σ, ϕρ,N ]ψρ,N ψρ̃,N ϕρ̃,N Λ̃σDαu‖− δ

2+n+1

+ ‖[Λ̃σ, [Λ̃σ, ϕρ,N ] ]ψρ,N ψρ̃,N ϕρ̃,ND
αu‖− δ

2+n+1

}

= Ca

{
‖[Λ̃σ, ϕρ,N ]ψρ,NΦρ̃,N Λ̃σDαu‖− δ

2+n+1

+ ‖[Λ̃σ, [Λ̃σ, ϕρ,N ] ]ψρ,NΦρ̃,ND
αu‖− δ

2+n+1

}

=: (S1) + (S2),

where Ca is a constants depending only on the coefficient a through ‖a‖Cn+2(Ω̄) .

To estimate the term (S1), we apply the inequality (3.3) in Lemma 3.2 and then
(3.2) in Lemma 3.1. This gives

(S1) ≤ CaCσ,n

{
(N/ρ)

σ
∥∥∥ψρ,NΦρ̃,N Λ̃σDαu

∥∥∥
− δ

2+n+1

+ (N/ρ)
n+1− δ

2+σ
∥∥∥ψρ,NΦρ̃,N Λ̃σDαu

∥∥∥
0

}

≤ CaCσ,n

{
(N/ρ)σ

∥∥∥Φρ̃,N Λ̃σDαu
∥∥∥
− δ

2+n+1
+ (N/ρ)n+1− δ

2+σ
∥∥∥Φρ̃,N Λ̃σDαu

∥∥∥
0

}

=: (S1)
′

+ (S1)
′′

.

First, the estimate (4.5) in Lemma 4.4 yields

(S1)
′ ≤ CaCσ,nC1

(
N

ρ

)σ
L|α|−2

ρ̃(s+n)(|α|−3)

(
(|α| − 3)!

)s

≤
C̃2L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(
N

ρ

) sδ
2

.

In the last inequality, we used the fact sδ
2 ≥ 1 > σ. Next, we treat (S1)

′′

. By virtue
of the induction assumption, the required condition (4.3) in Lemma 4.3 is satisfied
with k = N . It thus follows from (4.4) that

(S1)
′′

≤ CaCσ,n

(
N

ρ

)σ
L|α|−2

ρ̃(s+n)(|α|−3)

(
(|α| − 3)!

)s

≤
C̃2L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(
N

ρ

) sδ
2

.

Thus

(S1) ≤
C̃3L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(
N

ρ

) sδ
2

.
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Now it remain to treat the term (S2). By the similar arguments as above, the
inequality (3.4) in Lemma 3.2 gives

(S2) ≤ C̃4 (N/ρ)
2σ ‖Φρ̃,ND

αu‖− δ
2+n+1 + C̃4 (N/ρ)

n+1− δ
2+2σ ‖Φρ̃,ND

αu‖0 := N1 +N2.

We first estimate N1. Choose a multi-index β with |α| = |β|+ 1. Then the similar
arguments as the proof of Lemma 4.4 give

‖Φρ̃,ND
αu‖− δ

2+n+1 ≤ Cn

{
‖Φ ˜̃ρ,N−1D

βu‖(1− δ
2 )+n+1

+ (N/ρ)‖Φ ˜̃ρ,N−1D
βu‖− δ

2+n+1 + (N/ρ)n+2− δ
2 ‖Φ ˜̃ρ,N−1D

βu‖0
}
.

We recall ˜̃ρ = (N−2)ρ
N . By the interpolation inequality (2.2),

(N/ρ)‖Φ ˜̃ρ,N−1D
βu‖− δ

2+n+1 ≤ ‖Φ ˜̃ρ,N−1D
βu‖(1− δ

2 )+n+1 +

(
N

ρ

)n+2− δ
2

‖Φ ˜̃ρ,N−1D
βu‖0

}
.

Therefore

‖Φρ̃,ND
αu‖− δ

2+n+1 ≤ Cn

{
‖Φ ˜̃ρ,N−1D

βu‖(1− δ
2 )+n+1 + (N/ρ)n+2− δ

2 ‖Φ ˜̃ρ,N−1D
βu‖0

}

Hence N1 ≤ N1,1 +N1,2 with N1,1, N1,2 given by

N1,1 = C̃5

(
N

ρ

)2σ

‖Φ ˜̃ρ,N−1D
βu‖(1− δ

2 )+n+1, N1,2 = C̃5

(
N

ρ

)n+2− δ
2+2σ

‖Φ ˜̃ρ,N−1D
βu‖0.

Since (E)r,N−1 holds for all r ∈ [0, 1], then it follows that

N1,1 ≤ C̃5

(
N

ρ

)2σ
L|α|−2

˜̃ρ(s+n)(|α|−4)

(
(|α| − 4)!

)s
(
N − 1

˜̃ρ

)s(1− δ
2 )

≤ C̃6

(
N

ρ

)2σ− sδ
2 L|α|−2

ρ(s+n)(|α|−4)

(
(|α| − 4)!

)s
(
N − 3

ρ

)s

≤ C̃6

(
N

ρ

) sδ
2 L|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
.

In the last inequality, we used again the fact sδ
2 ≥ σ. For the term N1,2, we use

Lemma 4.3 with k = N − 1. This gives

N1,2 ≤ C̃5

(
N − 2

˜̃ρ

)n+2− δ
2+2σ (

N − 1
˜̃ρ

)−(n+3)
{(

N − 1
˜̃ρ

)(n+3)

‖Φ ˜̃ρ,N−1D
βu‖0

}

≤ C̃5

(
N − 1

˜̃ρ

)−1− δ
2+2σ

LN−3

˜̃ρ(s+n)(N−4)

(
(N − 4)!

)s
.

Since −1− δ
2 + 2σ < s, then it follows from the above inequality that

N1,2 ≤
C̃7L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
.

With the estimate on N1,1, one has

N1 = N1,2 +N1,2 ≤
C̃8L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(
N

ρ

) sδ
2

.
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In the following, we treat N2 = C̃4 (N/ρ)
n+1− δ

2+2σ ‖Φρ̃,ND
αu‖0 . Using Lemma

4.3 with k = N, we get

N2 ≤ C̃4

(
N

ρ

)n+2− δ
2+2σ (

N

ρ̃

)−(n+3)
{(

N

ρ̃

)(n+3)

‖Φρ̃,ND
αu‖0

}

≤ C̃4

(
N

ρ̃

)σ
L|α|−2

ρ̃(s+n)(|α|−3)

(
(|α| − 3)!

)s

≤
C̃9L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(
N

ρ

) sδ
2

.

Thus,

(S2) = N1 +N2 ≤
C̃10L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(
N

ρ

) sδ
2

.

With the estimate on (S1), we get the desired inequality (4.8). This completes the
proof of Step 1.

Step 2. In this step, we prove

(4.9) ‖[P , Φρ,ND
α]u‖− δ

2+n+1 ≤
C̃11L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Recall P = X0+aΛ̃
2σ with X0 = ∂t+v ·∂x. Then a direct computation deduces

that

‖[P , Φρ,ND
α]u‖− δ

2+n+1 ≤ ‖[X0, Φρ,ND
α]u‖− δ

2+n+1 + ‖a[Λ̃2σ, Φρ,ND
α]u‖− δ

2+n+1

+‖Φρ,N [a, Dα]Λ̃2σu‖− δ
2+n+1

=: (I) + (II) + (III).

We have already handled the second term in Step 1. It remains to treat the first
term (I) and the third term (III).

Observe that [X0, D
α] equals to 0 or Dα0 for some α0 with |α0| ≤ |α|. A direct

verification yields

(I) ≤ ‖[X0, Φρ,N ]Dαu‖n+1 + ‖Φρ,ND
α0u‖n+1

≤ ‖(DΦρ,N )Φρ̃,ND
αu‖n+1 + ‖Φρ,ND

α0u‖n+1

≤ Cn

{
(N/ρ)‖Φρ̃,ND

αu‖n+1 + (N/ρ)n+2‖Φρ̃,ND
αu‖0 + ‖Φρ,ND

α0u‖n+1

}
.

For the first term and the third term on the right-hand side, using (4.5) in Lemma
4.4, and noting that sδ

2 ≥ 1, we obtain

Cn

{
(N/ρ)‖Φρ̃,ND

αu‖n+1 + ‖Φρ,ND
α0u‖n+1

}

≤ Cn

(
N/ρ+ 1

) C1L
|α|−2

ρ̃(s+n)(|α|−3)

(
(|α| − 3)!

)s

≤
C̃12L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .



20 H. CHEN, W.-X. LI, AND C.-J. XU

On the other hand, we use Lemma 4.3 with k = N to get

Cn(N/ρ)
n+2‖Φρ̃,ND

αu‖0 ≤
C̃13L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Thus

(I) ≤
C̃14L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Now it remains to eatimate (III). The Leibniz’ formula yields

(III) ≤
∑

0<|γ|≤|α|

Cγ
α

∥∥Φρ,N (Dγa)Λ̃2σDα−γu
∥∥
− δ

2+n+1

≤ Cn

∑

0<|γ|≤|α|

Cγ
α ‖Dγa‖Cn+2(Ω̄) · ‖Φρ,N Λ̃2σDα−γu

∥∥
− δ

2+n+1
,

(4.10)

where Cγ
α = α!

γ!(α−γ)! are the binomial coefficients. Since a ∈ Gs(Ω̄), letting Ba be

the Gevrey constant of Gevrey function a on Ω̄, we have
(4.11)

‖Dγa‖Cn+2(Ω̄) ≤ B|γ|−1
a

(
(|γ| − 2)!

)s
if |γ| ≥ 2, ‖Dγa‖Cn+2(Ω̄) ≤ Ba if |γ| = 0, 1.

On the other hand, observe that

‖Φρ,N Λ̃2σDα−γu‖− δ
2+n+1 ≤‖[Λ̃σ, Φρ,N ]Λ̃σDα−γu‖− δ

2+n+1

+ ‖Φρ,N Λ̃σDα−γu‖(σ− δ
2 )+n+1.

We have handled in Step 1 the first term on the right hand. This gives

‖[Λ̃σ, Φρ,N ]Λ̃σDα−γu‖− δ
2+n+1 ≤

C̃15L
|α|−|γ|−2

ρ(s+n)(|α|−|γ|−3)

(
(|α| − |γ| − 3)!

)s
(N/ρ)

sδ
2 .

For the second term, note that |α| − |γ| ≤ N − 1 for γ 6= 0. We use the induction
hypothesis that (E)r,N−1 holds for all r ∈ [0, 1], to get, for γ, 0 < |γ| ≤ |α|− 3, that

‖Φρ,N Λ̃σDα−γu‖(σ− δ
2 )+n+1 ≤

L|α|−|γ|−1

ρ(s+n)(|α|−|γ|−3)

(
(|α| − |γ| − 3)!

)s
(N/ρ)s(σ−

δ
2 ).

Observe that

(N/ρ)s(σ−
δ
2 ) ≤ (N/ρ)s ≤

2s(N − |γ| − 2)s + 2s(|γ|+ 2)s

ρs

≤ 16s(2s)|γ|−1(N − |γ| − 2)sρ−s,

Thus for γ with 0 < |γ| ≤ |α| − 3 = N − 3, we have

‖Φρ,N Λ̃σDα−γu‖(σ− δ
2 )+n+1 ≤

16s(2s)|γ|−1L|α|−|γ|−1

ρ(s+n)(|α|−|γ|−2)

(
(|α| − |γ| − 2)!

)s
.

Note that the above inequality still holds for γ with |γ| = |α| − 2 if we take L ≥

4n+1
(
‖u‖Hn+6(W ) + 1

)
. Consequently, we combine these inequalities to obtain, for

0 < |γ| ≤ |α| − 2,

‖Φρ,N Λ̃2σDα−γu‖− δ
2+n+1 ≤

C̃16(2
s)|γ|−1L|α|−|γ|−1

ρ(s+n)(|α|−|γ|−2)

(
(|α| − |γ| − 2)!

)s
(N/ρ)

sδ
2 .
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This together with (4.11) yields
∑

2≤|γ|≤|α|−2

Cγ
α ‖Dγa‖Cn+2(Ω̄) ·

∥∥∥Φρ,N Λ̃2σDα−γu
∥∥∥
− δ

2+n+1

≤

(
N

ρ

) sδ
2 ∑

2≤|γ|≤|α|−2

|α|!

|β|!(|α| − |β|)!
(2sBa)

|γ|−1
(
(|γ| − 2)!

)s

×
C̃16L

|α|−|γ|

ρ(s+n)(|α|−|γ|−2)

(
(|α| − |γ| − 2)!

)s

≤
C̃16L

|α|−2

ρ(s+n)(|α|−3)
(N/ρ)

sδ
2

∑

2≤|γ|≤|α|−2

(
2sBa

L

)|γ|−1

|α|!
(
(|α| − 4)!

)s−1

≤
C̃16L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2

∑

2≤|γ|≤|α|−2

(
2sBa

L

)|γ|−1
|α|3

(|α| − 3)s−1
.

Observe that s − 1 ≥ 3 and thus the series in the last inequality is bounded from
above by a constant depending only on n if we take L > 2s+1Ba. Then we get

∑

2≤|γ|≤|α|−2

Cγ
α ‖Dγa‖Cn+2(Ω̄) ·

∥∥∥Φρ,N Λ̃2σDα−γu
∥∥∥
− δ

2+n+1

≤
C̃17L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

For |γ| = 1, |α| − 1 or |α|, we can compute directly
∑

|γ|=1,|α|−1,|α|

Cγ
α ‖Dγa‖Cn+2(Ω̄) ·

∥∥∥Φρ,N Λ̃2σDα−γu
∥∥∥
− δ

2+n+1

≤
C̃18L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Combination of the above two inequalities and (4.10) gives that

(III) ≤
C̃19L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Consequently, the desired inequality (4.9) follows. This completes the proof of Step
2.

Step 3. In this step, we prove that if Pu = f ∈ Gs(Ω̄) and if L ≥ B̃ with B̃ the
Gevrey constant of f,

(4.12) ‖PΦρ,ND
αu‖− δ

2+n+1 ≤
C̃20L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Indeed, observe that

‖PΦρ,ND
αu‖− δ

2+n+1 ≤ ‖[P , Φρ,ND
α]u‖− δ

2+n+1 + ‖Φρ,ND
αPu‖− δ

2+n+1.

Since Pu = f ∈ Gs(Ω̄), then ‖DγPf‖Hn+2(Ω) ≤ B̃ if |γ| < n+ 5, and

‖DγPf‖Hn+2(Ω) ≤ B̃|γ|−2 ((|γ| − n− 5)!)s , if |γ| ≥ n+ 5.
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Hence,

‖Φρ,ND
αPu‖− δ

2+n+1 ≤ Cn(N/ρ)
n+2 ‖DαPf‖Hn+2(Ω) ≤

C̃21B̃
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
.

We take L such that L > B̃. Then the above inequality together with (4.9) in Step
2 yields immediately the inequality (4.12).

Step 4. In the last step we show (4.7). And hence the proof of Lemma 4.5 will
be complete.

First we apply the subelliptic estimate (2.4), which is needed only here, to get

‖Φρ,ND
αu‖ δ

2+n+1 ≤ C(Ω)
{
‖PΦρ,ND

αu‖− δ
2+n+1 + ‖Φρ,ND

αu‖n+1

}

with C(Ω) a constant depending only on the set Ω. Combining Lemma 4.4 with
(4.12) in Step 3, we have

‖Φρ,ND
αu‖ δ

2+n+1 ≤
C̃22L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .(4.13)

Next, we prove

(4.14) ‖Φρ,N Λ̃σDαu‖ δ
2−

δ
2+n+1 ≤

C̃23L
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Observe that

‖Φρ,N Λ̃σDαu‖ δ
2−

δ
2+n+1 ≤ ‖[Λ̃σ, Φρ,N ]Dαu‖n+1 + ‖Λ̃σΦρ,ND

αu‖n+1.

By the same method as that in Step 1, we get the estimate on the first term of the
right side, that is,

‖[Λ̃σ, Φρ,N ]Dαu‖n+1 ≤
C̃24L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

Then it remains to estimate the second term. A direct calculation gives that

‖Λ̃σΦρ,ND
αu‖2n+1

= Re
(
PΦρ,ND

αu, a−1Λ2n+2Φρ,ND
αu
)
− Re

(
X̃0Φρ,ND

αu, a−1Λ2n+2Φρ,ND
αu
)

= Re
(
PΦρ,ND

αu, a−1Λ2n+2Φρ,ND
αu
)
−

1

2

(
Φρ,ND

αu, [Λ2n+2, a−1]X̃0Φρ,ND
αu
)

−
1

2

(
Φρ,ND

αu, [a−1Λ2n+2, X̃0]Φρ,ND
αu
)

≤ C̃25

{
‖PΦρ,ND

αu‖2
− δ

2+n+1
+ ‖Φρ,ND

αu‖2δ
2+n+1

}
.

This along with (4.12) and (4.13) shows at once

∥∥∥Λ̃σΦρ,ND
αu
∥∥∥
n+1

≤
C̃26L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

and hence (4.14) follows if we choose C̃23 = C̃24 + C̃26. Now by (4.13) and (4.14),

we obtain the desired inequality (4.7) if we choose C̃0 = C̃22 + C̃23. This completes
the proof of Step 4.

�

In quite the similar way as that in the proof of Lemma 4.5, we can prove by
induction the following
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Lemma 4.6. Assume that (E)r,N−1 is true for any r ∈ [0, 1], then there exists a
constant C3, depending only on σ, s, n, ‖u‖Hn+6(W ) and ‖a‖C2n+2(Ω) , such that for

any r ∈ [ δ2 , δ], if L ≥ max
{
2s+1Ba, Bf , 4

n+3
(
‖u‖Hn+6(W ) + 1

)}
, we have, for

all α, |α| = N,

‖Φρ,ND
αu‖r+n+1 + ‖Φρ,N Λ̃σDαu‖r− δ

2+n+1 ≤
C3L

|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)sr.

Inductively, For any m ∈ N such that mδ
2 < 1 + δ

2 , the above inequality still holds

for any r with (m−1)δ
2 ≤ r ≤ mδ

2 , and hence for all r with 0 ≤ r ≤ 1.

Proof. Since the arguments are quite similar as that in the previous lemma, we
only present here a sketch of the proof. Assuming (E)mδ

2 ,N with m ≥ 0 is valid,

that is, for any α, |α| = N,

‖Φρ,ND
αu‖mδ

2 +n+1+‖Φρ,N Λ̃σDαu‖ (m−1)δ
2 +n+1

≤
C2L

|α|−2

ρ(s+n)(|α|−3)

(
(|α|−3)!

)s
(N/ρ)

smδ
2 ,

we need to show the validity of (E) (m+1)δ
2 ,N

, and the validity of (E)r,N for r ∈

[mδ
2 ,

(m+1)δ
2 ] can be obtained by using interpolation inequality (2.2). To get the

truth of (E) (m+1)δ
2 ,N

, it suffices to prove

(4.15) ‖Φρ,ND
αu‖ (m+1)δ

2 +n+1
≤

C̃27L
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

s(m+1)δ
2

and

(4.16) ‖Φρ,N Λ̃σDαu‖mδ
2 +n+1 ≤

C̃28L
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

s(m+1)δ
2 .

First, we repeat the procedure in which (4.9) is deduced from the validity of (E)0,N ,
then we use the estimate of (E)mδ

2 ,N to get

‖[P , Φρ,ND
α]u‖ (m−1)δ

2 +n+1
≤

C̃29L
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

s(m+1)δ
2 .

Similar to the arguments as (4.12) to get

(4.17) ‖PΦρ,ND
αu‖ (m−1)δ

2 +n+1
≤

C̃30L
|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

s(m+1)δ
2 .

This together with the subelliptic estimate

‖Φρ,ND
αu‖ (m+1)δ

2 +n+1
≤ C(Ω)

{
‖PΦρ,ND

αu‖ (m−1)δ
2 +n+1

+ ‖Φρ,ND
αu‖n+1

}
,

yields the required estimate (4.15). Moreover we can deduce that

‖Φρ,N Λ̃σDαu‖mδ
2 +n+1 ≤ C̃31

{
‖PΦρ,ND

αu‖ (m−1)δ
2 +n+1

+ ‖Φρ,ND
αu‖ (m+1)δ

2 +n+1

}
.

In fact we have shown that the above inequality for m = 0 in Step 4 of the proof of
Lemma 4.5, and the validity of the above inequality for general m can be deduced
similarly without any additional difficulty. Consequently, the required estimate
(4.16) follows from (4.17) and (4.15). Thus the proof of Lemma 4.6 is completed. �
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Recall that the constants C1, C2, C3 in Lemma 4.4, Lemma 4.5 and Lemma 4.6
depend only on s, σ, n, ‖u‖Hn+6(W ) and ‖a‖C2n+2(Ω). Now take L in such a way

that L > max
{
C1, C2, C3, 2

s+1Ba, Bf , 4
n+3(‖u‖Hn+6(W ) + 1)

}
. Then by the

above three Lemmas, we get the truth of (E)r,N for any r ∈ [0, 1]. This complete
the proof of Proposition 4.1.

5. Gevrey regularity of nonlinear equation

In this section, Cj , j ≥ 4, will be used to denote suitable constants depending
only on σ, the Gevrey index s, the dimension n and the Gevrey constants of the
functions a, F . The existence and the Sobolev regularity of weak solutions for non-
linear Cauchy problems was proved in [15]. Now let u ∈ L∞

loc(R
2n+1) be a weak

solution of (1.3). We first prove u ∈ C∞(R2n+1), and we need the following stability
results by nonlinear composition (see for example [22]).

Lemma 5.1. Let F (t, x, v, q) ∈ C∞(R2n+1 × R) and r ≥ 0. If u ∈ L∞
loc(R

2n+1) ∩
Hr

loc(R
2n+1), then F (·, u(·)) ∈ Hr

loc(R
2n+1).

In fact, if u1, u2 ∈ Hr(R2n+1) ∩ L∞(R2n+1), then

‖u1u2‖r ≤ Cn{‖u1‖L∞‖u2‖r + ‖u2‖L∞‖u1‖r}.

Thus if r > (2n+ 1)/2, the Sobolev embedding theorem implies that

(5.1) ‖u1u2‖r ≤ C‖u1‖r‖u2‖r.

Suppose that u ∈ L∞
loc(R

2n+1) is a weak solution of (1.3). Then by the subelliptic
estimate (2.4), one has

‖ψ1u‖r+δ ≤ C{ ‖ψ2F (·, u(·))‖r + ‖ψ2u‖r },(5.2)

where ψ1, ψ2 ∈ C∞
0 (R2n+1) and ψ2 = 1 in the support of ψ1. Combining Lemma

5.1 and the above subelliptic estimate (5.2), we have u ∈ H∞
loc(R

2n+1) by standard
iteration. We state this result in the following Proposition:

Proposition 5.2. Let u ∈ L∞
loc(R

2n+1) be a weak solution of (1.3). Then u ∈
C∞(R2n+1).

In this section we keep the same notations that we have set up in the previous
sections. We prove the Gevrey regularity of the smooth solution u of Equation (1.3)

on Ω. Set W = 2Ω =
{
(t, x);

(
t2 + |x|2

)1/2
< 2
}
× {v ∈ R

n, |v| < 2} and

M = max
(t,x,v)∈W̄

|u(t, x, v)|.

Let {Mj} be a sequence of positive coefficients. We say that it satisfies the mono-
tonicity condition if there exists B0 > 0 such that for any j ∈ N,

(5.3)
j!

i!(j − i)!
MiMj−i ≤ B0Mj , (i = 1, 2, · · · , j).

Let ‖u‖Ck(Ω) be the classic Hörder norm, that is, ‖u‖Ck(Ω) =
∑k

j=0

∥∥Dju
∥∥
L∞(Ω)

.

We study now the stability of the Gevrey regularity by the non linear composi-
tion, which is an analogue of Lemma 1 in Friedman’s work [11].
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Lemma 5.3. Let N > n + 2 and 0 < ρ < 1 be given. Let {Mj} be a positive
sequence satisfying the monotonicity condition (5.3) and that for some constant Cn
depending only on n,

(5.4)

(
N

ρ

)n+2

MN−n−2 ≤ CnMN−2; Mj ≥ ρ−j , j ≥ 2.

Suppose that there exists C4 > 1, depending only on the Gevrey constant of F, such
that:

1) the function F (t, x, v; q) satisfies the following conditions:
∥∥F
∥∥
Cn+2(Ω̄×[−M,M ])

≤

C4 and for any k, l with k + l ≥ 1,

∥∥Dγ
t,x,vD

l
qF
∥∥
Cn+2(Ω̄×[−M,M ])

≤ Ck+l
4 Mk−2Ml−2, ∀ |γ| = k,(5.5)

where we assume M−j = 1 for nonnegative integer j.
2) the smooth function g(t, x, v) satisfies the following conditions: ‖g‖L∞(W̄ ) ≤

M and

‖Djg‖Cn+3(W̄) ≤ H0, 0 ≤ j ≤ 1,(5.6)

and for any 0 < ρ < 1 and any j, 2 ≤ j ≤ N, one has

‖Φρ,jD
γg‖ν+n+1 ≤ Hj−2

1 Mj−2, ∀ |γ| = j,(5.7)

where ν is a real number satisfying −1/2 < ν ≤ 1, and H0, H1 ≥ 1, H1 ≥(
4n+2C4H0

)2
.

Then there exists C5 > 1, depending only the Gevrey constant of F and the
dimension n, such that for all ρ, 0 < ρ < 1, and all α ∈ N

2n+1 with |α| = N ,

∥∥Φρ,ND
α
[
F
(
·, g(·)

)]∥∥
ν+n+1

≤ C5H
2
0H

N−2
1 MN−2.(5.8)

Proof. In the proof, we use Cn to denote constants which depend only on n and
may be different in different contexts. In the following, for each ρ, we always denote

ρ̃ =
(N − 1)ρ

N
, ˜̃ρ =

(N − 2)ρ

N
.

Observe that for ρ, ρ̃, ˜̃ρ, we have the relation (4.2). Since Φρ̃,3 = 1 in the support
of Φρ,N , then by Lemma 3.1, one has

∥∥Φρ,ND
α[F (·, g(·))]

∥∥
ν+n+1

=
∥∥Φρ,NΦρ̃,3D

α[F (·, g(·))]
∥∥
ν+n+1

≤ Cn

{∥∥Φρ̃,3D
α[F (·, g(·))]

∥∥
ν+n+1

+

(
N

ρ

)n+1+ν ∥∥Φρ̃,3D
α[F (·, g(·))]

∥∥
0

}

=: I1 + I2.

The proof will be completed if we can show that there exists a constant E depending
only the Gevrey constant of F and the dimension n, such that

(5.9) I1 ≤ EH2
0H

N−2
1 MN−2.
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Indeed, choose a multi-index α̃ ≤ α such that |α̃| = n. Then

I2 = Cn

(
N

ρ

)n+1+ν ∥∥Φρ̃,3D
α̃Φ ˜̃ρ,3D

α−α̃[F (·, g(·))]
∥∥
0

≤ Cn

(
N

ρ

)n+1+ν ∥∥Φ ˜̃ρ,3D
α−α̃[F (·, g(·))]

∥∥
n

≤ Cn

(
N

ρ

)n+2 ∥∥Φ ˜̃ρ,3D
α−α̃[F (·, g(·))]

∥∥
ν+n+1

.

Assuming that (5.9) holds, then by virtue of the condition (5.4), we have

I2 ≤ Cn

(
N

ρ

)n+2 ∥∥Φ ˜̃ρ,3D
α−α̃[F (·, g(·))]

∥∥
ν+n+1

≤ Cn

(
N

ρ

)n+2

EH2
0H

N−n−2MN−n−2

≤ CnEH
2
0H

N−2MN−2.

With (5.9), the conclusion follows at once.

The rest is devoted to the proof of (5.9). By Faa di Bruno’ formula, Φρ̃,3D
α[F (·, g(·))]

is the linear combination of terms of the form

Φρ̃,3

(
Dβ

t,x,v∂
l
qF
)
(·, g(·)) ·

l∏

j=1

Dγjg,(5.10)

where |β| + l ≤ |α| and γ1 + γ2 + · · · + γl = α − β, and if γi = 0, Dγig doesn’t
appear in (5.10).

Next we estimate the Sobolev norm of the form (5.10). Take a function Ψ ∈
C∞

0 (W ) such that Ψ = 1 in Ω. Note that n + 1 + ν > (2n+ 1)/2. We apply (5.1)
to compute

‖Φρ̃,3

(
Dβ

t,x,v∂
l
qF
)
(·, g(·)) ·

l∏

j=1

Dγjg‖ν+n+1

≤
∥∥Φρ̃,3

(
Dβ

t,x,v∂
l
qF
)
(·, g(·))

∥∥
ν+n+1

·
l∏

j=1

∥∥ΨjD
γjg
∥∥
ν+n+1

,

where Ψj is given by setting Ψj = Ψ if |γj | = 1, and Ψj = Φ ˜̃ρ,|γj |
if |γj | ≥ 2.

Moreover a direct computation yields

∥∥Φρ̃,3

(
Dβ

t,x,v∂
l
qF
)
(·, g(·))

∥∥
ν+n+1

≤
∥∥Φρ̃,3

(
Dβ

t,x,v∂
l
qF
)
(·, g(·))

∥∥
n+2

≤ CnH0

{
sup

∣∣Dn+2Φρ̃,3

∣∣ ·
∥∥Dβ

t,x,v∂
l
qF
∥∥
C(Ω̄×[−M,M ])

+
∥∥Dβ

t,x,v∂
l
qF
∥∥
Cn+2(Ω̄×[−M,M ])

}

≤ CnH0

{(
3

ρ

)n+2 ∥∥Dβ
t,x,v∂

l
qF
∥∥
C(Ω̄×[−M,M ])

+
∥∥Dβ

t,x,v∂
l
qF
∥∥
Cn+2(Ω̄×[−M,M ])

}

In the last inequality, we have used (3.1). Without loss of generality we may assume

|β| ≥ n + 2. Then we may choose β̃ ≤ β such that
∣∣β̃
∣∣ = |β| − (n + 2). Thus by

(5.4), (5.5) and the monotonicity condition (5.3), one has
∥∥Dβ

t,x,v∂
l
qF
∥∥
Cn+2(Ω̄×[−M,M ])

≤M|β|−2Ml−2,
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and
(
3

ρ

)n+2 ∥∥Dβ
t,x,v∂

l
qF
∥∥
C(Ω̄×[−M,M ])

≤

(
3

ρ

)n+2 ∥∥Dβ̃
t,x,v∂

l
qF
∥∥
Cn+2(Ω̄×[−M,M ])

≤ 3n+2Mn+2M|β̃|−2Ml−2

≤ 3n+2M|β|−2Ml−2.

Hence,
∥∥Φρ̃,3

(
Dβ

t,x,v∂
l
qF
)
(·, g(·))

∥∥
ν+n+1

≤ CnH0M|β|−2Ml−2.

Hence
(5.11)

‖Φρ̃,3

(
Dβ

t,x,v∂
l
qF
)
(·, g(·))

l∏

j=1

Dγjg‖ν+n+1 ≤ CnH0M|β|−2Ml−2

l∏

j=1

∥∥ΨjD
γjg
∥∥
ν+n+1

,

By virtue of (5.6)-(5.7) and (5.10)-(5.11), the situation is now similar to [11]. In
fact, we work with the Sobolev norm, and we shall follow the idea of [11] to prove
(5.9). First we define the polynomial functions w, X1, X2 in R as follows:

w = w(y) = H0


y +

N∑

j=2

Hj−2
1 Mj−2y

j

j!


 , y ∈ R;

X1(w) = 1 + C4w +

N∑

j=2

Cj
4Mj−2w

j

j!
;

X2(y) = 1 + C4y +
N∑

j=2

Cj
4Mj−2y

j

j!
, y ∈ R.

By the conditions (5.6) and (5.7), we have

∥∥ΨjD
jg
∥∥
ν+n+1

≤
djw(y)

dyj

∣∣∣
y=0

, ∀ 1 ≤ j ≤ N ;

Define X(y, w) = X1(w)X2(y). Then by virtue of (5.5), it follows

Mk−2Ml−2 ≤
∂k+lX(y, w)

∂yk∂wl

∣∣∣
(y,w)=(0,0)

, ∀ 2 ≤ k, l ≤ N.

By (5.11) and the above two inequalities, we get that for all α, |α| = N,

I1 = Cn

∥∥Φρ̃,3D
α[F (·, g(·))]

∥∥
ν+n+1

≤ CnH0
dN

dyN
X (y, w(y))

∣∣∣
y=0

.

Hence, the proof of (5.9) will be complete if we show that,

(5.12)
dN

dyN
(
X1 (w(y))X2(y)

)∣∣∣
y=0

≤ 72C4H0H
N−2
1 MN−2.

To prove the above inequality, we need to treat X
(k)
j (0) := dk

dykXj(y)
∣∣∣
y=0

, 0 ≤

k ≤ N, j = 1, 2. We say w(y) ≪ h(y) if the following relation holds:

w(j)(0) ≤ h(j)(0), 0 ≤ j ≤ N.
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Observe that

w(y) ≪ w(y) = H0


y +

N∑

j=2

Hj−2
1 Mj−2y

j

j!


 .

We can prove that

(5.13) w2(y) ≪ 35H2
0



y2 +
N∑

j=3

Hj−3
1 Mj−3y

j

(j − 1)!



 .

In fact, a direct verification shows that

w2(y) = H2
0



y

2 +

N∑

j=3

[2Hj−3
1 Mj−3

(j − 1)!
+

j−2∑

i=2

Hj−4
1 Mi−2Mj−i−2

i!(j − i)!

]
yj



+O(yN+1).

Since {Mj} satisfies the monotonicity condition (5.3), we compute

j−2∑

i=2

Hj−4
1 Mi−2Mj−i−2

i!(j − i)!
≤

4Hj−4
1 Mj−4

(j − 4)!j2

j−2∑

i=2

j2

i2(j − i)2
≤

32Hj−3
1 Mj−3

(j − 1)!
.

Combing these, we obtain (5.13). Inductively, we have the following relations:

wi(y) ≪ 35i−1Hi
0


yi +

N∑

j=i+1

Hj−i−1
1 Mj−i−1y

j

(j − i+ 1)!


 , 2 ≤ i ≤ N − 1;

wN (y) ≪ 35NHN
0 y

N .

Thus by the definition of X1, it follows that

X1(y) = X1 (w(y)) ≪ 1 + C4H0y +
(
H0M0/2 + 35C2

4M0H
2
0/2
)
y2

+
N∑

j=3

(
H0H

j−2
1 Mj−2

j!
+

35j−1Cj
4H

j
0Mj−2

j!
+

j−1∑

i=2

35i−1Ci
4H

i
0H

j−i−1
1 Mi−2Mj−i−1

i!(j − i+ 1)!

)
yj .

This gives

X1(0) = 1, X ′
1(0) ≤ C4H0, X

(2)
1 (0) ≤ H0M0 + 35C2

4M0H
2
0 ,

and moreover for j ≥ 3,

X
(j)
1 (0) ≤ C4H0H

j−2
1 Mj−2+35j−1Cj

4H
j
0Mj−2+

j−1∑

i=2

j!35i−1Ci
4H

i
0H

j−i−1
1 Mi−2Mj−i−1

i!(j − i+ 1)!
.

Observe that H1 ≥ (35C4H0)
2, and hence X

(2)
1 ≤ 2C4H0H1M0, and for j ≥ 3,

X
(j)
1 (0) ≤ 2C4H0H

j−2
1 Mj−2 +

4C4(j − 2)!H0H
j−2
1 Mj−3

(j − 3)!

j−1∑

i=2

j2

i2(j − i)2

≤ 6C4H0H
j−2
1 Mj−2.

On the other hand, it is clear that

X2(0) = 1, X ′
2(0) ≤ C4, X

(j)
2 (0) ≤ Cj

4Mj−2, 2 ≤ j ≤ N.
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By virtue of the above relations, we have, for H1 ≥ (35C4H0)
2
,

dN

dyN
X (y, w(y))

∣∣∣
y=0

=

N∑

j=0

N !

j!(N − j)!
X

(j)
1 (0)X

(N−j)
2 (0)

≤ CN
4 MN−2 + CN

4 NH0MN−3 + 2N(N − 1)CN−1
4 H0H1M0MN−4 + 6C2

4H0H
N−3
1 MN−3

+ 6C4H0H
N−2
1 MN−2 + 6C4

N−2∑

j=3

N !

j!(N − j)!
H0H

j−2
1 Mj−2C

N−j
4 MN−j−2

≤ 72C4H0H
N−2
1 MN−2.

This gives (5.12), and hence (5.9). This completes the proof of Lemma 5.3. �

Now starting from the smooth solution u, we prove the Gevrey regularity result
as follows:

Proposition 5.4. Let δ = max
{
σ
4 ,

σ
2 − 1

6

}
, and let s ≥ 2

δ be a real number. Let

W = 2Ω =
{
(t, x, v); ( t2 ,

x
2 ,

v
2 ) ∈ Ω

}
. Suppose that u ∈ C∞(W̄ ) is a solution of

(1.3) where a(t, x, v) ∈ Gs(Ω̄), a > 0 and F (t, x, v, q) ∈ Gs(Ω̄ × [−M,M ]). Then
there exits a constant R such that for any r ∈ [0, 1] and any N ∈ N, N ≥ 4,

(E)′r,N
‖Φρ,ND

αu‖r+n+1 + ‖Φρ,N Λ̃σDαu‖r− δ
2+n+1

≤ R|α|−1

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s (N
ρ

)sr

holds for all α, |α| = N and all 0 < ρ < 1. Thus, u ∈ Gs(Ω).

Remark 5.1. Here the Gevrey constant L of u is determined by the Gevrey con-
stants Ba and BF of the functions a, F , and depends only on s, σ, n, ‖u‖Hn+6(W )

and ‖a‖C2n+2(Ω) .

Proof. We prove the estimate (E)′r,N by induction on N . We shall follow the same

procedure as that in the proof of Proposition 4.1. First, the truth of (E)′r,4 can
be deduced by the same argument as that in the proof of (E)r,4 in the previous
section.

Let now N > 4 and assume that (E)′r,N−1 holds for any r ∈ [0, 1]. We need to

prove the truth of (E)′r,N for 0 ≤ r ≤ 1. In the following discussion, we fix N and

for each 0 < ρ < 1, define ρ̃ = N−1
N ρ, ˜̃ρ = N−2

N ρ. Let Φρ,N be the cutoff function
which satisfies the property (3.1).

First, the same argument as the proof of Lemma 4.4 yields
(5.14)

‖Φρ,ND
αu‖n+1+‖Φρ,NΛ̃σDαu‖− δ

2+n+1 ≤
C1R

|α|−2

ρ(s+n)(|α|−3)

(
(|α|−3)!

)s
, ∀ 0 < ρ < 1.

Next we prove, for all r, 0 < r ≤ δ
2 ,

(5.15)

‖Φρ,ND
αu‖r+n+1 + ‖Φρ,N Λ̃σDαu‖r− δ

2+n+1 ≤
C6R|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)sr.

Observe that we need only to show the above inequality in the case when r = δ
2 ,

that is

(5.16) ‖Φρ,ND
αu‖ δ

2+n+1+‖Φρ,N Λ̃σDαu‖n+1 ≤
C6R|α|−2

ρ(s+n)(|α|−3)

(
(|α|−3)!

)s
(N/ρ)

sδ
2 ,
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and the truth of (5.15) for general r ∈]0, δ
2 [ follows by the interpolation inequality

(2.2).
To prove (5.16), we first show the following inequality

(5.17) ‖PΦρ,ND
αu‖− δ

2+n+1 ≤
C7R|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

In fact,

‖PΦρ,ND
αu‖− δ

2+n+1 ≤ ‖[P , Φρ,ND
α]u‖− δ

2+n+1 + ‖Φρ,ND
αPu‖− δ

2+n+1

≤ ‖[P , Φρ,ND
α]u‖− δ

2+n+1 + ‖Φρ,ND
α[F (·, u(·))]‖− δ

2+n+1.

Since there is no nonlinear form involved in the first term of the right-hand side of
the above inequality, the same argument as in the proof of (4.9) gives that

(5.18) ‖[P , Φρ,ND
α]u‖− δ

2+n+1 ≤
C8R|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 ,

Thus we need only to treat the second term ‖Φρ,ND
α[F (·, u(·))]‖− δ

2+n+1. The

smoothness of u gives

(5.19) ‖Dju‖Cn+3(W̄ ) ≤ ‖u‖Cn+5(W̄ ), 0 ≤ j ≤ 2,

and by the induction hypothesis, for any 3 ≤ j < N and any 0 < ρ < 1,

‖Φρ,jD
βu‖− δ

2+n+1 ≤ ‖Φρ,jD
βu‖n+1 ≤

C1R
j−2

ρ(s+n)(j−3)

(
(j − 3)!

)s

≤
C1R

j−2

ρ(s+n)(j−3)

(
(j − 3)!

)s
(j/ρ)

sδ
2 , ∀ β, |β| = j,

(5.20)

Similarly, by (5.14), we have for any 0 < ρ < 1,

(5.21) ‖Φρ,ND
αu‖− δ

2+n+1 ≤
C1R

N−2

ρ(s+n)(N−3)

(
(N − 3)!

)s
(N/ρ)

sδ
2 , ∀ α, |α| = N.

Since F ∈ Gs(Ω̄× [−M,M ]), then

(5.22) ‖Dk
t,x,v∂

l
qF‖Cn+2(Ω̄×[−M,M ]) ≤ Bk+l

F

(
(k − 3)!

)s(
(l − 3)!

)s
, k, l ≥ 3.

Define Mj, H0, H1 by setting

H1 = R; H0 = ‖u‖Cn+3(W̄ ) + 1; M0 = 1; Mj =

(
(j − 1)!

)s

ρ(s+n)(j−1)
((j + 2)/ρ)

sδ
2 , j ≥ 1.

We can choose R large enough such that H1 = R ≥ (4n+1BFH0)
2. Then (5.19)-

(5.22) can be rewritten as

(5.23) ‖Dju‖Cn+3(W̄ ) ≤ H0, 0 ≤ j ≤ 1,

(5.24)

‖Φρ,jD
γu‖− δ

2
+n+1 ≤ H0H

j−2
1 Mj−2, ∀ 0 < ρ < 1, ∀ |γ| = j, 2 ≤ j ≤ N,

(5.25) ‖Dk
t,x,v∂

l
qF‖Cn+2(Ω̄×[−M,M ]) ≤ Bk+l

F Mk−2Ml−2, k, l ≥ 2.
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For each j, note that s ≥ 2
δ . Hence we compute

j!

i!(j − i)!
MiMj−i =

j!

i(j − i)

(
(i− 1)!

)s−1(
(j − i− 1)!

)s−1
ρ−(s+n)(i−1)ρ−(s+n)(j−i−1)

× (i+ 2)
sδ
2 (j − i+ 2)

sδ
2 ρ−sδ

≤ j!
(
(j − 2)!

)s−1
ρ−(s+n)(j−2)(j + 2)

sδ
2 (j + 2)

sδ
2 ρ−sδ

≤
j(j + 2)

sδ
2

(j − 1)s−1

(
(j − 1)!

)s
ρ−(s+n)(j−1)(j + 2)

sδ
2 ρ−

sδ
2 ρs+n− sδ

2

≤
j(j + 2)

sδ
2

(j − 1)s−1
Mj

≤ C̃sMj .

(5.26)

In the last inequality we used the fact that s− 1 ≥ 1 + sδ
2 , where C̃s is a constant

depending only on s. Moreover, it is easy to verify that, Mj ≥ ρ−(s+n)(j−1) ≥ ρ−j

for each j ≥ 2, and
(
N

ρ

)n+2

MN−n−2 =

(
N

ρ

)n+2 ((N − n− 3)!
)s

ρ(s+n)(N−n−3)
((N − n)/ρ)

sδ
2

≤ Cn

(
(N − 1)!

)s

ρ(s+n)(N−1)
((N + 2)/ρ)

sδ
2 = CnMN−2.

Thus {Mj} satisfies the monotonicity condition (5.3) and the condition (5.4). By

virtue of (5.23)-(5.26), we can use Lemma 5.3 with ν = − δ
2 > − 1

2 to obtain

‖Φρ,ND
α[F (·, u(·))]‖− δ

2+n+1 ≤ C5H
2
0H

|α|−2
1 M|α|−2

≤ 2C5
(
1 + ‖u‖2Cn+3(W̄ )

) R|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)

sδ
2 .

This along with (5.18) yields (5.17), if we choose C7 = C8 + 2C5
(
1 + ‖u‖2Cn+3(W̄ )

)
.

By virtue of (5.17), we can repeat the discussion as in Step 4 in the previous section.
This gives (5.16), and hence (5.15).

Similarly, we can prove that for any r with δ
2 ≤ r ≤ δ,

‖Dαu‖r+n+1,Ωρ
+ ‖Λ̃σDαu‖r− δ

2+n+1,Ωρ
≤

C9R|α|−2

ρ(s+n)(|α|−3)

(
(|α| − 3)!

)s
(N/ρ)sr.

Inductively, for any m ∈ N with mδ
2 < 1 + δ

2 , the above inequality still holds for

any r with (m−1)δ
2 ≤ r ≤ mδ

2 . Hence, for r with 0 ≤ r ≤ 1, we obtain the truth of
(E)′r,N . This completes the proof of Proposition 5.4. �
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