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Testing for change in mean of heteroskedastic time series

Introduction

In the statistic literature there is a vast amount of works on detecting changes in mean of a given time series. In a more general context of linear regression model, [START_REF] Chow | Tests of equality between sets of coefficients in two linear regressions[END_REF] considered tests for structural change for a known single break date. The researches headed for the modelling where this break date is treated as an unknown variable. [START_REF] Quandt | Tests of the hypothesis that a linear regression obeys two separate regimes[END_REF] extends the Chow test and proposes taking the largest Chow statistic over all possible break dates. In the same context, the most important contributions are those of [START_REF] Andrews | Tests for parameter instability and structural change with unknown change point[END_REF] and [START_REF] Andrews | Optimal tests when a nuisance parameter is present only under the alternative[END_REF]. Sen andSrivastava (1975a, 1975b), [START_REF] Hawkins | Testing a sequence of observations for a shift in location[END_REF], [START_REF] Worsley | On the likelihood ratio test for a shift in locations of normal population[END_REF], [START_REF] Srivastava | Likelihood ratio tests for a change in the multivariate normal mean[END_REF] and [START_REF] James | Tests for a change point[END_REF] consider tests for mean shifts of normal sequence of variables. The multiple structural changes case receives an increasing attention. For instance, [START_REF] Yao | Estimating the number of change-points via Schwarz' criterion[END_REF], [START_REF] Yin | Detection of the number, locations and magnitudes of jumps[END_REF] and [START_REF] Yao | Least squares estimation of a step function[END_REF] study the estimation of the number of mean shifts of variables sequence using the Bayesian information criterion. [START_REF] Liu | On segmented multivariate regressions[END_REF] consider multiple changes in a linear model estimated by least squares and estimate the number of changes using a modified Schwarz' criterion. [START_REF] Bai | Estimating and testing linear models with multiple structural changes[END_REF] consider the estimation of multiple structural shifts in a linear model estimated by least squares; [START_REF] Qu | Estimating and testing structural changes in multivariate regressions[END_REF] extend Bai and Perron's (1998) results to a multivariate regression. In all these papers, a Wald, Lagrange Multiplier (LM) or/and Likelihood-ratio (LR)-Like tests have been considered. Recall that the Wald test is based on the unrestricted model, the LR test needs the restricted and unrestricted model, while the LM test is based exclusively on the restricted model.

Concerning only the change in mean, all authors cited above assume that under the alternative hypothesis, the mean µ t is a step function i.e. the observations (y t ), 1 ≤ t ≤ n, satisfy

y t = µ t + ε t , µ t = µ (j) if t = n j-1 + 1, ..., n j , n j = [λ j n], 0 < λ 1 < ... < λ m < 1,
where (ε t ) is such that E(ε t ) = 0 and [x] is the integer part of x. If the mean µ t is time varying with unknown form, then the Wald and LR tests can't be applied. Only the LM test can be used since no specification of alternative hypothesis is needed to build a statistic. Recently, [START_REF] Gombay | Change detection in autoregressive time series[END_REF] used an LM-type test for detecting change in the autoregressive model. However, he assumed that the errors ε t are homoskedastic i.e var(ε t ) = σ 2 for all t. In this paper we consider the heteroskedastic time series,

y t = µ t + σ t ε t , (1) 
where the errors are Gaussian white noise ε t ∼ N(0, 1), (σ t ) is a deterministic sequence with unknown form. The null and the alternative hypotheses are as follows:

   H 0 : µ t = µ for all t ≥ 1 against H 1 : There exist t = s such that µ t = µ s , (2) 
under the alternative hypothesis the mean µ t can be time varying with unknown form. The model ( 1) is useful in many areas. In financial modelling, much research has been devoted to the study of long-run behavior of returns of speculative asset. A common finding in much of the empirical literature is that the returns are not serially correlated which is in agreement with the efficient market hypotheses, see [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]. However, the absolute returns which, is a proxy of the instantaneous standard deviation, has significant positive autocorrelations with a possible breaks in the mean and in the unconditional variance. For instance, [START_REF] Starica | Nonstationarities in Stock Returns[END_REF] show that an appropriate model to describe the dynamic of the logarithm of the absolute returns of the S&P 500 index is given by (1) where µ t and σ t are step functions i.e.

µ t = µ (j) if t = n j-1 + 1, ..., n j , n j = [λ j n], 0 < λ 1 < ... < λ m 1 < 1, (3) σ t = σ (j) if t = t j-1 + 1, ..., t j , t j = [τ j n], 0 < τ 1 < ... < τ m 2 < 1, (4) 
for some integers m 1 and m 2 . They also show that model ( 1), ( 3) and ( 4) gives forecasts superior to those based on a stationary GARCH(1,1) model.

One can also consider a more general model than (1), ( 3) and ( 4), where breaks can be abrupt and/or smooth. A model with (m + 1) regimes for the unconditional standard deviation can be defined by

σ t = m j=1 σ (j) 1 -F j t/n -τ 2j-1 s j + σ (j+1) F j t/n -τ 2j-1 s j , (5) 
where τ 0 = 0 < τ 1 < ... < τ 2m < τ 2m+1 = 1, F j is the transition function from regime j to regime (j + 1), assumed to be continuous from R onto [0, 1]. The scale s j > 0 indicates how rapidly the transition from regime j to regime (j + 1), a small s j yields an abrupt change, As in [START_REF] Gombay | Change detection in autoregressive time series[END_REF] we use an LM-type test for detecting change in mean. The test statistic is based on the normalized score vector evaluated under the null H ′ 0 : µ t = µ and σ t = σ for all t ≥ 1. If y t = µ + σε t then the log-likelihood of the sample is given by

L(n, µ, σ 2 ) = - n 2 log σ 2 - n 2 log 2π - 1 2σ 2 n t=1 (y t -µ) 2 .
Hence, the score vector is

S n (µ, σ 2 ) = 1 σ 2 n t=1 (y t -µ) -n 2σ 2 + 1 2σ 4 n t=1 (y t -µ) 2
and the information matrix is I n (µ, σ 2 ) = nI/σ 2 , I is the identity matrix. Therefore a test statistic for testing change in mean is based on the first component of the vector

I -1/2 n ( µ, σ 2 )S [nτ ] ( µ, σ 2 )
, where µ = n t=1 y t /n and σ 2 = n t=1 (y tµ) 2 /n are the maximum likelihood estimators of µ and σ 2 , given by

B n (τ ) = 1 √ n σ [nτ ] t=1 (y t -µ).
The test statistic we consider is

B n = sup τ ∈[0,1] |B n (τ )| .
2 Limiting distribution of B n under the null Theorem 1. Assume that (y t ) satisfies the model ( 1) with standard Gaussian white noise errors (ε t ) and a bounded deterministic sequence (σ t ) satisfying

1 n n t=1 σ 2 t → σ 2 2 as n → ∞, (6) 
Then, under H 0 we have

B n ---→ B ∞ = sup τ ∈[0,1] |B(τ )| (7) 
L ---→ denotes the convergence in distribution and B(τ ) is a Brownian Bridge.

Remark. The condition ( 6) is a classical ergodic assumption and holds in many situations. For example if (σ t ) is given by ( 4), then ( 6) is satisfied with σ 2 2 = m 2 +1 j=1 (τ jτ j-1 )σ 2 (j) , τ 0 = 0, τ m 2 + 1 = 1, and if (σ t ) is given by (5) then

σ 2 2 = 1 0 m j=1 σ (j) 1 -F j x -τ 2j-1 s j + σ (j+1) F j x -τ 2j-1 s j 2 dx.
The proof of Theorem 1 is given in the Appendix.

3 Consistency of B n

Consistency of B n against abrupt changes

Without loss of generality we assume that under the alternative hypothesis there is a single break date, i.e. (y t ) is given by [START_REF] Andrews | Tests for parameter instability and structural change with unknown change point[END_REF] where

µ t = µ (1) if 1 ≤ t ≤ [nτ 1 ] µ (2) if [nτ 1 ] + 1 ≤ t ≤ n for some τ 1 ∈ (0 , 1 ). ( 8 
)
Theorem 2. Assume that (y t ) satisfies the model ( 1) with standard Gaussian white noise errors (ε t ) and a bounded deterministic sequence (σ t ) satisfying [START_REF] Chow | Tests of equality between sets of coefficients in two linear regressions[END_REF]. If under H 1 the mean µ t follows the dynamic [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] then

B n P ----→ + ∞ ( 9 
)
where P ----→ denotes the convergence in probability. The proof of Theorem 2 is given in the Appendix. Remark 1. The result of Theorem 2 remains valid if under the alternative hypothesis there are multiples breaks in the mean.

Consistency of B n against smooth changes

In economics and finance, multiple regimes modelling becomes more and more important in order to take into account phenomena characterized, for instance, by recession or expansion periods, or high or low volatility periods. Consequently, it's more realistic to assume that the break in the mean doesn't happen suddenly but the transition from one regime to another is continuous with slowly variation. A well known dynamic is the smooth transition autoregressive (STAR) specification, see Terasvïrta [START_REF] Teräsvirta | Specification, estimation, and evaluation of smooth transition autoregressive models[END_REF], in which the mean µ t is a time varying with respect to the following

µ t = µ (1) + (µ (2) -µ (1) )F (t/n, τ 1 , γ), 1 ≤ t ≤ n, (10) 
where F (x, τ 1 , γ) is a the smooth transition function assumed to be continuous from [0, 1] onto [0, 1]. The parameters µ (1) and µ (2) are the values of the mean in the two extreme regimes, that is when F → 0 and F → 1. The slope parameter γ indicates how rapidly the transition between two extreme regimes is. The parameter c is the location parameter. Two choices for the function F are frequently evoked, the logistic function given by

F L (x, τ 1 , γ) = [1 + exp(-γ(x -τ 1 )] -1 (11) 
and the exponential one

F e (x, τ 1 , γ) = 1 -exp(-γ(x -τ 1 ) 2 ). ( 12 
)
For example, for the logistic function with γ > 0, the extreme regimes are obtained as follows

• if x → 0 and γ large we have F → 0 and thus µ t = µ (1) ,

• if x → 1 and γ large we have F → 1 and thus µ t = µ (2) . Theorem 3. Assume that (y t ) satisfies ( 1) with standard Gaussian white noise errors (ε t ) and a bounded deterministic sequence (σ t ) satisfying [START_REF] Chow | Tests of equality between sets of coefficients in two linear regressions[END_REF]. If under H 1 the mean µ t follows the dynamic [START_REF] Gombay | Change detection in autoregressive time series[END_REF] then

B n P ----→ + ∞. ( 13 
)
The proof of Theorem 3 is given in the Appendix.

Finite sample performance

All sequences are driven by a Gaussian white noise ε t ∼ N(0, 1). Simulations were performed using the software R [START_REF]R: A language and environment for statistical computing[END_REF]. We carry out an experiment of 1000 samples for nine series and we use four different sample sizes, n = 30, n = 100, n = 500 and n = 1000.

In the model (1) we consider three dynamics for the mean µ t and the variance σ 2 t : • Dynamics of the mean:

µ t = 1 for all t ≥ 0, ( 14 
)
µ t = µ (1) if 1 ≤ t ≤ [nτ 1 ] µ (2) if [nτ 1 ] + 1 ≤ t ≤ n , (15) 
µ t = µ (1) + (µ (2) -µ (1) )F (t/n, τ 1 , γ), (16) 
we choose τ 1 = 0.5 (one break in the middle of the sample), µ (1) = 1, µ (2) = 2, F is the logistic function given by ( 11) and γ = 20.

• Dynamics of the variance

σ t = 1 for all t ≥ 0, ( 17 
)
σ t = σ (1) if 1 ≤ t ≤ [nτ 2 ] σ (2) if [nτ 2 ] + 1 ≤ t ≤ n ( 18 
)
σ t = σ (1) + (σ (2) -σ (1) )F (t/n, τ 2 , γ), (19) 
we choose τ 2 = 2/3, σ (1) = 0.5, σ (2) = 1.5, F is the logistic function given by ( 11) and γ = 20.

To study the size of the test we simulate the following three series: Series 1 : µ t is given by ( 14) and σ t is given by [START_REF]R: A language and environment for statistical computing[END_REF], no break in the mean and in the variance.

Series 2 : µ t is given by ( 14) and σ t is given by [START_REF] Sen | On tests for detecting change in mean[END_REF], no break in the mean and one abrupt break in the variance.

Series 3 : µ t is given by ( 14) and σ t is given by [START_REF] Sen | Some one-sided tests for change in level[END_REF], no break in the mean and one smooth break in the variance.

To study the power of the test we simulate the following six series:

• One abrupt change on the mean: Series 4 : µ t is given by ( 15) and σ t is given by ( 17), one abrupt break in the mean and no break in the variance.

Series 5 : µ t is given by ( 15) and σ t is given by ( 18), one abrupt break in the mean and one abrupt break in the variance.

Series 6 : µ t is given by ( 15) and σ t is given by ( 19), one abrupt break in the mean and one smooth break in the variance.

• A smooth change in the mean: Series 7 : µ t is given by ( 16) and σ t is given by ( 17), one smooth break in the mean and no break in the variance.

Series 8 : µ t is given by ( 16) and σ t is given by ( 18), one smooth break in the mean and one abrupt break in the variance.

Series 9 : µ t is given by ( 16) and σ t is given by [START_REF] Sen | Some one-sided tests for change in level[END_REF], one smooth break in the mean and one smooth break in the variance. Note: Table 1 contains rejection frequencies of the null hypothesis of no change in the mean. Rejection frequencies are based on 1000 replications generated from the Series 1-3 where the nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 30, n = 100, n = 500 and n = 1000.

Table 1 indicates that the test is a somewhat conservative (the empirical size is lesser than the nominal one) when the time series is homoskedastic (Series 1) and overrejects the null (the empirical size is greater than the nominal one) if the time series is heteroskedastic (Series 2 and 3). Note: Table 2 contains rejection frequencies of the null hypothesis of no change in the mean. Rejection frequencies are based on 1000 replications generated from the Series 4-9 where the nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 30, n = 100, n = 500 and n = 1000.

From Table 2, we observe that, except for the small sample size n=30, the test has a good power either for homoskedastic time series (Series 4 and 7) or heteroskedastic time series (Series 5,6,8 and 9). Rejection frequencies of the null in abrupt change (Series 4, 5 and 6) are a somewhat greater than the ones corresponding to a smooth change (Series 7,8 and 9).

Application to the Stock index data

We consider the daily returns of S&P 500 index, r t = log P tlog P t-1 , where P t is the daily closing level of the index between January 3, 1950 and November 17, 2008. We test changes in the mean of the returns r t and the absolute returns y t = |r t | .

For the time series (y t ), 1 ≤ t ≤ n, the test statistic is given by

B n = 1 √ n σ max 1≤k≤n k t=1 y t -k µ ,
where σ 2 = n t=1 (y tµ) 2 /n , µ = n t=1 y t /n and the corresponding p-value given by pvalue = 1 -F B∞ (B n ). The cumulative distribution function of B ∞ is given by (see Billingsley (1968))

F B∞ (z) = 1 + 2 ∞ k=1 (-1) k exp{-2k 2 z 2 }.
Although the distribution function F B∞ involves an infinite sum, the series is extremely rapidly converging. Usually a few terms suffice for very high accuracy. For example, (see [START_REF] Massey | Distribution Table for the Deviation between Two Sample Cumulatives[END_REF]) the 90%, 95%, and 99% quantiles are 1.225, 1.359 and 1.628 respectively. Note that the quantiles are reached with a high accuracy using only 2 terms i.e.

1 + 2 2 k=1 (-1) k exp{-2k 2 (1.225) 2 } = 0.9005625, 1 + 2 2 k=1 (-1) k exp{-2k 2 (1.359) 2 } = 0.9502443 and 1 + 2 2 k=1 (-1) k exp{-2k 2 (1.628) 2 } = 0.9900245
Applying our test to r t yields pvalue = 0.291 and hence the null hypothesis of no change in the mean is not rejected.

To check if to the time series y t = |r t |is affected by breaks in the mean, we apply our test to y t to detect change in the mean. We obtain p-value = 0 for y t , which strongly supports change in the mean of the absolute returns of S&P 500 index between January 4,1950 andNovember 17, 2008 Appendix. Proofs To prove Theorem 1 we will establish first a functional central limit theorem for heteroskedastic time series. Such theorem is independent of interest. Let D = D[0, 1] be the space of random functions that are right-continuous and have left limits, endowed with the Skorohod topology. The weak convergence of a sequence of random elements X n in D to a random element X in D will be denoted by X n =⇒ X.

Consider a standard Gaussian white noise (ε t ), i.e. E(ε t ) = 0 and var(ε t ) = 1. Let (σ t ) satisfying [START_REF] Chow | Tests of equality between sets of coefficients in two linear regressions[END_REF] and

W n (τ ) = 1 σ 2 √ n [nτ ] t=1 σ t ε t , τ ∈ [0, 1]. (20) 
Many Functional central limit theorems were established for covariance stationary time series, see [START_REF] Boutahar | Identification of Persistent Cycles in Non-Gaussian Long Memory Time Series[END_REF] and the references therein. Note that the process (σ t ε t ) is not covariance stationary and hence [START_REF] Davydov | The invariance principle for stationary processes[END_REF] results can't be applied to obtain the weak convergence of W n in the Skorohod space.

There are two sufficient conditions to have W n =⇒ W (see Billingsley (1968): i) the finite-dimensional distributions of W n converge to the finite-dimensional distributions of W, ii) W n is tight. Theorem A1. Assume that (ε t ) is a standard Gaussian white noise and (σ t ) satisfying [START_REF] Chow | Tests of equality between sets of coefficients in two linear regressions[END_REF]. Then

W n =⇒ W ( 21 
)
where W is standard Brownian motion. Proof. To prove that the finite-dimensional distributions of W n converge to those of W it is sufficient to show that for all integer r ≥ 1, for all 0 ≤ τ 1 < ... < τ r ≤ 1 and for all (α 1 , ..., α r ) ′ ∈ R r ,

Z n = r i=1 α i W n (τ i ) ---→ Z = r i=1 α i W (τ i ). ( 22 
)
Since Z n is Gaussian with zero mean, it is sufficient to prove that

var (Z n ) → var(Z) = 1≤i,j≤r α i α j min(τ i , τ j ). ( 23 
)
For all (τ i , τ j )

cov(W n (τ i ), W n (τ j )) = var(W n (min(τ i , τ j ) = 1 nσ 2 2 [n min(τ i ,τ j )] t=1 σ 2 t → min(τ i , τ j ) as n → ∞, since var(Z n ) = 1≤i,j≤r α i α j cov(W n (τ i ), W n (τ j ))
, the desired conclusion (23) holds.

To prove the tightness of W n it suffices to show the following inequality [Billingsley (1968), Theorem 15.6]

E (|W n (τ ) -W n (τ 1 )| γ |W n (τ 2 ) -W n (τ )| γ ) ≤ (F (τ 2 ) -F (τ 1 )) α (24) 
for some γ ≥ 0, α > 1, and F is a nondecreasing continuous function on [0,1], where 0 < τ 1 < τ < τ 2 < 1.

We have

E |W n (τ ) -W n (τ 1 )| 2 |W n (τ 2 ) -W n (τ )| 2 = 1 nσ 2 2   [nτ ] t=[nτ 1 ]+1 σ 2 t     [nτ 2 ] t=[nτ ]+1 σ 2 t   ≤ C(τ -τ 1 )(τ 2 -τ ) for some constant C > 0 ≤ C (τ 2 -τ 1 ) 2 /2.
Consequently [START_REF] Yao | Estimating the number of change-points via Schwarz' criterion[END_REF] holds with γ = α = 2 and F (t) = C/2 t.

A1. Proof of Theorem 1

We have

B n (τ ) = 1 √ n σ [nτ ] t=1 (y t -µ) = σ 2 σ 1 √ nσ 2 [nτ ] t=1 {(y t -µ) + (µ -µ)} = σ 2 σ W n (τ ) - [nτ ] n W n (1)
.

By using [START_REF] Starica | Nonstationarities in Stock Returns[END_REF] it follows that

σ σ 2 B n =⇒ B,
and hence by continuous mapping theorem

σ σ 2 sup τ ∈[0,1] |B n (τ )| ---→ sup τ ∈[0,1] |B(τ )| .
To achieve the proof of (7) it's sufficient to prove that

σ P ---→ σ 2 . ( 25 
)
Let F t = σf ield (ε 1 , ..., ε t ) and ̥ = (F n ) the corresponding filtration.

Then N n = n t=1 σ t ε t is a square integrable martingale adapted to ̥, with increasing process N n = n t=1 σ 2 t . By using (6), N n satisfies

N n n -→ σ 2 2 ,
therefore (see [START_REF] Duflo | Random Iterative Models[END_REF], theorem 1.3.15. )

1 n n t=1 σ t ε t a.s. ----→ 0, (26) 
where a.s.

----→ denotes the almost sure convergence.

Likewise M n = n t=1 σ 2 t (ε 2 t -1) is a square integrable martingale adapted to ̥, with increasing process M n = 2 n t=1 σ 4 t , hence theorem 1.3.15. in [START_REF] Duflo | Random Iterative Models[END_REF] 

implies that 1 M n n t=1 σ 2 t (ε 2 t -1) -→ 0 almost surely on { M ∞ = ∞} (27) 
where

M ∞ = lim n→∞ M n . Since n t=1 σ 2 t 2 ≤ n n t=1 σ 4 t , (28) 
The assumption [START_REF] Chow | Tests of equality between sets of coefficients in two linear regressions[END_REF] implies that there exist an universal constants 0

< K 1 < K 2 < ∞ such that K 1 < 1 n n t=1 σ 2 t < K 2 ,
this together with (28) implies that M n ≥ 2nK 2 1 which implies that

{ M ∞ = ∞} = Ω B n (τ ) = B 0 n (τ ) + B 1 n (τ ) (33) 
where

B 0 n (τ ) = 1 √ n σ [nτ ] t=1 (σ t ε t -µ 0 ), µ 0 = 1 n n t=1 σ t ε t (34) B 1 n (τ ) = 1 √ n σ [nτ ]µ (1) - [nτ ] n [nτ 1 ]µ (1) + (n -[nτ 1 ] + 1)µ (2) .
Straightforward computation leads to

σ 2 a.s. ----→ σ 2 * = σ 2 2 + τ 1 (1 -τ 1 )(µ (1) -µ (2) ) 2 . Therefore B 0 n (τ ) ---→ σ 2 σ * B(τ ) (35) 
and

B 1 n (τ ) √ n a.s. ----→ τ (1 -τ 1 )(µ (1) -µ (2) ) σ * . Hence B 1 n (τ ) a.s. ----→ sgn(µ (1) -µ (2) )∞ (36) 
where sgn(x) = 1 if x > 0 and -1 otherwise. Finally (33), ( 35) and (36) imply that |B n (τ )| P --→ + ∞ and then the desired conclusion (9) holds.

A3. Proof of Theorem 3

B n (τ ) = B 0 n (τ ) + B 1 n (τ ) (37) 
where B 0 n (τ ) is given by (34) and Therefore for all τ ∈ (0, 1)

B 1 n (τ ) = 1 √ n σ    [nτ ]
B 1 n (τ ) √ n a.s. ----→ (µ (2) -µ (1) ) σ * T (τ ),
where

T (τ ) = τ 0 F (x, τ 1 , γ)dx -τ 1 0 F (x, τ 1 , γ)dx. (38) 
Moreover, there exists τ * ∈ (0, 1) such that T (τ * ) = 0, since if we assume that T (τ ) = 0 for all τ ∈ (0, 1) then dT (τ ) dτ = F (τ, τ 1 , γ) - 

σ 2 * = σ 2 2 + 1 0F 2 1 0F

 22121 (µ (2) -µ (1) ) 2 (x, τ 1 , γ)dx -(x, τ 1 , γ)dx 2 .

1 0F 1 0FRemark 2 .

 112 (x, τ 1 , γ)dx = 0 for all τ ∈ (0, 1) which implies that F (τ, τ 1 , γ) = (x, τ 1 , γ)dx = C for all τ ∈ (0, 1) orµ t = µ (1) + (µ (2)µ (1) )C= µ for all t ≥ 1 and this contradicts the alternative hypothesis H 1 .B 1 n (τ * ) √ n a.s. ----→ (µ (2)µ (1) ) σ * T (τ * )and T (τ * ) = 0 imply that |B n (τ * )| P --→ + ∞, consequently, the desired conclusion (13) holds. For the logistic transition, the function T (τ ) in (38) is given byT (τ ) = 1 γ {τ log [(1 + exp(γ(τ 1 -1)))(1 + exp(γτ 1 ))]} -1 γ {log [(1 + exp(γ(τ 1τ )))1 + exp(γτ 1 ))]} ,and for the exponential transitionT (τ ) = π 4γ {(τ -1)erf ( √ γτ 1 ) + erf ( √ γ(τ 1τ ))τ erf ( √ γ(τ 1τ ))} ,where erf is the Error function given by erf (t 2 )dt.

Table 1 .

 1 Empirical test sizes (in %)

		n	n = 30 n = 100 n = 500 n = 1000
		α				
		1%	0.2	0.4	0.7	0.5
	Series 1	5%	2.9	3.3	3.8	4.1
		10%	5.1	7.9	8.2	8.4
		1%	0.3	0.9	1.3	1.3
	Series 2	5%	3.4	5.1	6.2	6.3
		10%	7.1	10.6	11.7	12.4
		1%	0.5	0.9	1.1	1.1
	Series 3	5%	4.3	4.9	6.4	6.3
		10%	7.9	10.1	12.7	12.4

Table 2 .

 2 Empirical test powers (in %)

		n	n = 30 n = 100 n = 500 n = 1000
		α				
		1%	18.3	95.9	100	100
	Series 4	5%	47.3	98.8	100	100
		10%	61.9	99.4	100	100
		1%	10.6	85.0	100	100
	Series 5	5%	33.9	95.4	100	100
		10%	48.5	97.7	100	100
		1%	14.2	84.8	100	100
	Series 6	5%	34.5	94.8	100	100
		10%	48.7	98.0	100	100
		1%	17.1	92.9	100	100
	Series 7	5%	46.6	98.4	100	100
		10%	58.4	99.3	100	100
		1%	12.6	79.8	100	100
	Series 8	5%	36.0	93.1	100	100
		10%	52.1	96.5	100	100
		1%	14.0	74.8	100	100
	Series 9	5%	35.9	92.0	100	100
		10%	50.8	95.5	100	100

and hence

Since (σ t ) is a bounded deterministic sequence, then there exists an universal K > 0 such that σ 4 t ≤ K for all t ≥ 1, hence M n ≤ nK for all n, therefore

By using ( 26)-( 30),

a.s.

----→ µ and

Combining (31) and (32) we obtain

and hence (25) follows.

A2. Proof of Theorem 2

For all τ < τ 1 we have