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Campus Universitaire des Cézeaux, 63 177 Aubière, France

Abstract

We present a new second-order method, based on the MAC scheme on carte-
sian grids, for the numerical simulation of two-dimensional incompressible
flows past obstacles. In this approach, the solid boundary is embedded in
the cartesian computational mesh. Discretizations of the viscous and convec-
tive terms are formulated in the context of finite volume methods ensuring
local conservation properties of the scheme. Classical second-order centered
schemes are applied in mesh cells which are sufficiently far from the obsta-
cle. In the mesh cells cut by the obstacle, fisrt-order approximations are
proposed. The resulting linear system is nonsymetric but the stencil remains
local as in the classical MAC scheme on cartesian grids. The linear systems
are solved by a direct method based on the capacitance matrix method. The
time integration is achieved with a second-order projection scheme. While
in cut-cells the scheme is locally first-order, a global second-order accuracy
is recovered. This property is assessed by computing analytical solutions
for a Taylor-Couette problem. The efficiency and robustness of the method
is supported by numerical simulations of 2D flows past a circular cylinder
at Reynolds number up to 9 500. Good agreement with experimental and
published numerical results are obtained.

Keywords: Immersed boundary method, Cartesian grid method, Cut-cell
method, Incompressible viscous flows, Complex geometry

1. Introduction

Numerical simulation of fluid mechanics problems is one of the most chal-
lenging scientific computing’s field of research of the last decades. With
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the increasing power of computers in terms of memory available, speed and
number of processors, more and more complex problems arising in indus-
trial applications become accessible to numerical simulations. In complex
geometries, the discretization of the Navier Stokes Equation (NSE) by finite
element or finite volume methods on body-fitted grids allows to simulate flows
at low to moderate Reynolds numbers. However, generating an efficient con-
formal mesh is a challenging problem when the geometry gets complex and
this pre-processing step is very CPU-time consuming. Indeed, generating a
body-fitted grid can be even more expansive than computing the solution
itself. Eventhough matrices issued from finite element or finite volume dis-
cretizations are dense and sparse, the number of connected nodes is much
larger than in finite difference methods on cartesian grids. Specific and more
complex solvers have to be used resulting in a significant overhead in the
computational effort required to obtain discrete solutions. An alternative
to the body-fitted methods is proposed with the Immersed Boundary (IB)
methods. The aim of IB methods is to handle complex geometric configura-
tions without the use of body-fitted meshes. Simulations are performed on
cartesian grids so that the efficiency and robustness of cartesian grid solvers
are achieved. Therefore, significant advances in the application of numerical
simulations to more and more complex industrial problems could be expected.

Since the late 90s, IB methods have been investigated in many published
works and among the most investigated problems is the numerical simu-
lations of two or three-dimensional flows past obstacles. Several technics
have been developed to take into account the presence of fixed or mobile
obstacles in the flow. IB methods can be classified in three categories : mo-
mentum forcing methods, Cartesian grid methods and penalty methods. IB
methods have been first developed by Peskin (see [1], and [2] for a review)
for fluid structure interaction problems with applications in Biology (blood
flow). These methods use both Eulerian and Lagrangian variables, which
are related via interaction equations. Discrete versions of dirac functions are
used to describe the fluid structure interaction forcing, and to link the Eu-
lerian and Lagrangian variables. In a similar approach, momentum forcing
method, introduced by Mohd-Yusof [3], have been developped in the context
of B-Splines or finite difference methods and applied to the numerical simu-
lations of flows in complex geometries. Here, the challenge is to be able to
compute the force applied by the obstacle on the fluid which would be such
that the velocity field satisfies the boundary conditions on the immersed
boundary (see [4], [5] and [6] for a review). Momentum forcing methods are
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easy to implement and efficient: spectacular numerical simulations of flows
in complex geometries have been presented in [7] (flows in an full engine) and
in [8] (heart valve dynamics). The coupling of momentum forcing methods
with projection schemes introduces difficulties in imposing at the same time
level the contuinity equation and the boundary conditions on the immersed
interface (see [9] for example). The incompressibility of the flow may even
be violated in the vicinity of the immersed boundary [10]. This may result in
serious diffulties when computing boundary layers at high Reynolds number.

The penalty methods [11] have a mathematical background. The pres-
ence of a solid obstacle in the computational domain is modeled by adding a
penalty term, depending on a small parameter, in the incompressible Navier-
Stokes equations. The difference between the penalty solution and the solu-
tion of the Navier-Stokes equations can be bounded in Sobolev norms (energy
norm for instance) in terms of this parameter. The penalty method does not
depend on the choice of the discretization schemes used to approximate the
equations. However, in this approach, the immersed interface is not directly
and accurately represented in the flow simulation. Depending on the value
of the parameter, a diffusion of the immersed boundary in the computational
cells may prevent to accurately predict turbulent flows induced by very thin
boundary layers.

The third class of IB methods, called Cartesian grid methods or cut-cell
methods, focus on the discretization of the equations in the mesh cells cut by
the immersed boundary (see [12, 13, 14, 15] for instance). Techniques relying
on high-order interpolations have been developed in order to impose directly
the boundary conditions to the velocity field on the immersed boundary. In
a different approach, the method of merging cells (see [12], [14]) consists in
gathering cells in the vicinity of the obstacle: a cut-cell is merged with one
of their neighbours to form a new polygonal cell. The new merged cell has
then more than four neighbours (in dimension 2). Thus, this method breaks
the five-point structure of the underlying matrices. In a recent paper, Cheny
and Botella (see [16]) proposed a new cut-cell method, called the LS-STAG
method, based on the well-known second-order projection MAC scheme (see
[17]). They aim to keep the five-point structure of the classical MAC scheme
on cartesian grids and to preserve the global conservation properties of the
continuous equations at the discrete level. In order to accurately represent
the immersed boundary on the computational cartesian grid, they use the
signed algebraic distance to the obstacle boundary, as in level-set methods
[18]. The staggered arrangement of the unknowns for both the velocity field
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and the pressure is adapted to the geometry of the cut-cells. The LS-STAG
method is highly efficient from a computational point of view as it is based on
the MAC solver on cartesian grids which has been extensively and successfully
used in numerical simulations of turbulent flows, both in the context of direct
and Large-Eddy simulations. However, due to a low order approximation of
the viscous and convective fluxes in cut-cells, the LS-STAGmethod is globally
first-order accurate.

The numerical scheme proposed in this paper is a new cut-cell method.
As in [16], the immersed boundary is geometrically represented by using the
signed algebraic distance to the obstacle boundary. In fluid-cells, that is mesh
cells which are far enough from the immersed boundary, classical centered,
second-order finite volume schemes are used. In our approach, the location
of the velocity component is, as in [16], adapted to the geometry of cut-cells.
However, the discrete pressure is placed at the center of the cartesian cells
for both fluid-cells and cut-cells. In the vicinity of the obstacle, second-order
interpolations using boundary conditions on the solid boundaries are intro-
duced to evaluate the convective fluxes. This results in a local first-order
approximation of the nonlinear terms in cut-cells. A pointwise approxima-
tion of the viscous terms is used in cut-cells. When boundary conditions
on the immersed boundary can be used, a five-point stencil scheme for the
viscous term is employed. Otherwise, a six-point first-order approximation
is introduced. The resulting linear system is close to the five-point structure
symmetric system obtained on cartesian mesh with the MAC scheme. A
direct solver, based on a capacitance matrix method, is proposed. The effi-
ciency of the solver is similar to the cartesian grid solver obtained with the
MAC scheme. The incompressibility of the discrete velocity field is enforced
up to the computer accuracy. While first-order truncation errors are locally
introduced in the scheme in the cut-cells, a second-order global accuracy is
recovered. Note that a similar superconvergence result has been proved by
Yamamoto in [19] in the context of elliptic equations.

The paper is organized as follows: in section 2, we present the problem
together with the notation, and we describe the mesh used for the space
discretization. In section 3, we give details for the space-discretization in
the mesh cells cut by the obstacle and propose a fast solver adapted from
the capacitance matrix method (see [20], [21]) to solve the linear systems.
Section 4 is then devoted to numerical results for different configurations: one
of them (the Taylor-Couette flow) allows to check the second-order accuracy
of the method, some more challenging tests at high Reynolds numbers show
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the robustness of the scheme and comparisons with both experimental and
numerical results found in literature are given.

2. The setting of the problem

2.1. Preliminaries and notations

We consider a two-dimensional flow past a solid obstacle ΩS ⊂ R
2 which

is governed by the incompressible Navier-Stokes equations

∂u

∂t
− ν∆u + ∇(u⊗ u) + ∇p = 0, (1)

∇ · u = 0, (2)

u(x, t = 0) = u0, (3)

where u(x, t) = (u, v) is the velocity field at location x = (x, y) ∈ R
2 at time

t > 0, u0 is the initial condition and ν > 0 is the kinematic viscosity. We
assume that the flow fills a rectangular domain Ω = (0, L)× (0, H) in which
ΩS is embedded : ΩS ⊂ Ω (see Figure 1). We denote by ΩF the fluid domain
in which the Navier-Stokes equations (1)-(3) are prescribed so that we have

Ω = ΩF ∪ ΩS ∪ ΓS

where ΓS = ∂ΩS is the solid boundary. In order to determine the location of
each point in the computational domain with respect to the solid boundary
ΓS, we use the signed algebraic distance to ΓS, which is given by

d : Ω −→ R

(x, y) 7−→ d(x, y)
(4)

and which satisfies : ΓS = {(x, y) ∈ Ω; d(x, y) = 0}. Furthermore, we assume
that {

d(x, y) > 0 if (x, y) ∈ ΩS,

d(x, y) < 0 if (x, y) ∈ ΩF .
(5)

Equations (1)-(3) are supplemented with boundary conditions on Γ = ∂Ω
and on ΓS. On the domain boundary Γ, they depend on the problem under
consideration and will be detailed in Section 4. On the immersed boundary
ΓS, Dirichlet boundary conditions are imposed, namely

u(x) = g(x) for any x ∈ ΓS, (6)

where g is prescribed.
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2.2. Time discretization : second-order projection method

The temporal discretization of (1)–(3) is achieved by using a second-
order projection scheme. In a first step, momentum equations are advanced
in time with a semi-implicit scheme decoupling the velocity and pressure
unknowns. Then, the intermediate velocity is projected in order to obtain a
free-divergence velocity field. Projection methods are efficient and are widely
used for the numerical simulations of incompressible flows. In this paper, we
use a second-order backward difference (BDF2) projection scheme, which is
recalled hereafter.

Let δt > 0 stand for the time step and tk = k δt discrete time values.
Let us consider that (uj, P j) are known for j ≤ k. The computation of
(uk+1, P k+1) consists in:

– Computing a predictor ũk+1 by solving:

3ũk+1 − 4uk + u
k−1

2δt
−

1

Re
∆ũ

k+1 +∇P k =

− 2∇ · (uk ⊗ u
k) +∇ · (uk−1 ⊗ u

k−1)

(7)

which is supplemented with Boundary conditions applied to ũ
k+1. As it was

mentioned in Section 2.1, the choice of boundary conditions depend on the
considered problem. They will be detailed in Section 4.

– Projecting to obtain a divergence free velocity u
k+1:

u
k+1 − ũ

k+1

δt
+

2

3
∇(P k+1 − P k) = 0,

∇ · uk+1 = 0, (uk+1 − ũ
k+1) · n = 0 on Γ.

(8)

In the following and unless it is necessary, the superscript k denoting discrete
times will be omitted.

2.3. The cartesian mesh

The rectangular computational domain Ω = (0, L)× (0, H) is discretized
by a cartesian mesh. Let N and M two integers, the sequences of points in
each direction satisfy

0 = x0 ≤ . . . ≤ xi−1 ≤ xi ≤ . . . ≤ xN = L,

0 = y0 ≤ . . . ≤ yj−1 ≤ yj ≤ . . . ≤ yM = H.
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ΩF

ΩS

ΓS

Figure 1: The solid body ΩS with boundary ΓS and the surrounding computational domain
ΩF in which the flow is to be simulated.

Mesh sizes are defined by : ℓi = xi − xi−1 and hj = yj − yj−1. In order to
use computationally efficient algebraic solvers, one of the above sudivisions is
assumed to be uniform. In the following, numerical simulations are performed
in computational domains with L ≥ H. Therefore, a uniform mesh is used
in the vertical direction, namely

yj = jh for j = 0, . . . ,M with h =
H

M
.

We denote by GNM the computational grid, that is

GNM =
{
(xi, yj), 0 ≤ i ≤ N, 0 ≤ j ≤ M

}
.

In order to simplify the notations we denote by dij = d(xi, yj) the algebraic
distance of the grid point (xi, yj) ∈ GNM to the solid boundary ΓS.

We define by Kij = (xi−1, xi)× (yj−1, yj) the mesh cells in Ω such that

Ω = ∪N
i=1 ∪

M
j=1 Kij .

The horizontal edge σx
i,j of the mesh cell Kij is defined by

σx
i,j = (xi−1, xi)× {yj} .

The vertical edge σy
i,j is defined similarly.

The computational cells Kij, that is Kij such that Kij ∩ ΩF 6= ∅, can
be classified in fluid-cells, namely cells which are totally filled by the fluid
(Kij ∩ ΩS = ∅), and cut-cells, namely cells such that Kij ∩ ΩS 6= ∅.
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2.4. The discrete representation of the immersed boundary

Let a cut-cell Kij and assume that its horizontal edge σx
i,j is cut by the

obstacle, namely σx
i,j ∩ ΩS 6= ∅ then we compute, as in [16], the ratio rxij by

rxij =





0 if dij ≥ 0 and di−1,j ≥ 0,

di−1,j

di−1,j − dij
if dij ≥ 0 and di−1,j < 0,

di,j
dij − di−1,j

if dij < 0 and di−1,j ≥ 0,

1 elsewhere.

(9)

With the ratio rxij we approximate the intersection of σx
i,j and ΩS by the point

with coordinates :
{
(xi−1 + rxij ℓi, yj) if di−1,j < 0,

(xi − rxij ℓi, yj) if di,j < 0.

Similarly, we associate to the vertical edge σy
i,j cut by the obstacle a ratio

ryij and we approximate the intersection of σy
i,j and ΩS by the point with

coordinates (xi, yj−1 + ryij h) or (xi, yj − ryij h) depending upon the sign of
di,j−1 and di,j. By doing so, the obstacle boundary ΓS is approximated by a
piecewise-linear curve ΓS

h (see Figure 2). This provides a discrete separation
of the computational domain Ω in :

Ω = ΩF
h ∪ ΩS

h ∪ ΓS
h .

Let a computational cell Kij, that is Kij ∩ ΩF
h 6= ∅, we denote by KF

ij the
part of the cell which is filled by the fluid, namely KF

ij = Kij ∩ ΩF
h and by

σx,F
i,j (resp. σy,F

i,j ) the part of the edge σx
i,j (resp. σ

y
i,j) which is in ΩF

h , so that

we have σx,F
i,j = σx

i,j if Kij is a fluid-cell and

σx,F
i,j =

{
(xi−1, xi−1 + rxij ℓi)× {yj} if di−1,j < 0,

(xi − rxij ℓi, xi)× {yj} if di,j < 0,

if Kij is a cut-cell.
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b

b

ryij h

rxij ℓi
ΓS
h

ΓS

xi−1 xi

yj−1

yj

Figure 2: The discrete representation ΓS
h of the immersed boundary ΓS .

2.5. A staggered arrangement of the unknowns

As in the classical MAC scheme for cartesian grids (see [17]), the velocity
unknowns are located at the midpoints of the cell edges. Let a computational
cell KF

ij , the associated velocity unknowns uij and vij are respectively located

at the midpoints κy,F
ij of σy,F

ij and κ
x,F
ij of σx,F

ij . Note that

κ
y,F
ij =





(xi, yj−1/2) if σy,F
ij ⊂ ΩF

h ,

(xi, yj−1 +
ryijh

2
) if σy

ij ∩ ΩS
h 6= ∅ and di,j−1 < 0,

(xi, yj −
ryijh

2
) if σy

ij ∩ ΩS
h 6= ∅ and di,j < 0,

where yj−1/2 = 1
2
(yj + yj−1). Even if KF

i,j is a cut-cell, the discrete pressure
value Pij is always located at the center of the corresponding mesh cell Ki,j,
that is at point of coordinates (xi−1/2, yj−1/2). This staggered arrangement
of the unknowns is represented on Figure 3.

3. Description of the discrete operators

In this section, we describe the numerical discretization of the spatial
partial derivatives present in the Navier-Stokes equations. Specific numerical
treatments are required in cut-cells while, away from the obstacle, classical
second-order centered finite volume schemes are used.
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ui−1,j

vi,j−1

vij

uij

vi+1,j−1

Pi,j Pi+1,j

ΓS
h

xi−1 xi xi+1

yj−1

yj

Figure 3: Location of the unknowns in the cut-cells Kij (left) and Ki+1,j (right).

3.1. The Laplace operator

In the classical MAC scheme on cartesian grid, the horizontal (resp. ver-
tical) momentum equation is discretized by integration over the volume cell
Ku

ij = (xi−1/2, xi+1/2) × (yj−1, yj) (resp. Kv
ij = (xi−1, xi) × (yj−1/2, yj+1/2)).

In order to take into account the presence of the obstacle, integration is per-
formed over the computational cells Ku,F

ij = Ku
ij ∩ΩF

h and Kv,F
ij = Kv

ij ∩ΩF
h .

In the following, we restrict the presentation to the equation of the horizontal
velocity component. The vertical case is treated similarly.

Let a computational volume controlKu,F
ij , which is surrounding the veloc-

ity unknown uij , the approximation of
∫
Ku,F

i,j
∆u dx depends on the location

of the mesh cell Ki,j with respect to the obstacle.
If Ki,j is sufficiently far from the obstacle so that both Ki,j and Ki+1,j are

fluid cells, that is (Ki,j ∪Ki+1,j) ⊂ ΩF
h , and the faces σy

i,j−1 and σy
i,j+1 are not

cut by the obstacle, then the following classical second-order approximation
is used

1

|Ku,F
i,j |

∫

Ku
i,j

∆u dx =
1

|Ku,F
i,j |

∫

∂Ku
i,j

∂u

∂n
ds

≈
2

(ℓi+1 + ℓi)

(
ui+1,j − ui,j

ℓi+1

−
ui,j − ui−1,j

ℓi

)

+

(
ui,j+1 − 2ui,j + ui,j−1

h2

)
.

(10)
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u(ξSi,j−1/2, yj−1/2)
ui,jui−1,j

ui,j−1

ui,j+1

ΓS
h

xi−1 xi xi+1 xi+2

yj−2

yj−1

yj

yj+1

Figure 4: Five-point stencil, using the boundary condition on the obstacle ΓS
h , for the first-

order finite difference approximation of ∆u(κy,F
i,j ). We recall that, in this case, κy,F

i,j =
(xi, yj−1/2).

In the other cases, that is either Ki,j, Ki+1,j , σ
y
i,j−1 or σy

i,j+1 are cut by the
obstacle, we use a pointwise approximation, namely

1

|Ku,F
i,j |

∫

Ku,F
i,j

∆u dx ≈ ∆u(κy,F
i,j ).

Obviously such approximation is first-order. When it is feasible, depending
upon the location of κy,F

i,j with respect to the obstacle, the Dirichlet condition
on ΓS

h is used to write a five-point stencil, first-order finite difference approx-
imation of ∆u(κy,F

i,j ). Otherwise, a sixth point chosen in the neighbourhood

of κy,F
i,j , namely {κy,F

i±1,j±1}, is added in the approximation scheme. In order
to illustrate this approach, we detail hereafter two particular cases. All other
cases are treated similarly. Let us first assume that Ki,j is a fluid-cell and
Ki+1,j a cut-cell, such that σy

i+1,j is cut by the obstacle and ryi+1,j ≤ 0.5, as it is
represented on Figure 4. Then, the discrete obstacle boundary ΓS

h crosses the
line y = yj−1/2. Denoting by ξSi,j−1/2 the horizontal coordinate of the intersec-

tion point, we note that u(ξSi,j−1/2, yj−1/2) is known as Dirichlet boundary con-

ditions are imposed on the obstacle (see (6)). Therefore, {ui,j−1, ui,j , ui,j+1}
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u(ξSi+1,j−1/2, yj−1 + ryi+1,j
h
2
)

u(xi+1, yj−1 + ryi+1,jh)ui,j

ui+1,j−1 ui+2,j−1

ui+1,j

ΓS
h

xi xi+1 xi+2

yj−2

yj−1

yj

Figure 5: Six-point stencil, using the boundary condition on the obstacle ΓS
h , for the

first-order finite difference approximation of ∆u(κy,F
i+1,j). We recall that, in this case,

κ
y,F
i+1,j = (xi+1, yj−1 + r

y
i+1,j

h
2
).

as well as {ui−1,j , ui,j , u(ξ
S
i,j−1/2, yj−1/2)} are aligned so that, in the particular

case represented on Figure 4, a first-order finite difference approximation of
∆u(κy,F

i,j ) is easily obtained by writing

∆u(κy,F
i,j ) ≈

2

(ryi,j+1 + 3)h
2

(
ui,j+1 − uij

(ryi,j+1 + 1)h
2

−
ui,j − ui,j−1

h

)

+
2

(ξSi,j−1/2 − xi−1)

(
u(ξSi,j−1/2, yj−1/2)− ui,j

(ξSi,j−1/2 − xi)
−

ui,j − ui−1,j

ℓi

)
.

(11)

Remaining with the particular case depicted on Figure 4, let us now describe
the approximation of ∆u(κy,F

i+1,j), which is associated with the velocity un-

known ui+1,j . In order to better represent the neighbourhood of κy,F
i+1,j , Figure

4 is enlarged and centered on κ
y,F
i+1,j in order to obtain Figure 5. Bound-

ary conditions at points (xi+1, yj−1 + ryi+1,jh) and (ξSi+1,j−1/2, yj−1 + ryi+1,j
h
2
),

which is the intersection point with the horizontal line y = yj−1 + ryi+1,j
h
2

with the obstacle boundary ΓS
h , can be used. Therefore, the five-point sten-

cil {κy,F
i,j ,κy,F

i+1,j , (ξ
S
i+1,j−1/2, yj−1 + ryi+1,j

h
2
), (xi+1, yj−1 + ryi+1,jh), κ

y,F
i+1,j−1} is

available to write an approximation of ∆u(κy,F
i+1,j). However, as the points

κ
y,F
i,j , κy,F

i+1,j and (ξSi+1,j−1/2, yj−1+ryi+1,j
h
2
) are not aligned a sixth point has to
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be added in order to obtain a first-order scheme. This point is chosen among
{κy,F

i,j±1,κ
y,F
i+2,j−1}. In order to preserve the symmetry of the flow in sym-

metric configurations (geometry, boundary conditions), a criterion must be
imposed to define the sixth point. In our implementation, we choose among
{κy,F

i−1,j±1,κ
y,F
i+2,j−1} the closest point to ΓS

h , which is κ
y,F
i+2,j−1 in the situa-

tion depicted on Figure 5. Finally, we seek for a first-order finite difference
approximation of ∆u(κy,F

i+1,j) of the form

a0 u(κ
y,F
i,j ) + a1 u(κ

y,F
i+1,j) + a2 u(ξ

S
i+1,j−1/2, yj−1 + ryi+1,j

h

2
)

+ a3 u(xi+1, yj−1 + ryi+1,jh) + a4 u(κ
y,F
i+1,j−1)

+ a5 u(κ
y,F
i+2,j−1) = ∆u(κy,F

i+1,j) + O(h, ℓi+1, ℓi+2).

(12)

The coefficients {ai, i = 0, . . . , 5} are computed by solving a sixth-order lin-
ear system derived from (12) in the same spirit as the Immersed Interface
Techniques of Leveque and Li (see [22]). Therefore, for mesh cells close to the
obstacle, a locally first-order error is done. We observe (see numerical results
in Section 4) that this locally first-order truncation error near the obstacle
does not affect the global second-order convergence rate, note that the same
behaviour was observed in [22]. We mention that a similar superconvergence
result has also been proved by Yamamoto in [19] in the context of elliptic
equations.

3.2. The nonlinear (convective) terms

Let a computational volume control Ku,F
ij , which is surrounding the ve-

locity unknown uij, the nonlinear term is discretized by first writing

∫

Ku,F
ij

∇(uu) dx =

∫

∂Ku,F
ij

uu · n ds =
∑

σ∈∂Ku,F
ij

∫

σ

uu · n ds (13)

where n denotes the unit normal vector to the boundary ∂Ku,F
ij , outward

to Ku,F
ij . The computational cell ∂Ku,F

i,j is a polygon (see Figure 6 for an
example) which is bounded by, at most, six edges, namely we write

∂Ku,F
i,j = (∂Ku,F

i,j ∩ ΩF
h ) ∪ (∂Ku,F

i,j ∩ ΩS
h),

= σx,F
i+1/2,j−1 ∪ σx,F

i+1/2,j ∪ σy,F
i−1/2,j ∪ σy,F

i+1/2,j ∪ σu,S
i,j ∪ σu,S

i+1/2,j

(14)
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where

σu,S
i,j = ∂Ku,F

i,j ∩Ki,j
F
∩ ΓS

h ,

σu,S
i+1/2,j = ∂Ku,F

i,j ∩KF
i+1,j ∩ ΓS

h ,

σx,F
i+1/2,j = (xi−1/2, xi+1/2)× {yj} ∩ ΩF

h ,

σy,F
i+1/2,j = {xi+1/2} × (yj−1, yj) ∩ ΩF

h .

In (13), the numerical approximation of
∫
σ
uu · n ds is done by using the

midpoint integration rule, which induces a third-order error. For an edge
shared with the obstacle boundary, we write

∫

σu,S
i,j

uu · n ds ≈ |σu,S
i,j | u(κu,S

i,j )u(κ
u,S
i,j ) · n(κ

u,S
i,j ) (15)

where κu,S
i,j denotes the midpoint of σu,S

i,j . On the other edges, an interpolation
is required in order to obtain an approximation of the velocity at the midpoint
edges. A second-order interpolation is used and the interpolation formulae
depend on how the cells are cut by the obstacle. Let us detail how these
interpolations are performed in the particular case of Figure 6. Noting that
κ

y,F
i,j , κy,F

i+1,j and κ
y,F
i+1/2,j (the σy,F

i+1/2,j midpoint) are aligned, we write

∫

σy,F
i+1/2,j

u2 ds ≈ (ryi,j + ryi+1,j)
h

2

(
ui,j + ui+1,j

2

)2

.

Concerning the contribution of the edge σy,F
i−1/2,j , the points κy,F

i−1,j , κ
y,F
i,j and

κ
y,F
i−1/2,j are not aligned. In this case, we use a third point (here the boundary

value at point κ
u,S
i,j ) in order to obtain a second-order interpolation for the

horizontal velocity at point κy,F
i−1/2,j , namely we write

−

∫

σy,F
i−1/2,j

u2 ds ≈ −h
(
a0 ui,j + a1 u(κ

u,S
i,j ) + (1− a0 − a1) ui−1,j

)2

where 



a0 =
−ryi,j

(rxi,j(r
y
i,j−1)−(ryi,j+1))

,

a1 =
(ryi,j−1)

(rxi,j(r
y
i,j−1)−(ryi,j+1))

.
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ΓS
h

κ
u,S
i,j

κ
u,S
i+1/2,j

ui−1,j

ui,j

ui+1,j

xi−1 xi xi+1

yj−1

yj

Figure 6: A polygonal volume control Ku,F
i,j and the location of the points (black dot)

where the convective fluxes are approximated.

The fluxes on the horizontal edges are treated similarly. Let us denote by
F σ
i,j the discrete flux corresponding to an edge σ ∈ ∂Ku,F

i,j . We easily obtain
the following result which controls the discretization error near the obstcale.
Elsewhere, a second-order approximation is achieved.

Proposition 3.1. Let Ku,F
i,j be a cut-cell and assume that the velocity field

u is sufficiently regular, then we have

1

|Ku,F
i,j |

∣∣∣
∫

Ku,F
i,j

∇(uu) dx−
∑

σ∈∂Ku,F
ij

F σ
i,j

∣∣∣ ≤
ci,j

|Ku,F
i,j |

max (h3, (ℓi + ℓi+1)
3) (16)

where ci,j is a constant depending on high-order derivatives of u.

Proof. By using (13), we have

∫

Ku,F
i,j

∇(uu) dx−
∑

σ∈∂Ku,F
ij

F σ
i,j =

∑

σ∈∂Ku,F
ij

(∫

σ

uu · n ds − F σ
i,j

)

=
∑

σ∈∂Ku,F
ij

(∫

σ

uu · n ds − |σ| u(κσ)u(κσ) · n(κσ)

)

+
∑

σ∈∂Ku,F
ij

(
|σ| u(κσ)u(κσ) · n(κσ)− F σ

i,j

)
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where κσ denotes the midpoint of σ. The first term above corresponds to
the error due to the midpoint integration rule while the second one is an
interpolation error. It follows easily

∣∣∣
∫

Ku,F
i,j

∇(uu) dx−
∑

σ∈∂Ku,F
ij

F σ
i,j

∣∣∣ ≤
∑

σ∈∂Ku,F
ij

|σ|
(
c0,σ|σ|

2 + c1,σ max (h2, (ℓi + ℓi+1)
2)
)

which completes the proof.

In (16), the right-hand side is first-order as long as the cut-cell Ku,F
i,j is

such that
∃ c′i,j > 0 such that |Ku,F

i,j | ≥ c′ij h(ℓi + ℓi+1).

The above condition may be locally violated in the numerical simulations. In-
deed, a cut-cell can be as small as we want. However, this phenomena should
be a marginal one and was never encountered in the numerical simulations
performed in this paper.

3.3. The pressure gradient

Let a computational volume control Ku,F
ij . The approximation of the

mean pressure gradient over Ku,F
i,j depends on the location of the mesh cell

Ki,j with respect to the obstacle. If Ki,j is sufficiently far from the obstacle
so that both Ki,j and Ki+1,j are fluid cells, that is (Ki,j ∪Ki+1,j) ⊂ ΩF

h , then
the following classical second-order approximation is used

1

|Ku
i,j|

∫

Ku
i,j

∂P

∂x
dx =

1

|Ku
i,j|

∫

∂Ku
i,j

P nx ds ≈ 2
(Pi+1,j − Pi,j)

(ℓi + ℓi+1)
. (17)

If either Ki,j or Ki+1,j are cut-cell, the following pointwise approximation is
applied

1

|Ku,F
i,j |

∫

Ku,F
i,j

∂P

∂x
dx ≈

∂P

∂x
(κy,F

i,j )

which is a first-order approximation. Combining the standard finite differ-
ence approximation with a second-order interpolation, we define the discrete
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horizontal component of the pressure gradient at point κy,F
i,j by

(GxP )i,j =





(1 + ryij)
Pi+1,j−Pi,j

ℓi+ℓi+1
+ (1− ryij)

Pi+1,j−1−Pi,j−1

ℓi+ℓi+1

if di,j−1 < 0 and di,j > 0,

(1 + ryij)
Pi+1,j−Pi,j

ℓi+ℓi+1
+ (1− ryij)

Pi+1,j+1−Pi,j+1

ℓi+ℓi+1

if di,j−1 > 0 and di,j < 0,

2
(Pi+1,j−Pi,j)

(ℓi+ℓi+1)
elsewhere.

(18)

The vertical component of the pressure gradient is discretized similarly at
point κx,F

i,j and, its discrete approximation is denoted by (GyP )i,j.

3.4. The continuity equation

As in the classical MAC scheme on cartesian grids, the discrete divergence
is obtained by integration over a computational cell KF

ij , namely we write
∫

KF
ij

div(u) dx =
∑

σ∈∂KF
ij

∫

σ

u · n ds, (19)

where n denotes the unit normal vector to the boundary ∂KF
ij , outward to

KF
ij . The computational cell KF

i,j is a polygon which is bounded by at most
five edges, namely

∂KF
i,j = σx,F

i,j−1 ∪ σx,F
i,j ∪ σy,F

i−1,j ∪ σy,F
i,j ∪ σS

i,j (20)

where σS
i,j = ∂KF

i,j ∩ ΓS
h . With the use of the midpoint integration rule in

(19), we derive the discrete version of the continuity equation in the cell KF
i,j,

namely
(Du)i,j + |σS

i,j|u(κ
S
i,j) · n(κ

S
i,j) = 0. (21)

where (Du)i,j = ℓi(r
x
i,jvi,j − rxi,j−1vi,j−1) + h(ryi,jui,j − ryi−1,jui−1,j).

3.5. The velocity correction step

In projection schemes, the intermediate velocity ũ is corrected with the
help of the pressure gradient in order to obtain a free-divergence velocity field.
For the horizontal velocity, the correction step is discretized by integration
of (8) over each edges σy,F

ij , namely we write
∫

σy,F
ij

(
u− ũ+

2

3
δt

∂

∂x
(δP k+1)

)
dy = 0 (22)
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where δP k+1 = P k+1 − P k. The discrete version of (22) follows by writing

uij − ũij +
2

3
δt(GxδP

k+1)i,j = 0 (23)

and similarly for the vertical velocity component

vij − ṽij +
2

3
δt(GyδP

k+1)i,j = 0. (24)

By reporting (23) and (24) in the definition of (Du)ij above, and using (21),
we derive

ℓir
x
i,j (GyδP

k+1)i,j − ℓir
x
i,j−1 (GyδP

k+1)i,j−1 + hryi,j (GxδP
k+1)i,j

−hryi−1,j (GxδP
k+1)i−1,j =

3

2δt
(Dũ)i,j +

3

2δt
|σS

i,j|u(κ
S
i,j) · n(κ

S
i,j).

(25)

which is a discrete Poisson equation satisfied by the pressure increment δP k+1

in a computational cut-cell KF
i,j. Note that if KF

i,j is a fluid-cell, that is
KF

i,j ∩ ΩS
h = ∅, equation (25) reduces to

ℓi
δP k+1

i,j+1 − δP k+1
i,j

h
− ℓi

δP k+1
i,j − δP k+1

i,j−1

h
+ 2h

δP k+1
i+1,j − δP k+1

i,j

ℓi + ℓi+1

− 2h
δP k+1

i,j − δP k+1
i−1,j

ℓi + ℓi−1

=
3

2δt
(ℓi(ṽi,j − ṽi,j−1) + h(ũi,j − ũi−1,j)) .

(26)

The linear system formed with (26) in fluid-cells and (25) in cut-cells is non-
symmetric. The lost of symmetry is due to the presence of the obstacle. As
for the classical MAC scheme, the resolution of this linear system ensures
that the incompressiblity condition is enforced up to the computer accuracy.

3.6. A direct solver for the non-symmetric linear systems

In this section we describe the fast solver used to run the simulation. The
algorithm is inspired from the capacitance matrix method (see [20] and [21])
and has been adapted for the case of non regular grids.

We detail the algorithm developed for the elliptic system (25) solved to
compute the pseudo-pressure δP k+1; similar methods for parabolic problems
(see [23]) have been used for the velocity components equations derived from
the temporal (see section 2.2) and spatial (see section 3.1) discretization.

For the sake of conciseness, we denote ϕ = δP k+1 in the following.
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The linear system (26) is equivalent with the following:

ϕi,j − ϕi,j−1

h2
+

ϕi,j − ϕi,j+1

h2

+ 2
ϕi,j − ϕi−1,j

ℓi(ℓi + ℓi−1)
+ 2

ϕi,j − ϕi+1,j

ℓi(ℓi+1 + ℓi)
= (rhs)i,j

(27)

for indices i, j such that xi−1/2,j−1/2 ∈ ΩF
h are far from the obstacle.

Remark 1. For the points close to the obstacle, equations differ from (27)
due to the presence of ratios rxij 6= 1 or ryij 6= 1 in (18).

Let us mention that the formulae also differ from (27) for points which
are close to the boundary Γ, since one of the neighbour of i, j is out of the
computational domain. For such points, one (at least) of the four terms
ϕi,j − ϕi,j−1

h2
,
ϕi,j − ϕi,j+1

h2
, 2

ϕi,j − ϕi−1,j

ℓi(ℓi + ℓi−1)
, 2

ϕi,j − ϕi+1,j

ℓi(ℓi+1 + ℓi)
must be removed in

equation (27).

Remark 2. The resulting linear system is singular, we then replace the first
equation by ϕ1,1 = 0 to insure existence and uniquess of the solution.

We now complete this linear system with the following set of equations:

ϕi,j − ϕi,j−1

h2
+

ϕi,j − ϕi,j+1

h2
+ 2

ϕi,j − ϕi−1,j

ℓi(ℓi + ℓi−1)
+ 2

ϕi,j − ϕi+1,j

ℓi(ℓi+1 + ℓi)
= 0 (28)

for subscripts i, j such that Ki,j ⊂ ΩS.
Equations described in remark 2, in equations (27) and (25) (for cut-cells),

and in equations (28) can be described by a linear system of K equations
with K unknowns, with K = N × M , where the unknowns inside/outside
the obstacle are decoupled . Thus, the solution in the fluid (i.e. outside the
obstacle) is the original solution of (25).

Let us consider the matrix G ∈ MK,K(R) of the discretization of the
same elliptic operator on the whole domain (0, L)×(0, H) with homogeneous
Neumann boundary conditions on ∂ ((0, L)× (0, H)), with the first line of
the system replaced by ϕ1,1 = 0 as explained by Remark 2. This matrix G
corresponds to the linear system which should be solved in the case where
there were no obstacle in the domain. We denote by x the vector of RK

containing the values of ϕi,j for i = 1, · · · , N and j = 1, · · · ,M . If the
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matrix formulation of this linear system described in remark 2, in equation
(27), (25) and (28) is

Ξx = z, (29)

then Ξ and G are identical, except on the rows corresponding to the boundary
condition on the obstacle. We denote n1 the number of rows where Ξ − G
has nonvanishing coefficients.

Remark 3. Since the boundary of the obstacle is a one-dimensional smooth
curve in R

2, we have n1 = O(Π) with Π = max(M,N). Moreover, the
number of nonvanishing entries on each of the rows of Ξ−G is bounded.

We now use these observations to propose a fast solver for (29). First,
note that (29) is equivalent with the following system:

Gx = z̃, (30)

z̃ = z −Qy, (31)

Qy = (Ξ−G)x, (32)

where y ∈ R
n1 collects the possible nonvanishing values of (Ξ − G)x and Q

is a matrix of dimensions K ×n1 with one nonvanishing coefficient (equal to
one) on each column, which then satisfies the following properties:

QtQ = In1
(33)

and

QQt(Ξ−G) = Ξ−G. (34)

Now, (32) reads

y −Qt(Ξ−G)x = 0. (35)

Inserting (30) and (31) into (35) leads to

(
In1

+Qt(Ξ−G)G−1Q
)
y = Qt(Ξ−G)G−1z. (36)

It can be proved as in [23] that the matrix (In1
+ Qt(Ξ − G)G−1Q) is a

nonsingular matrix of dimension n1.
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We now explain how one can efficiently compute x using (36), (31), and
(30). First, we need to compute In1

+Qt(Ξ−G)G−1Q. Let D1 stand for the
matrix

D1 =
1

h2




1 −1 0 · · · 0

−1 2
. . .

...

0
. . . . . . . . . 0

...
. . . 2 −1

0 · · · 0 −1 1




∈ MM,M(R).

This matrix corresponds up to a coefficient −1 to the discretized Laplace
operator with Neumann boundary conditions in one-space dimension. Let
V ∈ MM,M(R) denote the matrix made of an orthonormal basis of eigenvec-
tors of D1:

Vij = ηj cos

(
(j − 1)(i− 1

2
)π

M

)
∀ 1 ≤ i, j ≤ M, (37)

where the positive number ηj is chosen such that each column Vj satisfies:
‖Vj‖2 = 1, namely:

η1 =

√
1

M
, (38)

ηj =

√
2

M
∀ 2 ≤ j ≤ M. (39)

Then we have:

V −1 = V t,

V tD1V = Λ,

where the diagonal matrix Λ = diag(λ1, · · · , λM) ∈ MM,M(R) collects the

eigenvalues λi = 4
h2 sin

2
(

(i−1)π
M

)
of D1. Let W ∈ MK,K(R) be the block

diagonal matrix, with N diagonal blocks equal to V :

W =




V O · · · · · · O

O
. . .

...
...

. . .
...

...
. . . O

O · · · · · · O V




∈ MK,K(R).
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Let D2 ∈ MK,K(R) be the matrix defined by:

D2 =




Λ̃1 −U1 O · · · O

−L2
. . . . . .

...

O
. . . . . . . . . O

...
. . . . . . −UN−1

O · · · O −LN Λ̃N




∈ MK,K(R)

with

Li =
2

ℓi(ℓi + ℓi−1)
IM ∈ MM(R),

Ui =
2

ℓi(ℓi + ℓi+1)
IM ∈ MM(R),

Λ̃1 = U1 + Λ =
2

ℓ1(ℓ1 + ℓ2)
IM + Λ ∈ MM(R),

Λ̃N = LN + Λ =
2

ℓN(ℓN−1 + ℓN)
IM + Λ ∈ MM(R),

∀1 < i < N Λ̃i = Li + Ui + Λ =
2(ℓi−1 + 2ℓi + ℓi+1)

ℓi(ℓi + ℓi−1)(ℓi + ℓi+1)
IM + Λ ∈ MM(R).

One can see that
W tGW = D̃2,

where the matricies D2 and D̃2 differ on the first row and on the first column
(due to the specific modification made on the matrix G to insure its non-
singularity, see remark 2).

Thus, we have

In1
+Qt(Ξ−G)G−1Q = In1

+Qt(Ξ−G)W tD̃−1
2 WQ.

We now show how one can compute this matrix in O(Π3) floating point
operations:
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• The computation of WQ ∈ MK,n1
(R) requires the computation of

the eigenvectors of D1 given by (37) (this gives O(M2) floating point
operations). Note that each column of WQ is a vector in R

K with M
nonvanishing coefficients at most.

• The UL factorization of D̃2 allows to solve linear systems associated
with this matrix in O(K) floating point operations, since the profiles
of the matrices U and L of this factorization are the same as the profile
of the matrix D̃2. Thus, for each column w of WQ, we need O(K)
floating point operations to compute D̃−1

2 w; this gives O(n1K) floating
point operations for the computation of D̃−1

2 WQ ∈ MK,n1
.

• By Remark 3, we see that (Ξ−G)W t can be computed in O(K) floating
point operations, and so the matrix Qt(Ξ − G)W t ∈ Mn1,K can be
computed in O(K) operations and has at most O(Π) nonvanishing
coefficients on each of its rows.

• Finally, the product of Qt(Ξ−G)W t by D̃−1
2 WQ can be computed in

O(n1Π
2) floating point operations, and since this matrix is inMn1,n1

(R),
its LU -factorization can also be computed in O(n3

1) floating point op-
erations.

We then needO(Π3) floating point operations to compute the LU -factorization
of the matrix on the left-hand side of (36). This preprocessing step is done
once (for all) at the beginning of the code.

For each time iteration, the computation of the pseudo-pressure requires
to compute the right-hand side of (36) and then to solve the linear system
in (36) using the LU -factorization of (In1

+ Qt(Ξ − G)G−1Q) computed in
the preprocessing step. The computation of G−1z requires O(NM logM) =
O(K logM) floating point operations using fast Fourier transforms (see [24],
[25]), and the product by Qt(Ξ−G) requires O(n1) operations (using again
Remark 3). We then need O(K logM) floating point operations to compute
y in (36); it then takes another O(K logM) operations to compute x in (30)
(the computation of (31) being neglectible).

Similar strategies can be written to compute the predictor of the velocity
components, since the discretized systems satisfied by this vectors are similar
to the discretization of parabolic problems (see [23]).

Computing the solution at final time T then requires O(Π3) floating point
operations for the preprocessing step and O(δt−1Π2(logM)) floating point
operations for N = Tδt−1 time-steps.
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4. Numerical results

4.1. Taylor-Couette flow

As in [16], we run numerical tests on the Taylor-Couette flow between
two concentric circular cylinders to study the convergence of the scheme.

Respective radii are R1 = 1 and R2 = 4. The larger cylinder does not
move, the smaller rotates with an angular velocity ω0 equal to 1. This flow
is characterized by the Taylor number Ta defined by

Ta =
ω0

2(R1 +R2)(R2 −R1)
3

2ν2
.

The fluid viscosity ν is adjusted so that Ta = 1000. According to [26],
the flow converges to a steady state for Ta smaller than the critical value
Tac = 1712. In this case, the steady state is given by:

u(x, y) = ω(r)
(
− (y − yC) , (x− xC)

)t

with
r =

√
(x− xC)2 + (y − yC)2, ω(r) = K(R2

2 − r2)/r2

and the pressure is given by

p(r) = K2

(
r2

2
−

R2
4

2r2
−R2

2log(r2)

)
,

where
K = ω0R1

2/(R2
2 −R1

2).

The computational domain Ω = (−5, 5)2 is discretized with uniform meshes
of size h = 10/N, N ∈ {48, 64, 96, 128, 192, 256, 384, 512}, and, for every
simulation, the time-step δt is 2.5 10−3.

The center of the cylinders is C = (1.3 10−2 , 2.3 10−2)t, it does not
coincide with any grid point as in [16]. We have computed a discrete version
of the L∞-error for velocity and pressure in the whole fluid domain, even in
cells cut by the cylinders, namely:

max
(i, j)s.t.

xi−1/2, yj−1/2 ∈ ΩF

(Pi,j − P (xi−1/2, yj−1/2))

for the pressure, and analoguously for the velocity components, including the
shifted points close to the obstacle.

As shown on the Figure 7, the second-order convergence in space is ob-
served.
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Figure 7: Taylor-Couette flow at Ta = 103: error versus grid size for velocity (circles) and
pressure (squares) fields. Dashed line represents second-order slope.

4.2. Flow past a circular cylinder

In this section, we present some numerical simulations of flows past a
fixed circular cylinder for Reynolds number up to 9 500. The horizontal
free stream velocity u∞ and the cylinder diameter are equal to 1. Specific
boundary conditions (b.c.) are used on the different part of ∂ΩF : uniform
velocity profil (u∞, 0) on inflow plan, convective outflow b.c. at the exit plan,
slip b.c. (∂yu = 0, v = 0) on top and bottom of the domain, and no slip b.c.
on the obstacle u = 0. Several characteritic dimensions are defined for this
flow, based on the stationnary state (see figure 8): the recirculation length l,
the distance cylinder-vortex a, the distance between the two vortices b and
the separation angle θ. Drag and lift coefficients (Cd , Cl) are computed

Figure 8: Characteristic dimensions of a stationary flow past a circular cylinder.
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from the force applied by the fluid on the obstacle

Ffluid/obst. =

∫

ΓS

(
−pn+ ν

∂u

∂n

)
dσ. (40)

In the present situation, the computation of Cd and Cl reduces to Cd =
2Ffluid/obst. · (1, 0) and Cl = 2Ffluid/obst. · (0, 1) (see [26], [27] and [28]). The
computation of (40) is achieved by using first-order approximations of p and
∂u
∂n

on each cut-cell.

4.2.1. Solution at Re = 40

Numerical results on square computational domains Ω = (−L,L)2 with
L ∈ {5, 10, 15, 20, 25, 30, 35, 40} show the influence of the boundary condi-
tions on the development of the flow. The mesh size h ranges from ≈ 7.8 10−2

for the coarsest mesh to h ≈ 2.6 10−2 for the finest mesh. The number of grid
points (resp. number of cut-cells) ranges from 1282 to 30722 (resp. 52 and
156). The time-step is chosen so that the CFL number does not exceed 0.5
during the whole simulation. We observe in Table 1 that the drag coefficient
is overestimated when the computational domain is not wide enough. For
finest mesh and wider domains, the drag coefficient converges to the value
of 1.50 which is selected for the comparison with the other results found
in the literature. Results obtained with the present method with the finest

L = 5 L = 10 L = 15 L = 20 L = 25 L = 30 L = 35 L = 40
h = 10/128 1.734 1.568 1.524 1.505 1.494 1.487 1.482 1.479
h = 10/192 1.730 1.565 1.522 1.503 1.492 1.485 1.481 1.477
h = 10/256 1.748 1.582 1.538 1.519 1.508 1.502 1.497 1.493
h = 10/384 1.758 1.591 1.547 1.528 1.517 1.510 1.505 1.502

Table 1: Grid convergence for the flow past a circular cylinder at Re = 40: drag coefficient
as a function of h and L.

grid (L = 40 and h = 10/384) present a good agreement with other numer-
ical and experimental results reported in Table 2. Figure 9 shows velocity
streamlines and pressure contours close to the cylinder. The pressure field is
well resolved, there is no oscillation even close to the obstacle.

4.2.2. Solution at Re = 200

While the flow stays perfectly symmetric at Reynolds number 40, the
symmetry of the flow is lost after a long time simulation at Re = 200 due
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Cd θ l a b
Bouard et al [29] - 53.8 2.13 0.76 0.59
Dennis et al [30] 1.52 53.8 2.35 - -
Ding et al [31] 1.58 52.8 2.32 - -
Fornberg [32] 1.50 55.6 2.24 - -
Linnick et al [33] 1.54 53.6 2.28 0.72 0.60
Taira et al [34] 1.55 54.1 0.73 0.60
Ye et al [12] 1.52 - 2.27 - -
Present study 1.50 53.4 2.26 0.71 0.60

Table 2: Flow past a circular cylinder at Re = 40: comparison of characteristic dimensions
of the flow and drag coefficient with literature. Dashes corresponds to unavailable results.

Figure 9: Flow past a circular cylinder at Re = 40: streamlines (left) and pressure contours
(right).
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to rounding errors inherent in computer calculations. The vortex shedding
appears earlier if an artificial perturbation is used at the beginning of the
simulation, but the numerical results obtained in both cases are the same
for large times of simulation. As the flow reaches a periodic steady state,
the drag and lift coefficients are computed as well as the Strouhal number
St defined as the oscillation period of the lift coefficient. Table 3 contains
results available in the literature obtained by other numerical methods or
experiments. We found a good agreement with results obtained on the finest
grid (L = 40 and h = 10/384). Figure 10 shows velocity streamlines and

Cd Cl St
Belov et al [35] 1.19 ± 0.042 0.64 0.193
Linnick et al [33] 1.34 ± 0.044 0.69 0.197
Liu et al [36] 1.31 ± 0.049 0.69 0.192
Rogers et al [37] 1.23 ± 0.05 0.65 0.185
Taira et al [34] 1.36 ± 0.043 0.69 0.197
Present study 1.380 ± 0.0445 0.678 0.197

Table 3: Flow past a circular cylinder at Re = 200: comparison of drag coefficient, lift
coefficient and Strouhal number with literature.

pressure contours close to the cylinder.

Figure 10: Flow past a circular cylinder at Re = 200: streamlines (left) and pressure
contours (right) at time t = 100.

4.2.3. Solution at Re = 9500

The flow past a circular cylinder at Reynolds number 9 500 is simulated
to show the robustness of the scheme. Many complex vortex strutures appear
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close to the obstacle (see figure 11). This challenging test has been investi-
gated by many author, some comparisons can be found in the literature (see
[27], [28], [38], [39], [40], [41]). In the Figure 11, velocity streamlines obtained
with the present numerical method is compared with the experimental re-
sults given in [39]. For this numerical simulation, the computational domain
is Ω = (−5, 5)× (−2.5, 2.5). The grid is uniform in the vertical direction and
non-uniform in the horizontal direction. Square cells of size h = 5/3072 are
used in the vicinity of the obstacle. The value of the time step, satisfying
a CFL stability condition, is 10−4. This excellent agreement suggests the
accuracy of the present scheme.

4.3. NACA aerofoil at Reynolds number Re = 1000

We have also studied the flow past a NACA aerofoil 0012 at incidence 34
degres for Re = 1 000 (see [41], [42]). A Karman vortex street develops behind
the obstacle (see Figure 12): the flow is well resolved even near the sharp
ending edge. For these numerical simulations, the computational domain is
Ω = (−5, 5)× (−2.5, 2.5) and the mesh size near the obstacle is 5/3072. The
value of the time step, satisfying a CFL stability condition, is 10−4.

5. Concluding remarks and perspectives

We have presented a new cut-cell method for the simulation of flows past
obstacles. The equations near the obstacle are discretized with first-order
formulae, but the overall second-order accuracy in space is still observed on
numerical tests. This new scheme is also validated on flows at moderate and
high Reynolds numbers. Results found in literature are compared with the
present method and a good agreement is observed.

This method can easily be adapted to moving obstacles problems by lev-
elset methods (see [18]), since the signed distance function defined in (4) is a
particular levelset function defining the boundary ΓS. For this case of moving
boundary problems, iterative solvers for the non symmetric linear systems
should be preferred to the direct method described in Section 3.6, in order
to avoid the “preprocessing step” in O(Π3) floating operations which should
be performed at each time-step to take into account the new position of the
boundary.
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(a)

(b)

(c)

(d)

Figure 11: Flow past a circular cylinder at Re = 9 500. Experimental results from Bouard
and Coutanceau [39] (left) and streamlines obtained with the present numerical method
(right). Comparison at time (a) t = 0.75, (b) t = 1.0, (c) t = 1.25, (d) t = 1.5.
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Figure 12: Flow past a NACA aerofoil at Re = 1 000, adimensional time t = 3.2.
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