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Adaptive wavelet deconvolution

for strongly mixing sequences

Christophe Chesneau

Abstract: This paper studies the estimation of a density in the

convolution density model from weakly dependent observations.

The ordinary smooth case is considered. Adopting the minimax

approach under the mean integrated square error over Besov

balls, we explore the performances of two wavelet estimators: a

standard linear one based on projections and a new non-linear

one based on a hard thresholding rule. In particular, under

strong mixing conditions, we prove that our hard thresholding

estimator attains a particular rate of convergence: the optimal

one in the i.i.d. case up to a logarithmic term.

Key words and phrases: Deconvolution, Strongly mixing, Adap-

tivity, Wavelets, Hard thresholding.

AMS 2000 Subject Classifications: 62G07, 62G20.

1 Introduction

Let (Yv)v∈Z be a strictly stationary process such that, for any v ∈ Z,

Yv = Xv + εv, (1.1)

(Xv)v∈Z are identically distributed random variables and (εv)v∈Z are identi-

cally distributed random variables, also independent of (Xv)v∈Z. The den-

sity of X0 is unknown and denoted f . The one of ε0 is known, denoted g

and satisfies the ordinary smooth case i.e. the Fourier coefficients of g have
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a polynomial decrease (see Section 2). The goal is to estimate f when only

n random variables Y1, . . . , Yn of (Yv)v∈Z are observed.

When (Yv)v∈Z are i.i.d., (1.1) becomes the standard convolution density

model studies in many papers. See e.g. [1], [9], [21], [10], [11], [4], [7] and

[14]. Since the i.i.d. assumption is not realistic in some applications, several

authors have investigated the dependent case. We refer to e.g. [17, 18], [5],

[13] and [24]. In particular, under strong mixing conditions on (Yv)v∈Z, van

Zanten and Zareba [24] have developed a new linear wavelet estimator for f

in (1.1). Taking the mean integrated square error (MISE) over Besov balls,

[24, Theorems 3.1 and 3.2] show that it attains a sharp rate of convergence.

However, this rate is deteriorated by the considered dependence condition

and it is slower than the optimal one related to the i.i.d. case.

In this paper, we provide two complementary contributions to the wavelet

estimation of f in the strong mixing case:

1. We extend [24, Theorems 3.1 and 3.2]. More precisely, we prove that

the linear wavelet estimator developed by [10] attains the standard rate

of convergence i.e. the optimal one in the i.i.d. case. It is constructed

from the Daubechies wavelet basis instead of the Meyer wavelet basis

as in [24]. The properties of this basis allows us to apply sharp prob-

abilistic inequalities which improve the performance of the considered

linear wavelet estimator.

2. We treat the adaptive estimation of f . To the best our knowledge,

this has not been addressed earlier via wavelets and for the ordinary

smooth case (the supersmooth case has been done by [24]). We develop

a new wavelet hard thresholding estimator and prove that it attains

a sharp rate of convergence, close to the one attained by our linear

wavelet estimator. The difference is an extra logarithmic term. And

only this logarithmic term is deteriorated by the dependence of the

observations.

The rest of the paper is organized as follows. Section 2 is devoted to the

assumptions on (1.1) (strong mixing, ordinary smooth case, . . . ). In Section
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3, we present wavelets and Besov balls. The considered wavelet estimators

(linear and hard thresholding) are defined in Section 4. Our upper bounds

results are set in Section 5. The proofs are postponed in Section 6.

2 Assumptions on the model

2.1 Assumptions on f and g

We suppose that the support of f is included in [−Ω,Ω] and that there exists

a constant C > 0 such that

sup
x∈R

f(x) ≤ C <∞. (2.1)

We define the Fourier transform of an integrable function h by

F(h)(x) =

∫ ∞
−∞

h(y)e−ixydy, x ∈ R.

The notation · will be used for the complex conjugate.

The ordinary smooth case on g is considered: we assume that there exist

three constants C > 0, c > 0 and δ > 1 such that, for any x ∈ R,

• the Fourier transform of g satisfies

| F(g)(x)| ≥ c

(1 + x2)δ/2
, (2.2)

• for any ` ∈ {0, 1, 2}, the `-th derivative of the Fourier transform of g

satisfies

lim
x→0
|(F(g)(x))(`)| ≤ C, lim

x→∞
|x|δ+`|(F(g)(x))(`)| = C. (2.3)

These assumptions control the decay of the Fourier coefficients of g and, a

fortiori, the smoothness of g. They are similar to those considered in [10,

(B2) and (B3)].

A simple example is the Laplace density: g(x) = (1/2)e−|x|, x ∈ R. We

have F(g)(x) = 1/(1 + x2), x ∈ R, so g satisfies (2.2) and (2.3) with δ = 2.
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2.2 Dependence assumptions

1. Strongly mixing case. For any m ∈ Z, we define the m-th strongly

mixing coefficient of (Yv)v∈Z by

am = sup
(A,B)∈FY−∞,0×FYm,∞

|P(A ∩B)− P(A)P(B)| ,

where, for any u ∈ Z, FY−∞,u is the σ-algebra generated by . . . , Yu−1, Yu

and FYu,∞ is the σ-algebra generated by Yu, Yu+1, . . .

We formulate the two following assumptions :

• there exist two constants γ ∈ (0, 1) and C > 0 such that

∞∑
m=1

mγaγm ≤ C. (2.4)

• there exist three constants γ > 0, c > 0 and θ > 0 such that, for

any m ∈ Z,

am ≤ γexp(−c|m|θ). (2.5)

Such strongly mixing conditions are satisfied by some GARCH pro-

cesses. See e.g. [23], [8], [20] and [2]. Remark that, for (2.5), the

standard i.i.d. case corresponds to θ →∞.

Naturally, (2.5) implies (2.4).

2. Let q be the density of Y0 and, for any m ∈ Z, q(Y0,Ym) be the one of

(Y0, Ym). We suppose that there exists a constant C > 0 such that

sup
m∈Z

sup
(x,y)∈[0,1]2

|q(Y0,Ym)(x, y)− q(x)q(y)| ≤ C. (2.6)

Assumptions (2.4) and (2.6) are similar to those used in [17].
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3 Wavelets and Besov balls

Let N ∈ N∗, and φ and ψ be the Daubechies wavelets dbN . We chose N

such that φ ∈ Cυ and ψ ∈ Cυ for υ > 1 + δ where δ refers to (2.2) and (2.3).

Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ and a set of consecutive integers Λj with a

length proportional to 2j such that, for any integer ` ≥ τ , the collection

B = {φ`,k(.), k ∈ Λ`; ψj,k(.); j ∈ N− {0, . . . , `− 1}, k ∈ Λj}

is an orthonormal basis of L2([−Ω,Ω]) = {h : [−Ω,Ω]→ R;
∫ Ω
−Ω h

2(x)dx <

∞}. We refer to [3] and [16].

Note that this wavelet basis satisfies [10, (A2) and (A3)].

For any integer ` ≥ τ , any h ∈ L2([−Ω,Ω]) can be expanded on B as

h(x) =
∑
k∈Λ`

α`,kφ`,k(x) +
∞∑
j=`

∑
k∈Λj

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ Ω

−Ω
h(x)φj,k(x)dx, βj,k =

∫ Ω

−Ω
h(x)ψj,k(x)dx. (3.1)

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to Bs
p,r(M) if

and only if there exists a constant M∗ > 0 (depending on M) such that the

associated wavelet coefficients (3.1) satisfy

2τ(1/2−1/p)

∑
k∈Λτ

|ατ,k|p
1/p

+

 ∞∑
j=τ

2j(s+1/2−1/p)

∑
k∈Λj

|βj,k|p
1/p


r

1/r

≤M∗.

In this expression, s is a smoothness parameter and p and r are norm pa-

rameters. Besov balls contain the Hölder and Sobolev balls. See e.g. [19]

and [16].
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Details and results on wavelets in nonparametric estimation can be found

in [12].

4 Estimators

For any integer j ≥ τ , k ∈ Λj , υ ∈ {φ, ψ} and y ∈ R, set

(Kυ)j,k(y) =
1

2π

∫ ∞
−∞

F (υj,k)(x)

F(g)(x)
e−ixydx. (4.1)

We estimate the unknown wavelet coefficients αj,k =
∫ Ω
−Ω f(x)φj,k(x)dx

and βj,k =
∫ Ω
−Ω f(x)ψj,k(x)dx by respectively

α̂j,k =
1

n

n∑
v=1

(Kφ)j,k(Yv), β̂j,k =
1

n

n∑
v=1

(Kψ)j,k(Yv). (4.2)

Statistical properties of these estimators are given in Propositions 6.1, 6.2

and 6.3 below.

Suppose that (2.2) and (2.3) are satisfied and f ∈ Bs
p,r(M) with p ≥ 2.

We define the linear wavelet estimator f̂L by

f̂L(x) =
∑
k∈Λj0

α̂j0,kφj0,k(x), (4.3)

where j0 is the integer such that

1

2
n1/(2s+2δ+1) < 2j0 ≤ n1/(2s+2δ+1).

This estimator is the one in [10, eq (4)] with i.i.d. Y1, . . . , Yn.

Suppose that (2.2), (2.3) and (2.5) are satisfied. We define the hard

thresholding estimator f̂H by

f̂H(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1I{|β̂j,k|≥κλj}ψj,k(x), (4.4)

where, for any random event A, 1IA is the indicator function on A, j1 is the

integer satisfying

1

2

(
n

(lnn)1+1/θ

)1/(2δ+1)

< 2j1 ≤
(

n

(lnn)1+1/θ

)1/(2δ+1)

,
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κ is a large enough constant (the one in Proposition 6.3 below) and

λj = 2δj

√
(lnn)1+1/θ

n
. (4.5)

Note that, if θ → ∞ (the i.i.d. case), f̂H becomes the hard thresholding

estimator considered by [10].

5 Upper bounds

Theorem 5.1 (Upper bound for f̂L) Consider (1.1) under the assump-

tions (2.1), (2.2), (2.3), (2.4) and (2.6). Suppose that f ∈ Bs
p,r(M) with

s > 0, p ≥ 2 and r ≥ 1. Let f̂L be (4.3). Then there exists a constant C > 0

such that

E
(∫ Ω

−Ω

(
f̂L(x)− f(x)

)2
dx

)
≤ Cn−2s/(2s+2δ+1).

The rate of convergence n−2s/(2s+2δ+1) is the optimal one in the minimax

sense when Y1, . . . , Yn are i.i.d. (see [10, Theorem 2]). Theorem 5.1 proves

that our wavelet linear estimator f̂L attains this rate without deterioration.

This extends the results [24, Theorems 3.1 and 3.2].

Theorem 5.2 (Upper bound for f̂H) Consider (1.1) under the assump-

tions (2.1), (2.2), (2.3), (2.5) (implying (2.4)) and (2.6). Let f̂H be (4.4).

Suppose that f ∈ Bs
p,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and

s > (2δ + 1)/p}. Then there exists a constant C > 0 such that

E
(∫ Ω

−Ω

(
f̂H(x)− f(x)

)2
dx

)
≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

Theorem 5.2 shows that, besides being adaptive, f̂H attains a rate of

convergence close to the one of f̂L. The only difference is the logarithmic

term (lnn)(1+1/θ)(2s/(2s+1)).

Note that, if we restrict our study to the independent case i.e. θ → ∞,

((lnn)1+1/θ/n)2s/(2s+2δ+1) = (log n/n)2s/(2s+2δ+1) and this is the standard

one for the corresponding hard thresholding estimator. See [10, Theorem 7].
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6 Proofs

In this section, C denotes any constant that does not depend on j, k and n.

Its value may change from one term to another and may depends on φ or ψ.

6.1 Auxiliary results

We will need [10, Lemma 6]. The proof is based on some properties of B, the

ordinary smooth conditions (2.2), (2.3) and a double integration by parts.

Lemma 6.1 ([10]) Suppose that (2.2) and (2.3) hold. Consider the wavelet

basis B defined in Section 3. For any integer j ≥ τ , k ∈ Λj, υ ∈ {φ, ψ} and

y ∈ R, let (Kυ)j,k(y) be (4.1). Then there exists a constant C > 0 such that

|(Kυ)j,k(y)| ≤ C2j(1/2+δ) 1

(1 + |2jy − k|)2
.

Proposition 6.1 Consider (1.1) under the assumptions (2.1), (2.2), (2.3),

(2.4) and (2.6). For any integer j ≥ τ such that 2j ≤ n and k ∈ Λj, let αj,k

be the wavelet coefficient (3.1) of f and α̂j,k be (4.2). Then there exists a

constant C > 0 such that

E
(
|α̂j,k − αj,k|2

)
≤ C22δj 1

n
.

This inequality holds for β̂j,k (4.2) instead of α̂j,k and βj,k instead of αj,k.

Proof of Proposition 6.1. First of all, let us prove that α̂j,k is an unbiased

estimator for αj,k. Since X0 and ε0 are independent, we have E
(
e−ixY0

)
=

E
(
e−ixX0

)
E
(
e−ixε0

)
= F(f)(x)F(g)(x). This combined with the Fubini

theorem and the Parseval-Plancherel theorem yield

E (α̂j,k) =
1

2π

∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
E
(
e−ixY0

)
dx

=
1

2π

∫ ∞
−∞
F (φj,k)(x)F(f)(x)dx

=
1

2π

∫ ∞
−∞
F (φj,k)(x)F(f)(x)dx =

∫ Ω

−Ω
f(x)φj,k(x)dx

= αj,k. (6.1)
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Therefore

E
(
|α̂j,k − αj,k|2

)
= V (α̂j,k) (6.2)

and, by a standard covariance decomposition,

V (α̂j,k) =
1

n2

n∑
v=1

n∑
`=1

C ((Kφ)j,k(Yv), (Kφ)j,k(Y`))

=
1

n
V ((Kφ)j,k(Y0)) +

2

n2

n∑
v=2

v−1∑
`=1

C ((Kφ)j,k(Yv), (Kφ)j,k(Y`))

≤ 1

n
V ((Kφ)j,k(Y0)) +

2

n2

∣∣∣∣∣
n∑
v=2

v−1∑
`=1

C ((Kφ)j,k(Yv), (Kφ)j,k(Y`))

∣∣∣∣∣ .(6.3)

Let us bound the first term in (6.3). Since X0 and ε0 are independent, the

density of Y0 is q(x) = (f ? g)(x) =
∫∞
−∞ g(t)f(x− t)dt, x ∈ R. By (2.1) and

the fact that g is a density, we have supx∈R q(x) ≤ C
∫∞
−∞ g(y)dy = C. This

with Lemma 6.1 and the change of variables u = 2jx− k imply that

V ((Kφ)j,k(Y0)) ≤ E
(
|(Kφ)j,k(Y0)|2

)
=

∫ ∞
−∞
|(Kφ)j,k(y)|2q(y)dy

≤ C

∫ ∞
−∞
|(Kφ)j,k(y)|2dy ≤ C2j(1+2δ)

∫ ∞
−∞

1

(1 + |2jy − k|)4
dy

= C22δj

∫ ∞
−∞

1

(1 + |u|)4
du ≤ C22δj . (6.4)

It follows from the stationarity of (Yv)v∈Z that∣∣∣∣∣
n∑
v=2

v−1∑
`=1

C ((Kφ)j,k(Yv), (Kφ)j,k(Y`))

∣∣∣∣∣
=

∣∣∣∣∣
n∑

m=1

(n−m)C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))

∣∣∣∣∣
≤ n

n∑
m=1

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))| . (6.5)

We can write

n

n∑
m=1

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))| = T1 + T2, (6.6)
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where

T1 = n
2j−1∑
m=1

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))|

and

T2 = n
n∑

m=2j

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))| .

Let us now bound T1 and T2.

Upper bound for T1. Using (2.6), Lemma 6.1 and doing the change of

variables u = 2jy − k, we obtain

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))|

=

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

(q(Y0,Ym)(x, y)− q(x)q(y))(Kφ)j,k(x)(Kφ)j,k(y)dxdy

∣∣∣∣
≤

∫ ∞
−∞

∫ ∞
−∞
|q(Y0,Ym)(x, y)− q(x)q(y)| |(Kφ)j,k(x)| |(Kφ)j,k(y)| dxdy

≤ C

(∫ ∞
−∞
|(Kφ)j,k(y)|dy

)2

≤ C
(

2j(1/2+δ)

∫ ∞
−∞

1

(1 + |2jy − k|)2
|dy
)2

= C2−j22δj

(∫ ∞
−∞

1

(1 + |u|)2
du

)2

= C2−j22δj .

Therefore

T1 ≤ Cn22δj2−j2j = C22δjn. (6.7)

Upper bound for T2. By the Davydov inequality for strongly mixing pro-

cesses (see [6]), for the considered γ ∈ (0, 1) in (2.4), it holds that

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))| ≤ 10aγm

(
E
(
|(Kφ)j,k(Y0)|2/(1−γ)

))1−γ

≤ 10aγm(sup
y∈R
|(Kφ)j,k(y)|)2γ

(
E
(
|(Kφ)j,k(Y0)|2

))1−γ
.

By Lemma 6.1, we have

sup
y∈R
|(Kφ)j,k(y)| ≤ C2j(1/2+δ) sup

y∈R

1

(1 + |2jy − k|)2
≤ C2j(1/2+δ)

and, by (6.4),

E
(
|(Kφ)j,k(Y0)|2

)
≤ C22δj .
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Therefore

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))| ≤ C22δj2γjaγm.

By (2.4), we have

T2 ≤ Cn22δj2γj
n∑

m=2j

aγm ≤ Cn22δj
n∑

m=2j

mγaγm

≤ Cn22δj
∞∑
m=1

mγaγm ≤ Cn22δj . (6.8)

It follows from (6.6), (6.7) (6.8) that

n

n∑
m=1

|C ((Kφ)j,k(Y0), (Kφ)j,k(Ym))| ≤ Cn22δj . (6.9)

Therefore, combining (6.2), (6.3), (6.4), (6.5) and (6.9), we obtain

E
(
|α̂j,k − αj,k|2

)
≤ C22δj 1

n
.

The proof of Proposition 6.1 is complete.

�

Proposition 6.2 Consider (1.1) under the assumptions (2.1), (2.2), (2.3),

(2.4) and (2.6). For any integer j ≥ τ such that 2j ≤ n and k ∈ Λj, let βj,k

be the wavelet coefficient (3.1) of f and β̂j,k be (4.2). Then there exists a

constant C > 0 such that

E
(∣∣∣β̂j,k − βj,k∣∣∣4) ≤ C2j(1+4δ) 1

n
.

Proof of Proposition 6.2. Using Lemma 6.1, we obtain

|β̂j,k| ≤ sup
y∈R
|(Kψ)j,k(y)| ≤ C2j(1/2+δ) sup

y∈R

1

(1 + |2jy − k|)2
≤ C2j(1/2+δ).

By (2.1), we have |βj,k| ≤ C. Therefore

|β̂j,k − βj,k| ≤ |β̂j,k|+ |βj,k| ≤ C(2j(1/2+δ) + 1) ≤ C2j(1/2+δ). (6.10)
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It follows from (6.10) and Proposition 6.1 that

E
(∣∣∣β̂j,k − βj,k∣∣∣4) ≤ C2j(1+2δ)E

(∣∣∣β̂j,k − βj,k∣∣∣2) ≤ C2j(1+4δ) 1

n
.

The proof of Proposition 6.2 is complete.

�

Proposition 6.3 Consider (1.1) under the assumptions (2.1), (2.2), (2.3),

(2.5) and (2.6). For any integer j ≥ τ such that 2j ≤ n/(lnn)1+1/θ and

k ∈ Λj, let βj,k be the wavelet coefficient (3.1) of f , β̂j,k be (4.2) and λj be

(4.5). Then there exist two constants κ > 0 and C > 0 such that

P
(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ C 1

n4
.

Proof of Proposition 6.3. We will use a Bernstein inequality for ex-

ponentially strongly mixing process. The proof can be found in [22] and

[15].

Lemma 6.2 ([22] and [15]) Let γ > 0, c > 0, θ > 1 and (Yi)i∈Z be a

stationary process such that, for any m ∈ Z, the associated m-th strongly

mixing coefficient (2.5) satisfies am ≤ γexp(−c|m|θ). Let n ∈ N∗, h : R→ C
be a measurable function and, for any i ∈ Z, Ui = h(Yi). We assume that

E(U1) = 0 and there exists a constant M > 0 satisfying |U1| ≤ M . Then,

for any m ∈ {1, . . . , n} and λ > 4mM/n, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ ≥ λ
)
≤ 4 exp

(
− λ2n

m(64E
(
U2

1

)
+ 8λM/3)

)
+4γ

n

m
exp(−cmθ).

We can write

β̂j,k − βj,k =
1

n

n∑
v=1

Uv

where, for any v ∈ {1, . . . , n},

Uv = (Kψ)j,k(Yv)− βj,k.
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So

P
(
|β̂j,k − βj,k| ≥ κλj/2

)
= P

(∣∣∣∣∣ 1n
n∑
v=1

Uv

∣∣∣∣∣ ≥ κλj/2
)
,

where U1, . . . , Un are identically distributed, depend on (Yv)v∈Z satisfying

(2.5),

• by (6.1), E (U1) = 0,

• by (6.4), E
(
|U1|2

)
= V ((Kψ)j,k(Y1)) ≤ C22δj ,

• in a similar fashion to (6.10), |U1| ≤ 2j(1/2+δ).

Lemma 6.2 applied with U1, . . . , Un, λ = κCλj , λj = 2δj((lnn)1+1/θ/n)1/2,

m = (u lnn)1/θ with u > 0 (chosen later), M = C2j(1/2+δ) and 2j ≤
n/(lnn)1+1/θ gives

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ ≥ κλj/2
)

≤ 4 exp

(
−C

κ2λ2
jn

m(22δj + κλjM)

)
+ 4γ

n

m
exp(−cmθ)

≤ 4 exp

(
−C κ222δj(lnn)1+1/θ

(u lnn)1/θ(22δj + κ2j/222δj((lnn)1+1/θ/n)1/2)

)
+ 4γ

n

(u lnn)1/θ
exp(−cu lnn)

= 4 exp

(
−C κ2 lnn

u1/θ(1 + κ2j/2((lnn)1+1/θ/n)1/2)

)
+ 4γ

1

(u lnn)1/θ
n1−cu

≤ C
(
n−Cκ

2/(u1/θ(1+κ)) + n1−cu
)
.

Therefore, for large enough κ and u, we have

P
(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ C 1

n4
.

This ends the proof of Proposition 6.3.

�

13



6.2 Proofs of the main results

Proof of Theorem 5.1. We expand the function f on B as

f(x) =
∑
k∈Λj0

αj0,kφj0,k(x) +
∞∑
j=j0

∑
k∈Λj

βj,kψj,k(x),

where αj0,k =
∫ Ω
−Ω f(x)φj0,k(x)dx and βj,k =

∫ Ω
−Ω f(x)ψj,k(x)dx.

Since B is an orthonormal basis of L2([−Ω,Ω]), we have

E
(∫ Ω

−Ω

(
f̂L(x)− f(x)

)2
dx

)
=

∑
k∈Λj0

E
(
|α̂j0,k − αj0,k|2

)
+

∞∑
j=j0

∑
k∈Λj

|βj,k|2.

Using Proposition 6.1 and the definitions of Λj0 and j0, we obtain

∑
k∈Λj0

E
(
|α̂j0,k − αj0,k|2

)
≤ C2j0

22δj0

n
≤ Cn−2s/(2s+2δ+1).

Since p ≥ 2, we have Bs
p,r(M) ⊆ Bs

2,∞(M). Hence

∞∑
j=j0

∑
k∈Λj

|βj,k|2 ≤ C2−2j0s ≤ Cn−2s/(2s+2δ+1).

Therefore

E
(∫ Ω

−Ω

(
f̂L(x)− f(x)

)2
dx

)
≤ Cn−2s/(2s+2δ+1).

Theorem 5.1 is proved

�

Proof of Theorem 5.2. We expand the function f on B as

f(x) =
∑
k∈Λτ

ατ,kφτ,k(x) +

∞∑
j=τ

∑
k∈Λj

βj,kψj,k(x),

where ατ,k =
∫ Ω
−Ω f(x)φτ,k(x)dx and βj,k =

∫ Ω
−Ω f(x)ψj,k(x)dx.

14



Since B is an orthonormal basis of L2([−Ω,Ω]), we have

E
(∫ Ω

−Ω

(
f̂H(x)− f(x)

)2
dx

)
= R + S + T, (6.11)

where

R =
∑
k∈Λτ

E
(
|α̂τ,k − ατ,k|2

)
, S =

j1∑
j=τ

∑
k∈Λj

E
(∣∣∣β̂j,k1I{|β̂j,k|≥κλj} − βj,k∣∣∣2

)

and

T =
∞∑

j=j1+1

∑
k∈Λj

|βj,k|2.

Let us bound R, T and S (by order of difficulty).

Using Proposition 6.1, we obtain

R ≤ C2τ(1+2δ) 1

n
≤ C 1

n
≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

. (6.12)

For r ≥ 1 and p ≥ 2, we have Bs
p,r(M) ⊆ Bs

2,∞(M). Therefore

T ≤ C
∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C

(
(lnn)1+1/θ

n

)2s/(2δ+1)

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M). Since s >

(2δ + 1)/p, we have (s+ 1/2− 1/p)/(2δ + 1) > s/(2s+ 2δ + 1). Hence

T ≤ C

∞∑
j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C

(
(lnn)1+1/θ

n

)2(s+1/2−1/p)/(2δ+1)

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.
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Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we

have

T ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

. (6.13)

Let us now investigate the upper bound for S. We can write

S = S1 + S2 + S3 + S4, (6.14)

where

S1 =

j1∑
j=τ

∑
k∈Λj

E
(∣∣∣β̂j,k − βj,k∣∣∣2 1I{|β̂j,k|≥κλj}1I{|βj,k|<κλj/2}

)
,

S2 =

j1∑
j=τ

∑
k∈Λj

E
(∣∣∣β̂j,k − βj,k∣∣∣2 1I{|β̂j,k|≥κλj}1I{|βj,k|≥κλj/2}

)
,

S3 =

j1∑
j=τ

∑
k∈Λj

E
(
|βj,k|21I{|β̂j,k|<κλj}1I{|βj,k|≥2κλj}

)
and

S4 =

j1∑
j=τ

∑
k∈Λj

E
(
|βj,k|21I{|β̂j,k|<κλj}1I{|βj,k|<2κλj}

)
.

Let us analyze each term S1, S2, S3 and S4 in turn.

Upper bounds for S1 and S3. We have{
|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}
,

{
|β̂j,k| ≥ κλj , |βj,k| < κλj/2

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}
and {

|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1,S3) ≤ C
j1∑
j=τ

∑
k∈Λj

E
(∣∣∣β̂j,k − βj,k∣∣∣2 1I{|β̂j,k−βj,k|>κλj/2}

)
.
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It follows from the Cauchy-Schwarz inequality, Propositions 6.2 and 6.3 and

2j ≤ 2j1 ≤ n that

E
(∣∣∣β̂j,k − βj,k∣∣∣2 1I{|β̂j,k−βj,k|>κλj/2}

)
≤

(
E
(∣∣∣β̂j,k − βj,k∣∣∣4))1/2 (

P
(
|β̂j,k − βj,k| > κλj/2

))1/2

≤ C

(
2j(1+4δ) 1

n

)1/2( 1

n4

)1/2

≤ C22δj 1

n2
≤ C22δj (lnn)1+1/θ

n2
.

We have

max(S1,S3) ≤ C
(lnn)1+1/θ

n2

j1∑
j=τ

2j(1+2δ) ≤ C (lnn)1+1/θ

n2
2j1(1+2δ)

≤ C
(lnn)1+1/θ

n
≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

. (6.15)

Upper bound for S2. Using Proposition 6.1, we obtain

E
(∣∣∣β̂j,k − βj,k∣∣∣2) ≤ C22δj 1

n
≤ C22δj (lnn)1+1/θ

n
.

Hence

S2 ≤ C
(lnn)1+1/θ

n

j1∑
j=τ

22δj
∑
k∈Λj

1I{|βj,k|>κλj/2}.

Let j2 be the integer satisfying

1

2

(
n

(lnn)1+1/θ

)1/(2s+2δ+1)

< 2j2 ≤
(

n

(lnn)1+1/θ

)1/(2s+2δ+1)

. (6.16)

Then we have

S2 ≤ S2,1 + S2,2,

where

S2,1 = C
(lnn)1+1/θ

n

j2∑
j=τ

22δj
∑
k∈Λj

1I{|βj,k|>κλj/2}
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and

S2,2 = C
(lnn)1+1/θ

n

j1∑
j=j2+1

22δj
∑
k∈Λj

1I{|βj,k|>κλj/2}.

We have

S2,1 ≤ C
(lnn)1+1/θ

n

j2∑
j=τ

2j(1+2δ) ≤ C (lnn)1+1/θ

n
2j2(1+2δ)

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M), we obtain

S2,2 ≤ C
(lnn)1+1/θ

n

j1∑
j=j2+1

22δj 1

λ2
j

∑
k∈Λj

|βj,k|2 ≤ C
∞∑

j=j2+1

∑
k∈Λj

|βj,k|2

≤ C
∞∑

j=j2+1

2−2js ≤ C2−2j2s ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

For r ≥ 1, p ∈ [1, 2) and s > (2δ + 1)/p, since Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M)

and (2s+ 2δ + 1)(2− p)/2 + (s+ 1/2− 1/p+ δ − 2δ/p)p = 2s, we have

S2,2 ≤ C
(lnn)1+1/θ

n

j1∑
j=j2+1

22δj 1

λpj

∑
k∈Λj

|βj,k|p

≤ C

(
(lnn)1+1/θ

n

)(2−p)/2 ∞∑
j=j2+1

2jδ(2−p)2−j(s+1/2−1/p)p

≤ C

(
(lnn)1+1/θ

n

)(2−p)/2

2−j2(s+1/2−1/p+δ−2δ/p)p

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

S2 ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

. (6.17)
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Upper bound for S4. We have

S4 ≤
j1∑
j=τ

∑
k∈Λj

|βj,k|21I{|βj,k|<2κλj}.

Let j2 be the integer (6.16). We have

S4 ≤ S4,1 + S4,2,

where

S4,1 =

j2∑
j=τ

∑
k∈Λj

|βj,k|21I{|βj,k|<2κλj}, S4,2 =

j1∑
j=j2+1

∑
k∈Λj

|βj,k|21I{|βj,k|<2κλj}.

We have

S4,1 ≤ C

j2∑
j=τ

2jλ2
j = C

(lnn)1+1/θ

n

j2∑
j=τ

2j(1+2δ) ≤ C (lnn)1+1/θ

n
2j2(1+2δ)

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

For r ≥ 1 and p ≥ 2, since Bs
p,r(M) ⊆ Bs

2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

∑
k∈Λj

|βj,k|2 ≤ C
∞∑

j=j2+1

2−2js ≤ C2−2j2s ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

For r ≥ 1, p ∈ [1, 2) and s > (2δ + 1)/p, since Bs
p,r(M) ⊆ B

s+1/2−1/p
2,∞ (M)
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and (2s+ 2δ + 1)(2− p)/2 + (s+ 1/2− 1/p+ δ − 2δ/p)p = 2s, we have

S4,2 ≤ C

j1∑
j=j2+1

λ2−p
j

∑
k∈Λj

|βj,k|p

= C

(
(lnn)1+1/θ

n

)(2−p)/2 j1∑
j=j2+1

2jδ(2−p)
∑
k∈Λj

|βj,k|p

≤ C

(
(lnn)1+1/θ

n

)(2−p)/2 ∞∑
j=j2+1

2jδ(2−p)2−j(s+1/2−1/p)p

≤ C

(
(lnn)1+1/θ

n

)(2−p)/2

2−j2(s+1/2−1/p+δ−2δ/p)p

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

S4 ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

. (6.18)

It follows from (6.14), (6.15), (6.17) and (6.18) that

S ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

. (6.19)

Combining (6.11), (6.12), (6.13) and (6.19), we have, for r ≥ 1, {p ≥ 2

and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p},

sup
f∈Bsp,r(M)

E
(∫ Ω

−Ω

(
f̂H(x)− f(x)

)2
dx

)
≤ C

(
(lnn)1+1/θ

n

)2s/(2s+2δ+1)

.

The proof of Theorem 5.2 is complete.

�

20



References

[1] Caroll, R.J. and Hall, P. (1988). Optimal rates of convergence for decon-

volving a density. J. Amer. Statist. Assoc., 83, 1184-1186.

[2] Carrasco, M. and Chen, X. (2002). Mixing and moment properties of

various GARCH and stochastic volatility models. Econometric Theory,

18, 17-39.

[3] Cohen, A., Daubechies, I., Jawerth, B. and Vial, P. (1993). Wavelets

on the interval and fast wavelet transforms. Applied and Computational

Harmonic Analysis, 24, 1, 54–81.

[4] Comte, F., Rozenholc, Y. and Taupin, M.-L. (2006). Penalized contrast

estimator for density deconvolution. The Canadian Journal of Statistics,

34, 431-452.

[5] Comte, F., Dedecker, J. and Taupin, M.-L. (2008). Adaptive density

deconvolution for dependent inputs with measurement errors. Mathe-

matical Methods of Statistics, 17, 2, 87-112.

[6] Davydov, Y. (1970). The invariance principle for stationary processes.

Theor. Probab. Appl., 15, 3, 498-509.

[7] Delaigle, A. and Gijbels, I. (2006). Estimation of boundary and discon-

tinuity points in deconvolution problems. Statistica Sinica, 16, 773 -788.

[8] Doukhan, P. (1994). Mixing. Properties and Examples. Lecture Notes in

Statistics 85. Springer Verlag, New York.

[9] Fan, J. (1991). On the optimal rates of convergence for nonparametric

deconvolution problem. Ann. Statist., 19, 1257-1272.

[10] Fan, J. and Koo, J.Y. (2002). Wavelet deconvolution. IEEE transactions

on information theory, 48, 734-747.

[11] Hall, P. and Qiu, P. (2005). Discrete-transform approach to deconvolu-

tion problems. Biometrika, 92, 135-148.

21
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