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This paper studies the estimation of a density in the convolution density model from weakly dependent observations. The ordinary smooth case is considered. Adopting the minimax approach under the mean integrated square error over Besov balls, we explore the performances of two wavelet estimators: a standard linear one based on projections and a new non-linear one based on a hard thresholding rule. In particular, under strong mixing conditions, we prove that our hard thresholding estimator attains a particular rate of convergence: the optimal one in the i.i.d. case up to a logarithmic term.

Introduction

Let (Y v ) v∈Z be a strictly stationary process such that, for any v ∈ Z,

Y v = X v + v , (1.1) 
(X v ) v∈Z are identically distributed random variables and ( v ) v∈Z are identically distributed random variables, also independent of (X v ) v∈Z . The density of X 0 is unknown and denoted f . The one of 0 is known, denoted g and satisfies the ordinary smooth case i.e. the Fourier coefficients of g have Christophe Chesneau, Université de Caen, LMNO, Campus II, Science 3, 14032, Caen, France 1 a polynomial decrease (see Section 2). The goal is to estimate f when only n random variables Y 1 , . . . , Y n of (Y v ) v∈Z are observed.

When (Y v ) v∈Z are i.i.d., (1.1) becomes the standard convolution density model studies in many papers. See e.g. [START_REF] Caroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problem[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF], [START_REF] Hall | Discrete-transform approach to deconvolution problems[END_REF], [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF], [START_REF] Delaigle | Estimation of boundary and discontinuity points in deconvolution problems[END_REF] and [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF]. Since the i.i.d. assumption is not realistic in some applications, several authors have investigated the dependent case. We refer to e.g. [START_REF] Masry | Strong consistency and rates for deconvolution of multivariate densities of stationary processes[END_REF][START_REF] Masry | Deconvolving Multivariate Kernel Density Estimates From Contaminated Associated Observations[END_REF], [START_REF] Comte | Adaptive density deconvolution for dependent inputs with measurement errors[END_REF], [START_REF] Kulik | Nonparametric deconvolution problem for dependent sequences[END_REF] and [START_REF] Van Zanten | A note on wavelet density deconvolution for weakly dependent data[END_REF]. In particular, under strong mixing conditions on (Y v ) v∈Z , van Zanten and Zareba [START_REF] Van Zanten | A note on wavelet density deconvolution for weakly dependent data[END_REF] have developed a new linear wavelet estimator for f in (1.1). Taking the mean integrated square error (MISE) over Besov balls, [START_REF] Van Zanten | A note on wavelet density deconvolution for weakly dependent data[END_REF]Theorems 3.1 and 3.2] show that it attains a sharp rate of convergence. However, this rate is deteriorated by the considered dependence condition and it is slower than the optimal one related to the i.i.d. case.

In this paper, we provide two complementary contributions to the wavelet estimation of f in the strong mixing case:

1. We extend [24, Theorems 3.1 and 3.2]. More precisely, we prove that the linear wavelet estimator developed by [START_REF] Fan | Wavelet deconvolution[END_REF] attains the standard rate of convergence i.e. the optimal one in the i.i.d. case. It is constructed from the Daubechies wavelet basis instead of the Meyer wavelet basis as in [START_REF] Van Zanten | A note on wavelet density deconvolution for weakly dependent data[END_REF]. The properties of this basis allows us to apply sharp probabilistic inequalities which improve the performance of the considered linear wavelet estimator.

2. We treat the adaptive estimation of f . To the best our knowledge, this has not been addressed earlier via wavelets and for the ordinary smooth case (the supersmooth case has been done by [START_REF] Van Zanten | A note on wavelet density deconvolution for weakly dependent data[END_REF]). We develop a new wavelet hard thresholding estimator and prove that it attains a sharp rate of convergence, close to the one attained by our linear wavelet estimator. The difference is an extra logarithmic term. And only this logarithmic term is deteriorated by the dependence of the observations. The rest of the paper is organized as follows. Section 2 is devoted to the assumptions on (1.1) (strong mixing, ordinary smooth case, . . . ). In Section 2 Assumptions on the model

Assumptions on f and g

We suppose that the support of f is included in [-Ω, Ω] and that there exists

a constant C > 0 such that sup x∈R f (x) ≤ C < ∞.
(2.1)

We define the Fourier transform of an integrable function h by

F(h)(x) = ∞ -∞ h(y)e -ixy dy, x ∈ R.
The notation • will be used for the complex conjugate.

The ordinary smooth case on g is considered: we assume that there exist three constants C > 0, c > 0 and δ > 1 such that, for any x ∈ R,

• the Fourier transform of g satisfies

| F(g)(x)| ≥ c (1 + x 2 ) δ/2 , (2.2) 
• for any ∈ {0, 1, 2}, the -th derivative of the Fourier transform of g

satisfies lim x→0 |(F(g)(x)) ( ) | ≤ C, lim x→∞ |x| δ+ |(F(g)(x)) ( ) | = C. (2.3)
These assumptions control the decay of the Fourier coefficients of g and, a

fortiori, the smoothness of g. They are similar to those considered in [10, (B2) and (B3)].

A simple example is the Laplace density:

g(x) = (1/2)e -|x| , x ∈ R. We have F(g)(x) = 1/(1 + x 2 ), x ∈ R, so g satisfies (2.
2) and (2.3) with δ = 2.

Dependence assumptions

1. Strongly mixing case. For any m ∈ Z, we define the m-th strongly mixing coefficient of (Y v ) v∈Z by

a m = sup (A,B)∈F Y -∞,0 ×F Y m,∞ |P(A ∩ B) -P(A)P(B)| ,
where, for any u ∈ Z, F Y -∞,u is the σ-algebra generated by . . . , Y u-1 , Y u and F Y u,∞ is the σ-algebra generated by Y u , Y u+1 , . . .

We formulate the two following assumptions :

• there exist two constants γ ∈ (0, 1) and

C > 0 such that ∞ m=1 m γ a γ m ≤ C. (2.4) 
• there exist three constants γ > 0, c > 0 and θ > 0 such that, for any m ∈ Z,

a m ≤ γexp(-c|m| θ ). (2.5) 
Such strongly mixing conditions are satisfied by some GARCH processes. See e.g. [START_REF] Withers | Conditions for linear processes to be strongmixing[END_REF], [START_REF] Doukhan | Mixing. Properties and Examples[END_REF], [START_REF] Modha | Minimum complexity regression estimation with weakly dependent observations[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF]. Remark that, for (2.5), the standard i.i.d. case corresponds to θ → ∞.

Naturally, (2.5) implies (2.4).

2. Let q be the density of Y 0 and, for any m ∈ Z, q (Y 0 ,Ym) be the one of (Y 0 , Y m ). We suppose that there exists a constant C > 0 such that

sup m∈Z sup (x,y)∈[0,1] 2 |q (Y 0 ,Ym) (x, y) -q(x)q(y)| ≤ C. (2.6)
Assumptions (2.4) and (2.6) are similar to those used in [START_REF] Masry | Strong consistency and rates for deconvolution of multivariate densities of stationary processes[END_REF].

Wavelets and Besov balls

Let N ∈ N * , and φ and ψ be the Daubechies wavelets dbN . We chose N such that φ ∈ C υ and ψ ∈ C υ for υ > 1 + δ where δ refers to (2.2) and (2.3).

Set

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then there exists an integer τ and a set of consecutive integers Λ j with a length proportional to 2 j such that, for any integer ≥ τ , the collection

B = {φ ,k (.), k ∈ Λ ; ψ j,k (.); j ∈ N -{0, . . . , -1}, k ∈ Λ j } is an orthonormal basis of L 2 ([-Ω, Ω]) = {h : [-Ω, Ω] → R; Ω -Ω h 2 (x)dx < ∞}.
We refer to [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Note that this wavelet basis satisfies [10, (A2) and (A3)].

For any integer ≥ τ , any h ∈ L 2 ([-Ω, Ω]) can be expanded on B as

h(x) = k∈Λ α ,k φ ,k (x) + ∞ j= k∈Λ j β j,k ψ j,k (x),
where α j,k and β j,k are the wavelet coefficients of h defined by

α j,k = Ω -Ω h(x)φ j,k (x)dx, β j,k = Ω -Ω h(x)ψ j,k (x)dx. (3.1)
Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to B s p,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (3.1) satisfy

2 τ (1/2-1/p)   k∈Λτ |α τ,k | p   1/p +    ∞ j=τ   2 j(s+1/2-1/p)   k∈Λ j |β j,k | p   1/p    r    1/r ≤ M * .
In this expression, s is a smoothness parameter and p and r are norm parameters. Besov balls contain the Hölder and Sobolev balls. See e.g. [START_REF] Meyer | Wavelets and Operators[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Details and results on wavelets in nonparametric estimation can be found in [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF].

Estimators

For any integer j ≥ τ , k ∈ Λ j , υ ∈ {φ, ψ} and y ∈ R, set

(Kυ) j,k (y) = 1 2π ∞ -∞ F (υ j,k )(x) F(g)(x) e -ixy dx. (4.1)
We estimate the unknown wavelet coefficients

α j,k = Ω -Ω f (x)φ j,k (x)dx and β j,k = Ω -Ω f (x)ψ j,k (x)dx by respectively α j,k = 1 n n v=1 (Kφ) j,k (Y v ), β j,k = 1 n n v=1 (Kψ) j,k (Y v ). (4.2)
Statistical properties of these estimators are given in Propositions 6.1, 6.2 and 6.3 below.

Suppose that (2.2) and (2.3) are satisfied and f ∈ B s p,r (M ) with p ≥ 2. We define the linear wavelet estimator f L by

f L (x) = k∈Λ j 0 α j 0 ,k φ j 0 ,k (x), (4.3) 
where j 0 is the integer such that

1 2 n 1/(2s+2δ+1) < 2 j 0 ≤ n 1/(2s+2δ+1) .
This estimator is the one in [10, eq (4)] with i.i.d. Y 1 , . . . , Y n .

Suppose that (2.2), (2.3) and (2.5) are satisfied. We define the hard thresholding estimator f H by

f H (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + j 1 j=τ 2 j -1 k=0 β j,k 1I {| β j,k |≥κλ j } ψ j,k (x), (4.4) 
where, for any random event A, 1I A is the indicator function on A, j 1 is the integer satisfying

1 2 n (ln n) 1+1/θ 1/(2δ+1) < 2 j 1 ≤ n (ln n) 1+1/θ 1/(2δ+1)
, κ is a large enough constant (the one in Proposition 6.3 below) and

λ j = 2 δj (ln n) 1+1/θ n . (4.5) 
Note that, if θ → ∞ (the i.i.d. case), f H becomes the hard thresholding estimator considered by [START_REF] Fan | Wavelet deconvolution[END_REF].

5 Upper bounds 

E Ω -Ω f L (x) -f (x) 2 dx ≤ Cn -2s/(2s+2δ+1) .
The rate of convergence n -2s/(2s+2δ+1) is the optimal one in the minimax sense when Y 1 , . . . , Y n are i. Suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}. Then there exists a constant C > 0 such that

E Ω -Ω f H (x) -f (x) 2 dx ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1)
.

Theorem 5.2 shows that, besides being adaptive, f H attains a rate of convergence close to the one of f L . The only difference is the logarithmic

term (ln n) (1+1/θ)(2s/(2s+1)) .
Note that, if we restrict our study to the independent case i.e. θ → ∞, 2s+2δ+1) and this is the standard one for the corresponding hard thresholding estimator. See [START_REF] Fan | Wavelet deconvolution[END_REF]Theorem 7].

((ln n) 1+1/θ /n) 2s/(2s+2δ+1) = (log n/n) 2s/(
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In this section, C denotes any constant that does not depend on j, k and n.

Its value may change from one term to another and may depends on φ or ψ.

Auxiliary results

We will need [10, Lemma 6]. The proof is based on some properties of B, the ordinary smooth conditions (2.2), (2.3) and a double integration by parts. 

|(Kυ) j,k (y)| ≤ C2 j(1/2+δ) 1 (1 + |2 j y -k|) 2 .
Proposition 6.1 Consider (1.1) under the assumptions (2.1), (2.2), (2.3), (2.4) and (2.6). For any integer j ≥ τ such that 2 j ≤ n and k ∈ Λ j , let α j,k be the wavelet coefficient (3.1) of f and α j,k be (4.2). Then there exists a constant C > 0 such that

E | α j,k -α j,k | 2 ≤ C2 2δj 1 n .
This inequality holds for β j,k (4.2) instead of α j,k and β j,k instead of α j,k .

Proof of Proposition 6.1. First of all, let us prove that α j,k is an unbiased estimator for α j,k . Since X 0 and 0 are independent, we have E e -ixY 0 = E e -ixX 0 E e -ix 0 = F(f )(x)F(g)(x). This combined with the Fubini theorem and the Parseval-Plancherel theorem yield

E ( α j,k ) = 1 2π ∞ -∞ F (φ j,k )(x) F(g)(x) E e -ixY 0 dx = 1 2π ∞ -∞ F (φ j,k )(x)F(f )(x)dx = 1 2π ∞ -∞ F (φ j,k )(x)F(f )(x)dx = Ω -Ω f (x)φ j,k (x)dx = α j,k . (6.1) E | α j,k -α j,k | 2 = V ( α j,k ) (6.2)
and, by a standard covariance decomposition,

V ( α j,k ) = 1 n 2 n v=1 n =1 C ((Kφ) j,k (Y v ), (Kφ) j,k (Y )) = 1 n V ((Kφ) j,k (Y 0 )) + 2 n 2 n v=2 v-1 =1 C ((Kφ) j,k (Y v ), (Kφ) j,k (Y )) ≤ 1 n V ((Kφ) j,k (Y 0 )) + 2 n 2 n v=2 v-1 =1 C ((Kφ) j,k (Y v ), (Kφ) j,k (Y )) .(6.3)
Let us bound the first term in (6.3). Since X 0 and 0 are independent, the

density of Y 0 is q(x) = (f g)(x) = ∞ -∞ g(t)f (x -t)dt, x ∈ R. By (2.1
) and the fact that g is a density, we have sup x∈R q(x) ≤ C ∞ -∞ g(y)dy = C. This with Lemma 6.1 and the change of variables u = 2 j x -k imply that

V ((Kφ) j,k (Y 0 )) ≤ E |(Kφ) j,k (Y 0 )| 2 = ∞ -∞ |(Kφ) j,k (y)| 2 q(y)dy ≤ C ∞ -∞ |(Kφ) j,k (y)| 2 dy ≤ C2 j(1+2δ) ∞ -∞ 1 (1 + |2 j y -k|) 4 dy = C2 2δj ∞ -∞ 1 (1 + |u|) 4 du ≤ C2 2δj . (6.4)
It follows from the stationarity of (Y v ) v∈Z that

n v=2 v-1 =1 C ((Kφ) j,k (Y v ), (Kφ) j,k (Y )) = n m=1 (n -m)C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m )) ≤ n n m=1 |C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))| . (6.5) 
We can write

n n m=1 |C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))| = T 1 + T 2 , (6.6) 
where

T 1 = n 2 j -1 m=1 |C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))|
and

T 2 = n n m=2 j |C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))| .
Let us now bound T 1 and T 2 .

Upper bound for T 1 . Using (2.6), Lemma 6.1 and doing the change of variables u = 2 j y -k, we obtain

|C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))| = ∞ -∞ ∞ -∞ (q (Y 0 ,Ym) (x, y) -q(x)q(y))(Kφ) j,k (x)(Kφ) j,k (y)dxdy ≤ ∞ -∞ ∞ -∞ |q (Y 0 ,Ym) (x, y) -q(x)q(y)| |(Kφ) j,k (x)| |(Kφ) j,k (y)| dxdy ≤ C ∞ -∞ |(Kφ) j,k (y)|dy 2 ≤ C 2 j(1/2+δ) ∞ -∞ 1 (1 + |2 j y -k|) 2 |dy 2 = C2 -j 2 2δj ∞ -∞ 1 (1 + |u|) 2 du 2 = C2 -j 2 2δj . Therefore T 1 ≤ Cn2 2δj 2 -j 2 j = C2 2δj n. (6.7)
Upper bound for T 2 . By the Davydov inequality for strongly mixing processes (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]), for the considered γ ∈ (0, 1) in (2.4), it holds that

|C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))| ≤ 10a γ m E |(Kφ) j,k (Y 0 )| 2/(1-γ) 1-γ ≤ 10a γ m (sup y∈R |(Kφ) j,k (y)|) 2γ E |(Kφ) j,k (Y 0 )| 2 1-γ .
By Lemma 6.1, we have

sup y∈R |(Kφ) j,k (y)| ≤ C2 j(1/2+δ) sup y∈R 1 (1 + |2 j y -k|) 2 ≤ C2 j(1/2+δ)
and, by (6.4),

E |(Kφ) j,k (Y 0 )| 2 ≤ C2 2δj . |C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))| ≤ C2 2δj 2 γj a γ m .
By (2.4), we have

T 2 ≤ Cn2 2δj 2 γj n m=2 j a γ m ≤ Cn2 2δj n m=2 j m γ a γ m ≤ Cn2 2δj ∞ m=1 m γ a γ m ≤ Cn2 2δj . (6.8)
It follows from (6.6), (6.7) (6.8) that

n n m=1 |C ((Kφ) j,k (Y 0 ), (Kφ) j,k (Y m ))| ≤ Cn2 2δj . (6.9)
Therefore, combining (6.2), (6.3), (6.4), (6.5) and (6.9), we obtain

E | α j,k -α j,k | 2 ≤ C2 2δj 1 n .
The proof of Proposition 6.1 is complete. Proposition 6.2 Consider (1.1) under the assumptions (2.1), (2.2), (2.3),

(2.4) and (2.6). For any integer j ≥ τ such that 2 j ≤ n and k ∈ Λ j , let β j,k be the wavelet coefficient (3.1) of f and β j,k be (4.2). Then there exists a constant C > 0 such that

E β j,k -β j,k 4 ≤ C2 j(1+4δ) 1 n .
Proof of Proposition 6.2. Using Lemma 6.1, we obtain

| β j,k | ≤ sup y∈R |(Kψ) j,k (y)| ≤ C2 j(1/2+δ) sup y∈R 1 (1 + |2 j y -k|) 2 ≤ C2 j(1/2+δ) .

By (2.1), we have |β

j,k | ≤ C. Therefore | β j,k -β j,k | ≤ | β j,k | + |β j,k | ≤ C(2 j(1/2+δ) + 1) ≤ C2 j(1/2+δ) .
(6.10)

It follows from (6.10) and Proposition 6.1 that

E β j,k -β j,k 4 ≤ C2 j(1+2δ) E β j,k -β j,k 2 ≤ C2 j(1+4δ) 1 n .
The proof of Proposition 6.2 is complete.

Proposition 6.3 Consider (1.1) under the assumptions (2.1), (2.2), (2.3),

(2.5) and (2.6). For any integer j ≥ τ such that 2 j ≤ n/(ln n) 1+1/θ and k ∈ Λ j , let β j,k be the wavelet coefficient (3.1) of f , β j,k be (4.2) and λ j be (4.5). Then there exist two constants κ > 0 and C > 0 such that

P | β j,k -β j,k | ≥ κλ j /2 ≤ C 1 n 4 .
Proof of Proposition 6.3. We will use a Bernstein inequality for exponentially strongly mixing process. The proof can be found in [START_REF] Rio | The functional law of the iterated logarithm for stationary strongly mixing sequences[END_REF] and [START_REF] Liebscher | Strong convergence of sums of a-mixing random variables with applications to density estimation[END_REF]. Lemma 6.2 ( [START_REF] Rio | The functional law of the iterated logarithm for stationary strongly mixing sequences[END_REF] and [START_REF] Liebscher | Strong convergence of sums of a-mixing random variables with applications to density estimation[END_REF]) Let γ > 0, c > 0, θ > 1 and (Y i ) i∈Z be a stationary process such that, for any m ∈ Z, the associated m-th strongly mixing coefficient (2.5) satisfies a m ≤ γexp(-c|m| θ ). Let n ∈ N * , h : R → C be a measurable function and, for any i ∈ Z, U i = h(Y i ). We assume that E(U 1 ) = 0 and there exists a constant M > 0 satisfying |U 1 | ≤ M . Then, for any m ∈ {1, . . . , n} and λ > 4mM/n, we have

P 1 n n i=1 U i ≥ λ ≤ 4 exp - λ 2 n m(64E U 2 1 + 8λM/3) +4γ n m exp(-cm θ ).
We can write

β j,k -β j,k = 1 n n v=1 U v
where, for any v ∈ {1, . . . , n},

U v = (Kψ) j,k (Y v ) -β j,k . P | β j,k -β j,k | ≥ κλ j /2 = P 1 n n v=1 U v ≥ κλ j /2 ,
where U 1 , . . . , U n are identically distributed, depend on (Y v ) v∈Z satisfying (2.5),

• by (6.1), E (U 1 ) = 0,

• by (6.4),

E |U 1 | 2 = V ((Kψ) j,k (Y 1 )) ≤ C2 2δj ,
• in a similar fashion to (6.10),

|U 1 | ≤ 2 j(1/2+δ) . Lemma 6.2 applied with U 1 , . . . , U n , λ = κCλ j , λ j = 2 δj ((ln n) 1+1/θ /n) 1/2 , m = (u ln n) 1/θ with u > 0 (chosen later), M = C2 j(1/2+δ) and 2 j ≤ n/(ln n) 1+1/θ gives P 1 n n i=1 U i ≥ κλ j /2 ≤ 4 exp -C κ 2 λ 2 j n m(2 2δj + κλ j M ) + 4γ n m exp(-cm θ ) ≤ 4 exp -C κ 2 2 2δj (ln n) 1+1/θ (u ln n) 1/θ (2 2δj + κ2 j/2 2 2δj ((ln n) 1+1/θ /n) 1/2 ) + 4γ n (u ln n) 1/θ exp(-cu ln n) = 4 exp -C κ 2 ln n u 1/θ (1 + κ2 j/2 ((ln n) 1+1/θ /n) 1/2 ) + 4γ 1 (u ln n) 1/θ n 1-cu ≤ C n -Cκ 2 /(u 1/θ (1+κ)) + n 1-cu .
Therefore, for large enough κ and u, we have

P | β j,k -β j,k | ≥ κλ j /2 ≤ C 1 n 4 .
This ends the proof of Proposition 6.3.

Proofs of the main results

Proof of Theorem 5.1. We expand the function f on B as

f (x) = k∈Λ j 0 α j 0 ,k φ j 0 ,k (x) + ∞ j=j 0 k∈Λ j β j,k ψ j,k (x), where α j 0 ,k = Ω -Ω f (x)φ j 0 ,k (x)dx and β j,k = Ω -Ω f (x)ψ j,k (x)dx. Since B is an orthonormal basis of L 2 ([-Ω, Ω]), we have E Ω -Ω f L (x) -f (x) 2 dx = k∈Λ j 0 E | α j 0 ,k -α j 0 ,k | 2 + ∞ j=j 0 k∈Λ j |β j,k | 2 .
Using Proposition 6.1 and the definitions of Λ j 0 and j 0 , we obtain

k∈Λ j 0 E | α j 0 ,k -α j 0 ,k | 2 ≤ C2 j 0 2 2δj 0 n ≤ Cn -2s/(2s+2δ+1) . Since p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Hence ∞ j=j 0 k∈Λ j |β j,k | 2 ≤ C2 -2j 0 s ≤ Cn -2s/(2s+2δ+1) . Therefore E Ω -Ω f L (x) -f (x) 2 dx ≤ Cn -2s/(2s+2δ+1) .
Theorem 5.1 is proved Proof of Theorem 5.2. We expand the function f on B as

f (x) = k∈Λτ α τ,k φ τ,k (x) + ∞ j=τ k∈Λ j β j,k ψ j,k (x),
where

α τ,k = Ω -Ω f (x)φ τ,k (x)dx and β j,k = Ω -Ω f (x)ψ j,k (x)dx.
Since B is an orthonormal basis of L 2 ([-Ω, Ω]), we have

E Ω -Ω f H (x) -f (x) 2 dx = R + S + T, (6.11) 
where

R = k∈Λτ E | α τ,k -α τ,k | 2 , S = j 1 j=τ k∈Λ j E β j,k 1I {| β j,k |≥κλ j } -β j,k 2 and T = ∞ j=j 1 +1 k∈Λ j |β j,k | 2 .
Let us bound R, T and S (by order of difficulty).

Using Proposition 6.1, we obtain

R ≤ C2 τ (1+2δ) 1 n ≤ C 1 n ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1) . (6.12) 
For r ≥ 1 and p ≥ 2, we have

B s p,r (M ) ⊆ B s 2,∞ (M ). Therefore T ≤ C ∞ j=j 1 +1 2 -2js ≤ C2 -2j 1 s ≤ C (ln n) 1+1/θ n 2s/(2δ+1) ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1)
.

For r ≥ 1 and p ∈ [1, 2), we have

B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ ( 
M ). Since s > (2δ + 1)/p, we have (s + 1/2 -1/p)/(2δ + 1) > s/(2s + 2δ + 1). Hence

T ≤ C ∞ j=j 1 +1 2 -2j(s+1/2-1/p) ≤ C2 -2j 1 (s+1/2-1/p) ≤ C (ln n) 1+1/θ n 2(s+1/2-1/p)/(2δ+1) ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

T ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1)
. (6.13)

Let us now investigate the upper bound for S. We can write

S = S 1 + S 2 + S 3 + S 4 , (6.14) 
where

S 1 = j 1 j=τ k∈Λ j E β j,k -β j,k 2 1I {| β j,k |≥κλ j } 1I {|βj,k|<κλj/2} , S 2 = j 1 j=τ k∈Λ j E β j,k -β j,k 2 1I {| β j,k |≥κλ j } 1I {|βj,k|≥κλj/2} , S 3 = j 1 j=τ k∈Λ j E |β j,k | 2 1I {| β j,k |<κλ j } 1I {|βj,k|≥2κλj} and 
S 4 = j 1 j=τ k∈Λ j E |β j,k | 2 1I {| β j,k |<κλ j } 1I {|βj,k|<2κλj} .
Let us analyze each term S 1 , S 2 , S 3 and S 4 in turn.

Upper bounds for S 1 and S 3 . We have

| β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ | β j,k -β j,k | > κλ j /2 , | β j,k | ≥ κλ j , |β j,k | < κλ j /2 ⊆ | β j,k -β j,k | > κλ j /2 and | β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(S 1 , S 3 ) ≤ C j 1 j=τ k∈Λ j E β j,k -β j,k 2 1I {| β j,k -β j,k |>κλ j /2} .
It follows from the Cauchy-Schwarz inequality, Propositions 6.2 and 6.3 and

2 j ≤ 2 j 1 ≤ n that E β j,k -β j,k 2 1I {| β j,k -β j,k |>κλ j /2} ≤ E β j,k -β j,k 4 1/2 P | β j,k -β j,k | > κλ j /2 1/2 ≤ C 2 j(1+4δ) 1 n 1/2 1 n 4 1/2 ≤ C2 2δj 1 n 2 ≤ C2 2δj (ln n) 1+1/θ n 2 .
We have

max(S 1 , S 3 ) ≤ C (ln n) 1+1/θ n 2 j 1 j=τ 2 j(1+2δ) ≤ C (ln n) 1+1/θ n 2 2 j 1 (1+2δ) ≤ C (ln n) 1+1/θ n ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1)
. (6.15)

Upper bound for S 2 . Using Proposition 6.1, we obtain

E β j,k -β j,k 2 ≤ C2 2δj 1 n ≤ C2 2δj (ln n) 1+1/θ n . Hence S 2 ≤ C (ln n) 1+1/θ n j 1 j=τ 2 2δj k∈Λ j 1I {|βj,k|>κλj/2} .
Let j 2 be the integer satisfying

1 2 n (ln n) 1+1/θ 1/(2s+2δ+1) < 2 j 2 ≤ n (ln n) 1+1/θ 1/(2s+2δ+1)
. (6.16) Then we have

S 2 ≤ S 2,1 + S 2,2 , where S 2,1 = C (ln n) 1+1/θ n j 2 j=τ 2 2δj k∈Λ j 1I {|βj,k|>κλj/2} and S 2,2 = C (ln n) 1+1/θ n j 1 j=j 2 +1 2 2δj k∈Λ j 1I {|βj,k|>κλj/2} .
We have

S 2,1 ≤ C (ln n) 1+1/θ n j 2 j=τ 2 j(1+2δ) ≤ C (ln n) 1+1/θ n 2 j 2 (1+2δ) ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1)
.

For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), we obtain 

S 2,2 ≤ C (ln n) 1+1/θ n j 1 j=j 2 +1 2 2δj 1 λ 2 j k∈Λ j |β j,k | 2 ≤ C ∞ j=j 2 +1 k∈Λ j |β j,k | 2 ≤ C ∞ j=j 2 +1 2 -2js ≤ C2 -2j 2 s ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1) . For r ≥ 1, p ∈ [1, 2) and s > (2δ + 1)/p, since B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ ( 
E Ω -Ω f H (x) -f (x) 2 dx ≤ C (ln n) 1+1/θ n 2s/(2s+2δ+1)
.

The proof of Theorem 5.2 is complete.

2 3 ,

 3 we present wavelets and Besov balls. The considered wavelet estimators (linear and hard thresholding) are defined in Section 4. Our upper bounds results are set in Section 5. The proofs are postponed in Section 6.

  i.d. (see [10, Theorem 2]). Theorem 5.1 proves that our wavelet linear estimator f L attains this rate without deterioration. This extends the results [24, Theorems 3.1 and 3.2]. Theorem 5.2 (Upper bound for f H ) Consider (1.1) under the assumptions (2.1), (2.2), (2.3), (2.5) (implying (2.4)) and (2.6). Let f H be (4.4).

Lemma 6 . 1 (

 61 [START_REF] Fan | Wavelet deconvolution[END_REF]) Suppose that (2.2) and (2.3) hold. Consider the wavelet basis B defined in Section 3. For any integer j ≥ τ , k ∈ Λ j , υ ∈ {φ, ψ} and y ∈ R, let (Kυ) j,k (y) be (4.1). Then there exists a constant C > 0 such that

  Let f L be (4.3). Then there exists a constant C > 0

	such that

Theorem 5.1 (Upper bound for f L ) Consider (1.1) under the assumptions (2.1), (2.2), (2.3), (2.4) and (2.6). Suppose that f ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1.

  So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have Upper bound for S 4 . We have|β j,k | 2 1I {|βj,k|<2κλj} .Let j 2 be the integer (6.16). We haveS 4 ≤ S 4,1 + S 4,2 , |β j,k | 2 1I {|βj,k|<2κλj} , S 4,2 = j 1 j=j 2 +1 k∈Λ j |β j,k | 2 1I {|βj,k|<2κλj} . -p)/2 + (s + 1/2 -1/p + δ -2δ/p)p = 2s, we have S 4,2 ≤ C

	and (2s + 2δ + 1)(2 j 1	j 1		
				S 4 ≤ λ 2-p j	|β j,k | p
				j=j 2 +1	j=τ k∈Λ j k∈Λ j	
		= C	(ln n) 1+1/θ n	(2-p)/2	j 1 j=j 2 +1	2 jδ(2-p)	k∈Λ j	|β j,k | p
	where	≤ C	(ln n) 1+1/θ n	(2-p)/2	∞ j=j 2 +1	2 jδ(2-p) 2 -j(s+1/2-1/p)p
	S 4,1 =	j 2 j=τ k∈Λ j ≤ C	(ln n) 1+1/θ n	(2-p)/2	2 -j 2 (s+1/2-1/p+δ-2δ/p)p
	We have S 4,1 ≤ C ≤ C j 2 j=τ 2 j λ 2 j = C n (ln n) 1+1/θ (ln n) 1+1/θ n 2s/(2s+2δ+1) j=τ 2 j(1+2δ) ≤ C j 2	n (ln n) 1+1/θ	2 j 2 (1+2δ)
		≤ C	(ln n) 1+1/θ n	2s/(2s+2δ+1)	2s/(2s+2δ+1)	.	M ) (6.18)
	and (2s + 2δ + 1)(2 -p)/2 + (s + 1/2 -1/p + δ -2δ/p)p = 2s, we have
	S 2,2 ≤ C It follows from (6.14), (6.15), (6.17) and (6.18) that (ln n) 1+1/θ n j 1 j=j 2 +1 2 2δj 1 λ p j k∈Λ j |β j,k | p ≤ C n j=j 2 +1 2 jδ(2-p) 2 -j(s+1/2-1/p)p 2,∞ s+1/2-1/p (ln n) 1+1/θ (2-p)/2 ∞ ∞ j=j 2 +1 2 -2js ≤ C2 -2j 2 s ≤ C (ln n) 1+1/θ n S ≤ C 2s/(2s+2δ+1) (ln n) 1+1/θ n . (6.19) (M ) 2s/(2s+2δ+1)
		≤ C	(ln n) 1+1/θ n	(2-p)/2	2 -j 2 (s+1/2-1/p+δ-2δ/p)p
		≤ C	(ln n) 1+1/θ n	2s/(2s+2δ+1)	.
				S 2 ≤ C	(ln n) 1+1/θ n	2s/(2s+2δ+1)	.	(6.17)

.

For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), we have

S 4,2 ≤ ∞ j=j 2 +1 k∈Λ j |β j,k | 2 ≤ C . For r ≥ 1, p ∈ [1,

2) and s > (2δ + 1)/p, since B s p,r (M ) ⊆ B . So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have S 4 ≤ C (ln n) 1+1/θ n Combining (6.11), (6.12), (6.13) and (6.19), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, sup f ∈B s p,r (M )