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Abstract 
 

Simulation is often used to evaluate supply chain or workshop management. This 

simulation task needs models, which are difficult to construct. The aim of this work is to 

reduce the complexity of a simulation model design. The proposed approach combines 

discrete and continuous approaches in order to construct speeder and simpler reduced 

model. The simulation model focuses on bottlenecks with a discrete approach according to 

the theory of constraints. The remaining of the workshop must be taken into account in 

order to describe how the bottlenecks are fed. It is modeled through a continuous approach 

thanks to a neural network. In particular, we use a multilayer perceptron. The structure of 

the network is determined by using a pruning procedure. For validation, this approach is 

applied to the modelisation of a sawmill workshop. 
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chain, ANN 
                                                           
1 Corresponding author. Tel: +33329296173 / fax: +33383684437. E-mail address: 
philippe.thomas@cran.uhp-nancy.fr (P. Thomas). 



Accepté à: Engineering Applications of Artificial Intelligence 
 

2 
 

 

 

1. INTRODUCTION 

Simulation is used in many goals. One of them is to evaluate supply chain or workshop 

performance. There are three different ways of measuring this performance: analytical 

models (queuing theory,…), physical experimentation (lab platforms, industrial pilot 

implementation, …), Monte Carlo methods (simulation or emulation) (Thierry et al., 2008). 

Analytical methods are generally impracticable because the mathematical model 

corresponding to a realistic case is often too complex to be solved, and physical 

experiments suffer from technical and cost-related limitations. Simulation is the better 

approach to model and analyze performance for large-scale cases. In the simulation model, 

the number of ‘objects’ of the model and the number of events can be very large. 

Consequently, the first problem could be the time needed to build the model and the 

simulation duration on a computer can be unacceptable for operational use. Thus, it is 

necessary to reduce the model size (Thierry et al., 2008). 

On one hand, constructing a simulation model is a complex task that can take modelers a 

lot of time. Effectively, simulation models of actual industrial cases are often very complex 

and the modelers encounter problems of scale (Page et al., 1999). Thus, numerous authors 

have expressed interest in using simplest (reduced/aggregated) models of simulation (Ward, 

1989; Musselman, 1993; Pidd, 1996; Brooks and Tobias, 2000; Chwif et al., 2006).  

On the other hand, to establish and to initialize ‘predictive schedule’ or ‘reactive 

schedule’, the knowledge of the evolution of resources states, (WIP (work in process), and 
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queues) are needed. This knowledge can be obtained by using a simulation model. Reduced 

models can be very useful, because they are quickly parameterized and simulated. 

Furthermore, at this level of planning (master production schedule), load/capacity 

balancing is obtained via the ‘management of critical resource capacity’ function or ‘rough-

cut capacity planning’ (RCCP), which essentially deals with bottlenecks (Vollmann et al., 

1992). Goldratt and Cox, in ‘The Goal’ (1992) put forward the ‘theory of constraints’ 

(TOC), which proposes to manage all the workshops by bottlenecks control. Thomas and 

Charpentier (2005) have shown that a good method to build a simulation model would be to 

reduce the model according to the TOC. 

Moreover, neural networks have been used in all application areas of the manufacturing: 

scheduling (Akyol and Bayhan, 2007), design of manufacturing process (Cakar and Cil, 

2004), …  

Therefore, the main goal of this work is to propose a design approach for simulation 

models, which would be less time consuming and simpler for the modelers, and which 

could be partially automated. This approach is based on the learning capabilities of neural 

networks and on the TOC. 

The rest of the paper is structured as follows. The second part contains a brief 

bibliography overview and, in the third part, the proposed approach of the reduction model 

and multilayer perceptron is presented. The fourth part is devoted to the validation of the 

proposed approach in an industrial application, which is a sawmill flow shop case. 
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2. A BIBLIOGRAPHY OVERVIEW 

2.1. On supply chain simulations 

One main goal of the supply chain simulation is to evaluate the performance of supply 

chain management in order to support decision making at three levels: 

- strategic level (designing or redesigning a supply chain, localization of 

factories and warehouses, partners selection, etc.), 

- tactical level (validation of the global forecasted production capacities 

according to forecasted demand), and 

- operational level (control policies, scheduling, cooperation policies on the 

shop floor, etc.). 

The simulation model must be constructed according to its use and the supply chain to 

be modeled. 

Kleijnen and Smits (2003) distinguish four simulation types for supply chain 

management: 

- spreadsheet simulation (may be part of production control software), 

- system dynamic (may explain the bullwhip effect), 

- discrete-event dynamic systems (DEDS) simulation (may predict fill rate 

values), and 

- business game (may educate and train users). 

Spreadsheets have been used to implement manufacturing resource planning (MRP), but 

this type of simulation is often too simple and unrealistic (Kleijnen, 2005). 

System dynamic is based on the work of Forrester (1961). In this approach, companies 

are seen as systems with six types of flows (materials, goods, personnel, money, orders, and 
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information) and different stocks. Managerial control is realized through the changing of 

rate variables. The feedback principle plays a crucial role in this approach (Kleijnen, 2005). 

A DEDS simulation is more detailed than the preceding ones. DEDS concerns the 

modeling of a system by a representation in which the state variables change 

instantaneously according to event occurring. Moreover, it takes into account uncertainties 

(Law and Kelton, 2000). 

A business game is a simulated world that may represent a supply chain and its 

environment. It is used for educational and research goals (Kleijnen, 2005). 

The two main difficulties encountered during the design step of a supply chain 

simulation model are related to the size of the system and the complexity of the control 

system. A supply chain is composed of a group of enterprises, composed in turn of a group 

of factories, composed of a group of workshops, etc. Moreover, modeling the behavior of 

the leading policies of each enterprise and the relationships between them is needed 

(Thierry et al., 2008). This fact implies that the duration of one simulation may become 

unacceptably long to be usable. The same difficulty has been highlighted by Thomas and 

Charpentier (2005) concerning workshop. Therefore, it may be useful to reduce the size of 

the model. Different ways can be used to perform the model reduction: 

- abstraction, which allows the complexity of the model to be reduced and 

preserves the validity of the results (Frantz, 1995), 

- aggregation, which is a form of abstraction where a group of data or variables 

with common characteristics can be replaced by aggregated data or variables 

(Aladanondo and Mercé, 1991), and 
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- reduction of the number of events, where a part of DEDS is replaced by a 

variable or a formula (Zeigler, 1976). 

 

2.2. On model reduction 

Innis and Rexstad (1983) have listed 15 simplification techniques for general modeling. 

Their approach is composed of four steps: hypotheses (identify the important parts of the 

system), formulation (specify the model), coding (build the model), and experiments. Based 

on these works, different approaches have been proposed. 

Brooks and Tobias (2000) suggest a ‘simplification of models’ approach for cases where 

the indicators to be followed are the average throughput rates. They suggest an eight-stage 

procedure. The reduced model can be very simple and then an analytical solution becomes 

feasible and the dynamic simulation redundant. Their work is interesting, but is valid in 

cases where the required results are averaged and where the aim is to measure throughput. 

It is not interesting to follow the various events taking place in the work center (WC). 

Leachman (1986) has proposed a model for use in the semiconductor industry, which 

uses cycle time as an indicator. This model has been improved by Hung and Leachman 

(1999). They propose a technique for model reduction to be applied in large wafer 

fabrication facilities. They use ‘total cycle time’ and ‘equipment utilization’ as decision-

making indicators to do away with the WC. In their case, these WCs have a low utilization 

rate and a fixed service level (they use the standard deviation of batch waiting time as a 

decision-making criterion). 

Tseng et al. (1999) compare the regression techniques applied to an ‘aggregate model’ 

(macro) by using the ‘flow time’ indicator. They suggest reducing the model by mixing the 
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‘macro’ and ‘micro’ approaches, so as to minimize errors in complex models. Here again, 

for the ‘macro’ view, they deal only with the estimation of flow time as a whole. For the 

‘micro’ approach, they construct an individual regression model for each stage of the 

operation to estimate its individual flow time. The cumulative order of flow time estimates 

is then the sum of the individual flow times. They, then, try to mix the macro and micro 

approaches. These different approaches simplify the model by using a macroscopic view of 

the system and by optimizing a macroscopic indicator (total cycle time, flow time…) 

Li et al. (2009) propose a reduction model approach based on the aggregation of 

machines on the production line. They build a complete model of the production line and, if 

the last two machines correspond to a serial line, they aggregate them. The same is 

performed with the first two machines if they correspond to a serial line. These aggregation 

steps may be performed recursively and they are denoted backward and forward 

aggregation, respectively. If the two machines to be aggregated follow a Bernoulli model or 

an exponential model, an analytical investigation allows the production rate of the new 

aggregated machine to be determined. If not, a simulation phase must be performed to 

determine an empirical formula for the production rate. 

Some works (Doumeingts et al., 1987; Hwang et al., 1999) use Petri nets as tool in order 

to simplify network structures by using macro-places which represent complex activities 

associated with function groups.  

To simplify models, some works have studied the use of a continuous flow model based 

on gradient estimation for stochastic systems in order to approximate discrete 

manufacturing environments (Ho, 1987; Suri and Fu, 1994). Other authors use metamodels 

(linear regression, splines, Kriging, etc.) to perform a simulation model (Kleijnen and 
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Sargent, 2000). Neural networks can be viewed as a type of metamodel (Barton, 1994; 

Pierreval, 1996; Kleijnen and Sargent, 2000). In addition, neural networks have proved 

their abilities to extract models from experimental data (Thomas et al., 1999). Therefore, 

the use of neural networks has emerged recently as an interesting approach within the 

framework of the supply chain or workshop management (Shervais et al., 2003; Chiu and 

Lin, 2004). 

 

2.3. On neural network in manufacturing 

Neural network approaches have been used in all application areas of the manufacturing. 

Zhang and Huang (1995) have noticed that neural networks are used in monitoring and 

diagnosis, process modeling and control, group technology, engineering design, quality 

assurance, robotics, scheduling, or process planning areas.  

Different typologies of neural network have been used for dealing with scheduling 

problem (Akyol and Bayhan, 2007). Hopfield network and its extensions are used to solve 

optimization problems. So, many works use Hopfield network to determine static 

scheduling by minimizing the sum of all the starting times of each job’s last operation (Foo 

and Takefuji, 1988; Foo et al., 1995), by minimizing makespan (Willems and Brandts, 

1995), or by minimizing the weighted sum of the earliness and tardiness penalties (Akyol 

and Bayham, 2005). These approaches are generally infeasible for large size problems and 

may generate constraints-violating solutions.  Competitive network and self organizing map 

have also be used to deals with the same problem. Fang and Li (1990) use competitive 

networks in order to minimize total tardiness. The use of competitive network needs the 

definition of equations of motion for the problem constraints and an energy function that 
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converges to stable state. Chen and Wang (2009) develop a self organizing map–back 

propagation network to estimate the remaining cycle time of every job in a semi conductor 

manufacturing factory. Multilayer perceptrons are also used in scheduling applications in 

order to select a suitable scheduling strategy (Geneste and Grabot, 1997), or designing a 

scheduling software (Feng et al., 2003).  

Some works focus on one aspect of scheduling problems. Lin and Hwang (1999) study 

dynamic task allocation and use two multilayer perceptrons to allocate the task between 

human and computer. Dispatching rules selection in a job shop has been investigated by El 

Bouri and Shah (2006) which minimize the makespan and the mean flow time with two 

different neural networks. Kuo et al. (2007) address the same problem by focusing on the 

construction of the learning data set. Mouelhi-Chibani and Pierreval (2010) determine the 

parameters through simulation optimization to perform the dispatching rules selection.  

The design of manufacturing process is another important area of neural network 

applications. Cakar and Cil (2004) determine the number of machines in a work center in 

function of priority rules. The inputs of the multilayer perceptron used are machine 

utilization rate, percentage of the late parts, and mean values of flow time, tardiness, and 

completion time. Vosniakos et al. (2006) associate multilayer percetron and genetic 

algorithm to analysis and design manufacturing cells.  Araz et al. (2008) focus on the 

determination of the optimum kanban parameters by using a multilayer perceptron for 

generating simulation metamodels.  

This area is related to the process metamodeling which is the core of many works. 

Chambers and Mount-Campbell (2002) propose to model each component of a process by a 

neural model and to associate them in order to optimize the complete process.  
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In order to estimate important parameters, some authors propose to use neural networks 

as metamodels. Fonseca and Navarese (2002) determine the manufacturing lead times for 

orders simultaneously processed in a job shop. The time-throughput is estimated by using 

multilayer perceptron for single/multi product manufacturing environments (Yang, 2010). 

Kutschenreiter-Praszkiewicz (2008) uses Radial Basis Function to estimate time 

consumption in machining.  

In all these applications, the choice of the structure of the neural network is always a 

complex task and determining a suitable or near-optimal structure for a neural network has 

been called a “black art” (Branke, 1995). However, some authors try to respond to this 

question. Sukthomya and Tannock (2005) investigate the selection of inputs, and they 

attempt to provide guidelines for the training of neural networks to model complex 

industrial processes. Khosravi et al. (2010) try to construct neural metamodels with optimal 

structure. Moreover, they build prediction intervals for point predictions of neural 

metamodels.  

For multilayer perceptron, the determination of the near-optimal structure is a well-

known problem investigated by many authors. Two main approaches can be used: 

Constructive approaches (Chentouf and Jutten, 1996; Rivals and Personnaz, 2003) and 

pruning approaches (Hassibi and Stork, 1993; Drucker, 2002).  

Akyol and Bayhan (2007) recall the main advantages and disadvantages of the Hopfield 

networks, competitive networks and multilayer perceptrons.  

The main advantage of Hopfield networks is their massive parallelism architecture when 

their main disadvantages are that they may converge to local optimum, the ways of 
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incorporating constraints into the energy function and the termination criteria affect the 

quality of the results, and the translation of the problem into the energy function is difficult. 

Competitive networks are best applicable to optimization and classification problem and 

by using competitive learning rule, the penalty terms are handled explicitly therefore the 

energy function is simplified and the time required in obtaining coefficient is reduced. 

However, equations of motions need to be derived before solving the problem, competitive 

networks cannot be applied to simplify the energy function of all scheduling problems and 

their convergence should be analyzed carefully.  

Multilayer perceptrons are universal approximators, which have better generalization 

capabilities to capture complex relationship between inputs and outputs. However, their 

main drawbacks are that gradient-based training techniques may be trapped into local 

minima, the generation of training set is time consuming, and overlearning degrades the 

performance of the network. The problem of local optimum may be attenuated by using an 

adapted initialization algorithm and the determination of the optimal structure allows 

avoiding the overlearning problem.  

 

3. MODEL REDUCTION PROCESS 

3.1. Proposed approach 

The proposed approach is based on the association of discrete event models and 

continuous models (neural network) in order to design a simulation model. Our objective is 

to maximize the bottleneck utilization rate and, at the same time, simplify simulation model 

construction for modelers.  
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The reduction algorithm proposed is an extension of those presented by Thomas and 

Charpentier (2005). The main goal of this algorithm is to reduce the number of simulation 

blocks. It is based on the ‘theory of constraints’ which uses the concept of bottleneck. 

Many definitions of bottleneck are available in the literature and still more are used in 

practice. Most of them view the bottleneck as the worst machine, e.g., the machine with the 

smallest efficiency. Other authors consider the machine with the largest effect on the 

throughput as bottleneck (Li et al., 2009). Here, two particular types of work centers (WC) 

are defined: 

• ‘conjunctural bottleneck’ (current bottleneck) is a WC that is saturated for the 

master production schedule (MPS) in the predictive scheduling in question. This 

means that it uses all of its available capacity, 

• ‘structural bottleneck’ means WC that has often been or is in such a condition. 

These ‘structural bottlenecks’ are determined by experience feedback. 

The proposed algorithm is presented figure 1 and its main steps are recalled and 

explained below: 

1. Identify the WC which is the structural bottleneck. As said before, this one has 

been the main capacity constraint for several years (according to the experience 

of production manager). 

2. Identify the conjunctural bottleneck for the bundle of MOs of the MPS under 

consideration. 

3. Among the WCs not listed in 1 and 2, identify the one (synchronization WC) that 

satisfies the following two conditions: 

• necessary at least for one of the MOs using a bottleneck, and 
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• widely used considering the whole body of MOs 

4. If all MOs have been considered, go to 5; if not, go to 3. 

5. Model all the WCs that have not been found during the previous steps by using a 

continuous model, a neural network. 

 

Figure 1. Algorithm used 

 

Hence, the WCs remaining in the model are either conjunctural or structural bottlenecks, 

or are WCs that are vital to the synchronization of the MOs. All other WCs are 

incorporated in ‘aggregated blocks’ upstream or downstream of the bottlenecks. These 
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‘aggregated blocks’ are modeled by neural networks which estimate the throughput times 

between two bottlenecks. These models permit to simulate the alimentation of the 

bottlenecks and so, to control the bottlenecks.  

The main benefits of this algorithm are: 

- modelers can focus on the description of the bottlenecks, 

- noncrucial parts of the system are modeled with a learning approach 

(automatization of this modeling step), 

- the resulting model is less complex than a complete one, and 

- simulation time is shorter than with a complete model. 

This paper focuses on step 5 of the reduction algorithm. The bottlenecks are considered 

here as known. 

 

3.2. The multilayer perceptron (MLP) 

The works of Cybenko (1989) and Funahashi (1989) have proved that a multilayer 

neural network with only one hidden layer using a sigmoidal activation function and an 

output layer using a linear activation function can approximate all nonlinear functions with 

the desired accuracy. This result explains the great interest of this type of neural network, 

which is called ‘multilayer perceptron.’ In this work, the objective is to model the 

throughput times of parts between two bottlenecks by using information given by the 

system. It is assumed that this throughput time could be approximate with a nonlinear 

function obtained with a MLP. 
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Figure 2. Structure of the multilayer perceptron 

 

The structure of the multilayer perceptron is recalled here. Its structure is shown in 

figure 2. The neurons of the first (or input) layer distribute just the 0n  inputs { }0
n

0
1

0
x,,x ⋯  

of the MLP to the neurons of the next (hidden) layer. A special input neuron (depicted by a 

square in figure 2) represents a constant input equal to 1, and it is used to represent the 

biases or thresholds of the hidden layer. The output of the neurons of the hidden and of the 

output layers is given by a so-called ‘activation function’ of the weighted sum of its inputs. 
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function of the output neuron is a linear one. The form of this neural network is given, for 

single output, by: 

( )
01 1 1

2 1 2 1 2 1 0 1

1 1 1 1

. . . .
nn n n

i i i i i ih h i
i i i h

z w x b w g z b w g w x b b
= = = =

 
= + = + = + + 

 
∑ ∑ ∑ ∑  (1) 

input
layer

hidden
layer

output
layer

1

x 1
0

x h
0

x
n 0

0

x 1
1

x i
1

x
n 1

1

z 1
1

z i
1

z
n 1

1

w h1
1

w ih
1

w
n h1

1

w 1
2

w i
2

w
n 1

2

1

b i
1

b
2

z

input
layer

hidden
layer

output
layer

11

x 1
0

x 1
0

x h
0

x h
0

x
n 0

0
x

n 0

0

x 1
1

x 1
1

x i
1

x i
1

x
n 1

1
x

n 1

1

z 1
1

z 1
1

z i
1

z i
1

z
n 1

1
z

n 1

1

w h1
1

w h1
1

w ih
1

w ih
1

w
n h1

1
w

n h1

1

w 1
2

w 1
2

w i
2

w i
2

w
n 1

2
w

n 1

2

11

b i
1

b i
1

b
2

b
2

z



Accepté à: Engineering Applications of Artificial Intelligence 
 

16 
 

where xh
0 , h = 1, ..., n0 , are the inputs of the network, w ih

1  and bi
1, i = 1, ..., n1 , h n= 1 0, ,⋯ , 

are the weights and biases of the hidden layer, x i
1, i = 1, ..., n1 are the outputs of the hidden 

neurons, w i
2  and b are the weights and bias of the output neuron.  

 

Kleijnen and Sargent (2000) have proposed a modeling process that can be subdivided 

into 10 steps: 

- determine the goal of the model, 

- identify the inputs and their characteristics, 

- specify the domain of applicability, 

- identify the output variable and its characteristics, 

- specify the accuracy required of the model, 

- specify the model’s validity measures and their required values, 

- specify the model and review this specification, 

- specify a design, 

- fit the model, and 

- determine the validity of the model. 

In this work, these different steps are used to construct the neural network. The four first 

steps are related to the design of the input and output layers. The output neurons represent 

the information to model when the input neurons correspond to the data available in order 

to model the considered system.  

The three last steps are related to the design of the hidden layer and to the learning of the 

parameters. The determination of the hidden layer and the learning of the parameters are 
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performed simultaneously. For this, the learning starts from an overparameterized structure 

and it is performed in three steps: 

- initialization of the weights and biases of the oversized structure, 

- learning of the parameters,  

- pruning of the spurious parameters.  

The initialization of the weights and biases is performed by using an evolution of the 

Nguyen-Widrow (1990) algorithm proposed by Thomas and Bloch (1997). This algorithm 

permits to associate a random initialization of weights and biases to an optimal placement 

in the input and output spaces. This method is similar to the slice linearization and permits 

to avoid the initial saturation of hidden neurons.  

The learning algorithm used is the Levenberg-Marquard algorithm with a robust 

criterion (Thomas and Bloch, 1996). The Levenberg-Marquard algorithm permits to 

associate the speed of the Hessian methods to the stability of the gradient methods. This is 

performed by adding a parameter multiplied by the identity matrix in order to permits the 

inversion of the Hessian matrix even if it is singular. The tuning of this parameter during 

the learning permits to the Levenberg-Marquard algorithm to work as a gradient descent 

algorithm when this parameter is great and as a Gauss-Newton algorithm when this 

parameter is small. The use of a robust criterion permits to avoid the influence of outliers 

and, has a regularization effect in order to prevent overfitting.  

The pruning algorithm used is the Neural Network Pruning for Function Approximation 

(N2PFA) algorithm (Setiono and Leow, 2000). This algorithm uses the mean absolute 

deviation (MAD) to measure the performance of the neural network. It is performed into 

two main steps. In the first one, the spurious hidden neurons are pruned, and in the second 
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one, the feature selection is performed. The strategy for eliminating an hidden neuron (first 

step) or an input (second step) is the same and is very simple and fast. During the first step, 

the hidden neuron i (i = 1, ..., n1) is deleted (by vanish the weight w i
2 ) and the resulting 

structure is evaluated by calculating the MAD values for the learning and validation data 

sets. The best resulting structure is compared with the initial one, and, if its MAD values 

are not so degraded, the considering hidden neurons is remove and the procedure is 

repeated until no hidden neurons can be removed. Else, the initial structure is keep.  

The same work is performed in a second step on the input neurons.  

 

4. ILLUSTRATION OF THE PROPOSITION 

For illustration, we use the proposed approach to build a simulation model of a sawmill 

workshop. The main objective of sawmill is to cut tree trunks into planks of different sizes. 

In this actual case, managers need a tool to help them in their weekly decision-making 

Master Production schedule (MPS) process. This work is resulting from collaboration with 

the sawmill which want: 

- to evaluate the effectiveness of its MPS,  

- to maximize its load rate, and so, its global productivity, 

- to explain some unexplained congestion phenomena of the trimmer WC.  

A first work (Thomas and Charpentier, 2005) with a complete model has permit to 

represent the congestion phenomena and to use this representation in order to improve the 

load rate. This model, which is recalled in section 4.2a, has permit to show that a load rate 

of the bottleneck too high (higher than 60%) degrades the productivity of this bottleneck, 
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and so, the productivity of the sawmill. The difficulty is that the bottleneck is the last work 

center of the sawmill but all the influent factors on the productivity of the bottleneck 

depends of the first work center.  

However, this complete model is unusable on a real case for the dynamic evaluation of 

the MPS because of the time needed to modified it.  

4.1. Overview of the sawmill 

At the time of the study, the sawmill has a capacity of 270,000 m3/year, a turnover of 

€52 million and 300 employees. 

This workshop can be described from a process point of view. This sawmill can be 

represented by two linear parallel flows for the main and secondary products. This fact, 

associated to the variation of log dimensions lead the process to be non-linear. Therefore, 

the physical industrial production system can be divided into three main parts. To 

understand the functioning of the process, the course of a log from its admission into the 

process to its exit in planks form will be described. 
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Figure 3. The Canter line 

 

The first part of the process corresponds to the Canter line, which is presented figure 3. 

Dashed arrows indicate the products flow. The considered log is taken into the process by 

using conveyors RQM1, RQM2, and RQM3. According to its characteristics (determined 

by scanner MS), the log is driven to conveyors RQM4 or RQM5, which are used as input 

inventory for the Canter line. Only RQM5 is used here in order to simplify the presentation. 

After that, logs go on the first canter’s machine and later on the CSMK saw, which 

transforms logs into square-shaped parallelepipeds (figure 4). 

 

 

Figure 4. The cutting plan 

 

This first step, which gives the two first sides of the parallelepipeds, produces two 

planks (called secondary products), which are taken out of the Canter line by the BT4 and 

BT5 conveyors. The log is then driven on the RQM6 conveyors, then rotated 90°, and 

stored in RQM7 awaiting its second passage on the CSMK saw. After the second passage, 

the squared is completed, and two other secondary products are taken out of the Canter line 

by the BT4 and BT5 conveyors toward the second part of the process, the Kockums line. 

The squared log is cut on the MKV saw into three planks (called main products). These 
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main products are driven to the third part of the process, the trimmer line. The cutting of the 

log into main and secondary products is described in the cutting plan (figure 4). 

Figure 5 shows the second part of the process, where the main machine is the Kockums 

saw. Only secondary products are driven on this part. The secondary products are taken in 

the line by the BT4 and BT5 conveyors. They are cut by the QM11 saw, after which they 

reach the Kockums saw, which optimizes the planks according to the products needed. The 

alignment table is used as the input inventory of the Kockums saw. The secondary products 

are finally sent to the third part of the process by the exit conveyor. 

 

 

Figure 5. The Kockums line 
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Figure 6. The trimmer line 

 

The third part of the process is the trimmer line, which is presented in figure 6. This line 

performs the final operation of cross cutting. This operation consists in cutting up products 

to length. The inputs of the line are from collectors 1 and 2, which collect the secondary 

and main products from Kockums and Canter lines respectively. Saw 1 is used to perform 

default bleeding and Saw 2 cuts up products to length. 

A previous work (Thomas and Charpentier, 2005) has shown that this last machine, the 

trimmer saw, is the bottleneck of the entire process, and, as said previously, the 

productivity of the trimmer depends to the decisions taken on the canter work center. So, 

the impact of bad decisions are seen too much late to be corrected. So in order to evaluate 

decisions, managers need a simulation tool. 
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4.2. The simulation models 

a. The complete model 

The complete model of the sawmill process (figure 7) is constructed with the Arena® 

software and consists of different modules. The first module is used to model the log 

arrival, which follows a homogeneous Poisson process with a mean of 20. In this module, 

the characteristics of the log, which are measured by the scanner (figure 3), are associated 

with it. In the simulation model, 2000 logs are presented at the entry of the process. The 

dimensions of these logs follow uniform distributions. At starting time, the process is 

empty. 

A second module, the ‘input sorter’, directs the logs to either RQM4 or RQM5, 

according to their characteristics. It may also eject the log out of the process if it is 

machine-gunned or if its dimensions are out of range. The logs go to the next module, 

which models the RQM4 and RQM5 queues. Conveyors RQM4, RQM5, and even RQM7, 

are used as input inventory for the Canter line. Two other modules are used for the 

simulation of the Canter line and the passage of the squared log in RQM7. The Canter line 

model uses two submodels for the management of main and secondary products. The 

Canter line has three outputs, which lead to the Kockums line for the secondary products 

and to the trimmer line for the main products. 
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Figure 7. The complete model 

 

The other modules, which correspond to the core of the process, are the simplest. They 

are used to model the Kockums and the trimmer lines and the last module is used to model 

the sorter of products into different racks. 

The different submodels make the model more complex that it appears in figure 7. In 

particular, construction of the submodel used to manage the priority rules for choosing the 

input inventory that supplies the Canter line is a very complex task. The simulation ended 

when all the logs (with the exception of ejected ones) are cut into planks. The simulation 

results of this model will be used in section 4.3. 

This model has permit to explain some phenomena of congestion of the trimmer and so, 

to improve the productivity of the sawmill. However, it is not useful for the dynamical 

evaluation of the MPS. In fact, the construction of the complete model needs one day for an 

experimented people. But, the time of readjustment of the initial model each time an event 

forces to re-use the model is prohibitive. An event may force to change attributes, 

distribution laws, times, and even, may need to modify some flow or work centers… And, 
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this work must be performed in a very short time because we need to react quickly to the 

event. that’s why a complete model is not pertinent and the use of a reduced model which is 

quicker to construct is needed. 

 

b. The reduced model 

As said previously, the bottleneck of this line is the trimmer. Consequently, modeling 

the function of the inventories RQM4, RQM5, and RQM7, and of the Canter and Kockums 

lines is unnecessary. Furthermore, the part surrounded by the gray dashed line in figure 7 

gave no direct and useful information for the evaluation of the MPS. In fact, only the arrival 

times of the products in the trimmer queue are useful for simulating the load of this 

bottleneck, and this is the reason for using a multilayer perceptron. 

According to the modeling process recalled in chapter 3.2, the specific sawmill neural 

model could be constructed. To build a neural network, we need to identify the input 

variables. Thomas et al. (2008) collected the available input data which can be classified 

into three categories: Data related to the products (here the logs), data related to the process 

and data related to the bill of material or routing (here the cutting plan).  

The data related to the products are mainly dimensional ones as length (lg) and three 

values for timber diameters (diaPB, diaGB, and diaMOY). The thickness of the finished 

product, may also be used. However, in a previous work (Thomas et al., 2008), it was 

shown that thickness have no impact on the result and so it is not taken into account in this 

work. 

The data related to the process are the process variables collected at the time of log 

arrival. In particular, we require the input stock and the utilization rate of the bottleneck, 
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here the trimmer (Q_trim, and U_trim, respectively). The number of logs present in the 

process between the inputs of RQM5 and the exit of the Canter line (Q_RQM) is needed. 

The data related to the routing correspond here to the information related to the cutting plan 

of the logs which must be cut into main and secondary products. Here the cutting plan 

(figure 4) divides the log into seven products: 

- two secondary products resulting from the first step of the cutting process on 

the saw CSMK of the Canter line, 

- two secondary products resulting from the second step cutting process on the 

saw CSMK of the Canter line after staying in the RQM7 queue, and 

- three main products resulting from the third step of cutting process on the saw 

MKV of the Canter line. 

Saws CSMK and MKV belong to the Canter line. These seven products can be classified 

into three categories, according to the location (CSMK or MKV) and the time during the 

cutting process (first or second cutting). This information is given by the two variables 

(prod and Step). The “prod” variable indicates whether products are main or secondary 

ones. The “Step” variable indicates whether the secondary products are performed during 

the first or second step (before or after the logs went along the RQM7 queue).  

Consequently, the neural networks input variables are: Lg, diaGB, diaMOY, diaPB, 

Prod, Step, Q_trim, U_trim, and Q_RQM. In our application, 12775 products are simulated 

with the complete model. These data are used to fit the behavior of the reduced model to 

the complete one. 

The next step is to identify the output variable. Our objective is to estimate the delay 

(∆T) corresponding to the duration of the throughput time for the 12775 products. ∆T is 
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measured between the process input time and the trimmer queue input time. Hence, ∆T is 

the output variable of the neural network: 
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To specify the model, the number of hidden neurons needs to be determined. Therefore, 

a weight elimination method, N2PFA, is used to remove spurious parameters (Setiono and 

Leow, 2000). As explained in the part 3.2, the N2PFA algorithm uses the mean absolute 

deviation (MAD) to determine the effectiveness of the network. This algorithm works in 

two steps. In the first step, it prunes the spurious hidden neurons. During the second step, 

the spurious inputs are pruned. In order to avoid an early stopping of the algorithm which 

drives to an overparametrized structure, a parameter must be tuned which permits a slightly 

degradation of the MAD values in exchange of the suppression of one neuron. This 

parameter is tuned to 0.025. With this choice, the deletion of one neuron which degrades 

the MAD values of 2.5% is accepted. 

Therefore, the learning begins with a structure using 15 hidden neurons (2), which 

correspond to 166 parameters. 

The learning of the network is supervised. Hence, it is necessary to divide the database 

into two datasets, namely, learning and validation. The database is constructed with the 

complete model, which is used as reference. To fit the model, we use the learning algorithm 

called the ‘Levenberg−Marquard algorithm with robust criterion’ (Thomas and Bloch, 

1996). The learning approach corresponds to a local search of a minimum and the results 

may differ according to the initial weights. To evaluate the dispersion of the results, 50 

different sets of initials weights are used. The pruning procedure led to the preservation of 
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the nine inputs in 86% of the cases. In the other cases, only the input U_trim (utilization 

rate of the trimmer) is removed. The number of hidden neurons after pruning varied from 4 

to 14. Figure 8 presents the distribution of the hidden neurons number during the 50 trials. 

 

 

Figure 8. Distribution of the hidden neurons number 

 

This figure shows that, in 88% of the cases, the number of hidden neurons remaining 

after pruning ranged from four to seven. Table 1 presents the means and the standard 

deviations of the residuals for the 50 trials on the learning and the validation data sets. 

 

 

Table 1. Means and standard deviations of the residuals 

 

Table 1 shows that, even though the network structure may vary, the results obtained on 

the learning and validation data sets are very close together. Moreover, when the obtained 
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residuals in these different cases are studied, we notice that the worst results are generally 

obtained when few hidden neurons are pruned. However, the best results are obtained when 

all the nine inputs are preserved and only four to seven hidden neurons are retained. The 

selected structure used nine input neurons and seven hidden neurons, corresponding to 78 

parameters. With this structure, the means of the obtained residuals on the learning and the 

validation data sets are very close to 0 (0.0012 and 0.0865, respectively). The standard 

deviations of the residuals are 53.075 and 53.826 on the learning and validation data sets, 

respectively. 

To determine if some dynamics existing in the data are not taken into account by the 

learning process (i.e. the learning process has failed), the correlation between the different 

inputs and the residuals is performed on the learning and validation data sets (table 2). 

 

  

Table 2. Correlation between inputs and residuals 

 

Table 2 presents the mean, the standard deviation, the minimum and the maximum 

values of the correlation coefficient absolute value between the nine inputs and the 

residuals obtained with the 50 different trials (50 different neural models) (for the learning 

and validation data sets). These results show the variables “lg” (length), “diaGB (great 

diameter of the log), “diaMOY” (medium diameter of the log), “Step” (time of production 

Lg diaGB diaMOY diaPB Prod Step Q_trim U_trim Q_RQM
Mean 0.00704 0.005026 0.00668 0.009879 0.016519 0.004216 0.006994 0.008566 0.010548
Std 0.01158 0.010112 0.016762 0.026024 0.064165 0.009788 0.009788 0.010978 0.02379
Min 4.66E-05 4.66E-05 4.75E-05 0.00028 1.12E-05 6.16E-06 0.000121 0 0.000171
Max 0.05935 0.051441 0.085824 0.13427 0.32708 0.045058 0.044141 0.035216 0.12228
Mean 0.016825 0.015024 0.015773 0.021277 0.025555 0.015553 0.020086 0.01541 0.020915
Std 0.010131 0.012723 0.017408 0.028484 0.062529 0.0113250.015828 0.012356 0.024371
Min 0.000899 2.93E-05 0.000369 2.94E-07 4.85E-05 0.0007160.000621 0 0.000789
Max 0.04093 0.049737 0.087061 0.1446 0.32552 0.050812 0.069208 0.051577 0.1214

Learning

Validation
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of the secondary products), “Q_trim” (input queue of the trimmer) and “U_trim” 

(utilization rate of the trimmer) are always not correlated with the residuals.  

The variables “Prod” (main or secondary products) and eventually “diaPB” (smallest 

diameter of the log) and “Q_RQM” (number of logs present in the process between the 

input of RQM5 and the exit of the Canter line) are also generally not correlated with the 

residuals. In some rare cases, these variables and the residuals are correlated. However, 

these cases correspond to the network structures where too many hidden neurons are keep 

(more than 7 hidden neurons). It can be noticed that the minimal value for the correlation 

between “U_trim” (utilization rate of the trimmer) and residuals is 0. This could be 

attributed to the pruning of the input in some cases. For the selected structure, the 

coefficient of correlation between inputs and residuals is never more than 0.022505. 

Now, we consider the residuals obtained with the selected structure. For the learning 

data set, the mean of the residual is very close to 0 (0.0012) and it represents an error lesser 

than 2.7% of the throughput time ∆T. This result shows that the structure of the neural 

network used is sufficient for learning ∆T. Those obtained on the validation data set 

corroborate these results. On the validation data set, the mean of the residuals is also close 

to 0 (0.0865) and the residual represents an error lesser than 2.3% of ∆T. Therefore, we 

conclude that no overfitting problem occurs and the neural network can estimate the delay 

for datasets other than the learning one. 

Based on these results, we can conclude that our neural network is a good representation 

of this part of the process.  

The neural network model obtained is included into the reduced model shown in figure 

9. The modules ‘log arrival,’ ‘input sorter’, and ‘trimmer’ in the reduced model are 
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identical to those used in the complete one. Only the part surrounded by a gray dashed line 

is replaced. A comparison between the complete (figure 7) and reduced (figure 9) models 

shows that the model complexity is greatly reduced. In particular, the different submodels 

are removed from the reduced model. The reduced model can be so constructed in one hour 

with an automated procedure. 

 

 

Figure 9. The reduced model 

 

4.3. Evaluation of the reduced model 

In this section, we compare the results obtained with the reduced and the complete 

models. 

Figure 10a shows the evolution of the input inventory of the trimmer as a function of 

time (s). This comparison is performed with two different data sets obtained under the same 

conditions. Figure 10a shows that the two models presente the same type of queue 

evolution. However, one difference can be noticed: the trimmer queue value of the 

complete model between 0 and 500 s increases to 90 before decreasing to values very 

similar to those obtained with the reduced model. The observed difference between the two 
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values curves are due to the models initialization. 

a homogeneous Poisson distribution

the models follow a stochastic process. The initializations of the models produce an edge 

effect, which could explain the differences in behavior between the two models (

al., 2008; El Haouzi et al., 2008).

 

Figure 10a. Input queue of the trimmer 

(black: complete model; gray: reduced model)

 

Figure 10b shows the utilization rate of the trimmer as a function of time (s) for the two 

models (complete in black and reduced in gray). The two models present a similar 

evolution of the utilization rate and converge to the same value

To confirm that the neural network included in the reduced model has correctly learned 

the process, we investigate the results obtained by using a homogeneous Poisson process 

with different means as log arrival rule. As an example, Figure 1

rate of the trimmer when the mean of the Poisson process 

used previously). Figure 1
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values curves are due to the models initialization. The log arrival in the two models follow

distribution with a mean of 20 s. In addition, many parameters of 

the models follow a stochastic process. The initializations of the models produce an edge 

effect, which could explain the differences in behavior between the two models (

, 2008). 

 

. Input queue of the trimmer  Figure 10b. Utilization rate of the trimmer 

(black: complete model; gray: reduced model) 

shows the utilization rate of the trimmer as a function of time (s) for the two 

models (complete in black and reduced in gray). The two models present a similar 

evolution of the utilization rate and converge to the same value after 1000s

the neural network included in the reduced model has correctly learned 

the process, we investigate the results obtained by using a homogeneous Poisson process 

with different means as log arrival rule. As an example, Figure 11 presents the utilization 

of the trimmer when the mean of the Poisson process is 30 s (compared with the 20 s 

used previously). Figure 11 shows that the two models gave similar results and that the 
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The log arrival in the two models follows 

. In addition, many parameters of 

the models follow a stochastic process. The initializations of the models produce an edge 

effect, which could explain the differences in behavior between the two models (Thierry et 

 

. Utilization rate of the trimmer  

shows the utilization rate of the trimmer as a function of time (s) for the two 

models (complete in black and reduced in gray). The two models present a similar 

after 1000s. 

the neural network included in the reduced model has correctly learned 

the process, we investigate the results obtained by using a homogeneous Poisson process 

presents the utilization 

30 s (compared with the 20 s 

shows that the two models gave similar results and that the 



Accepté à: Engineering Applications of Artificial Intelligence
 

 

utilization rates converge to the same value of 33% for the two models (compared wit

value of 49% obtained previously). Similar results 

processes are used as log arrival rule.

Figure 11. Utilization rate of the trimmer 

(black: complete model; gray: reduced model)

 

These results show that a reduced model gives similar results than a complete one. 

Therefore, it is relevant to use reduced model instead of complete one because it is quicker 

to construct and use without loss of precision.

 

5. CONCLUSION 

A new approach for sim

uses a neural network and, more particularly, a multilayer perceptron

functioning of a part of the process 

been applied to the modelisation
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utilization rates converge to the same value of 33% for the two models (compared wit

value of 49% obtained previously). Similar results are obtained when other Poisson 

used as log arrival rule. 

. Utilization rate of the trimmer – Poisson process of mean 30 s

(black: complete model; gray: reduced model) 

results show that a reduced model gives similar results than a complete one. 

Therefore, it is relevant to use reduced model instead of complete one because it is quicker 

to construct and use without loss of precision. 

 

A new approach for simulation model reduction has been presented here. This approach 

uses a neural network and, more particularly, a multilayer perceptron

functioning of a part of the process that is not constrained in capacity. This approach has 

modelisation of a sawmill workshop. The results show that:
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utilization rates converge to the same value of 33% for the two models (compared with the 

obtained when other Poisson 

 

Poisson process of mean 30 s 

results show that a reduced model gives similar results than a complete one. 

Therefore, it is relevant to use reduced model instead of complete one because it is quicker 

ulation model reduction has been presented here. This approach 

uses a neural network and, more particularly, a multilayer perceptron to model the 

not constrained in capacity. This approach has 

. The results show that: 
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- the two datasets present similar results, 

- the average of the error is small relative to the process time scale, and 

- the complete and reduced models gave similar results even if the log arrival rule is 

changed. 

This means that it seems efficient to use a neural network to model a part of a process 

instead of constructing the complete model. 

Assuming that the construction of a neural network is a quasi-automated task, in which 

the modeler only collects and selects the input data set. It is faster and easier to construct 

this kind of reduced model. This approach allows the modeler to focus on the management 

of bottlenecks. 

Our intentions for future work are to investigate the structure determination of the neural 

network, particularly the choice of its inputs, and the validation of this approach on 

different applications, particularly on several external supply chains, such that at least one 

particular enterprise belongs to different supply chains. 
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