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Abstract

Simulation is often used to evaluate supply chainworkshop management. This
simulation task needs models, which are difficaliconstruct. The aim of this work is to
reduce the complexity of a simulation model desighe proposed approach combines
discrete and continuous approaches in order totwmsspeeder and simpler reduced
model. The simulation model focuses on bottleneakis a discrete approach according to
the theory of constraints. The remaining of the ksbop must be taken into account in
order to describe how the bottlenecks are fed haodeled through a continuous approach
thanks to a neural network. In particular, we usaudtilayer perceptron. The structure of
the network is determined by using a pruning pracedFor validation, this approach is

applied to the modelisation of a sawmill workshop.

Keywords: multilayer perceptron, reduced model, simulatioaynal network, supply

chain, ANN
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1. INTRODUCTION

Simulation is used in many goals. One of them isvaluate supply chain or workshop
performance. There are three different ways of om@as this performance: analytical
models (queuing theory,...), physical experimentatitab platforms, industrial pilot
implementation, ...), Monte Carlo methods (simulatiwremulation) (Thierret al, 2008).
Analytical methods are generally impracticable lbeea the mathematical model
corresponding to a realistic case is often too dermpgo be solved, and physical
experiments suffer from technical and cost-reldigdtations. Simulation is the better
approach to model and analyze performance for dacgée cases. In the simulation model,
the number of ‘objects’ of the model and the numbérevents can be very large.
Consequently, the first problem could be the tineeded to build the model and the
simulation duration on a computer can be unaccéptis operational use. Thus, it is
necessary to reduce the model size (Thietrsl., 2008).

On one hand, constructing a simulation model israptex task that can take modelers a
lot of time. Effectively, simulation models of aetundustrial cases are often very complex
and the modelers encounter problems of scale (Pagke 1999). Thus, numerous authors
have expressed interest in using simplest (redaggdégated) models of simulation (Ward,
1989; Musselman, 1993; Pidd, 1996; Brooks and T@@00; Chwikt al, 2006).

On the other hand, to establish and to initialipeedictive schedule’ or ‘reactive

schedule’, the knowledge of the evolution of researstates, (WIP (work in process), and
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gueues) are needed. This knowledge can be obthjnesing a simulation model. Reduced
models can be very useful, because they are quoaklymeterized and simulated.

Furthermore, at this level of planning (master piitbn schedule), load/capacity
balancing is obtained via the ‘management of @itiesource capacity’ function or ‘rough-
cut capacity planning’ (RCCP), which essentiallaldewith bottlenecks (Vollmanat al,
1992). Goldratt and Cox, in ‘The Goal’' (1992) porvfard the ‘theory of constraints’
(TOC), which proposes to manage all the workshgpbditlenecks control. Thomas and
Charpentier (2005) have shown that a good methbditd a simulation model would be to
reduce the model according to the TOC.

Moreover, neural networks have been used in alicgijpn areas of the manufacturing:
scheduling (Akyol and Bayhan, 2007), design of nfiactring process (Cakar and Cil,
2004), ...

Therefore, the main goal of this work is to propasdesign approach for simulation
models, which would be less time consuming and Emfor the modelers, and which
could be partially automated. This approach is dasethe learning capabilities of neural
networks and on the TOC.

The rest of the paper is structured as follows. Beeond part contains a brief
bibliography overview and, in the third part, theposed approach of the reduction model
and multilayer perceptron is presented. The fopett is devoted to the validation of the

proposed approach in an industrial applicationciiig a sawmill flow shop case.
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2. A BIBLIOGRAPHY OVERVIEW

2.1. On supply chain ssimulations

One main goal of the supply chain simulation i®taluate the performance of supply
chain management in order to support decision ngeirthree levels:
- strategic level (designing or redesigning a supg@hain, localization of
factories and warehouses, partners selection, etc.)
- tactical level (validation of the global forecastgdoduction capacities
according to forecasted demand), and
- operational level (control policies, schedulingoperation policies on the
shop floor, etc.).
The simulation model must be constructed accorthnigs use and the supply chain to
be modeled.
Kleijnen and Smits (2003) distinguish four simuwati types for supply chain
management:
- spreadsheet simulation (may be part of productgrirol software),
- system dynamic (may explain the bullwhip effect),
- discrete-event dynamic systems (DEDS) simulatiomy(mpredict fill rate
values), and
- business game (may educate and train users).
Spreadsheets have been used to implement manufgctesource planning (MRP), but
this type of simulation is often too simple andeaistic (Kleijnen, 2005).
System dynamic is based on the work of Forrest@8X)L In this approach, companies

are seen as systems with six types of flows (maemoods, personnel, money, orders, and
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information) and different stocks. Managerial cohis realized through the changing of
rate variables. The feedback principle plays aiafwole in this approach (Kleijnen, 2005).

A DEDS simulation is more detailed than the precgdones. DEDS concerns the
modeling of a system by a representation in whitie tstate variables change
instantaneously according to event occurring. Meeeoit takes into account uncertainties
(Law and Kelton, 2000).

A business game is a simulated world that may sgmtea supply chain and its
environment. It is used for educational and resegoals (Kleijnen, 2005).

The two main difficulties encountered during thesiga step of a supply chain
simulation model are related to the size of thdesgsand the complexity of the control
system. A supply chain is composed of a group t#renises, composed in turn of a group
of factories, composed of a group of workshops, Mt@reover, modeling the behavior of
the leading policies of each enterprise and thatioglships between them is needed
(Thierry et al, 2008). This fact implies that the duration ofasimulation may become
unacceptably long to be usable. The same diffich#ty been highlighted by Thomas and
Charpentier (2005) concerning workshop. Therefiongay be useful to reduce the size of
the model. Different ways can be used to perforenntiodel reduction:

- abstraction, which allows the complexity of the mbtb be reduced and
preserves the validity of the results (Frantz, 3995

- aggregation, which is a form of abstraction whegeaup of data or variables
with common characteristics can be replaced byeggged data or variables

(Aladanondo and Mercé, 1991), and
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- reduction of the number of events, where a pafDBDS is replaced by a

variable or a formula (Zeigler, 1976).

2.2. On model reduction

Innis and Rexstad (1983) have listed 15 simpliforatechniques for general modeling.
Their approach is composed of four steps: hypoth@sentify the important parts of the
system), formulation (specify the model), codingildthe model), and experiments. Based
on these works, different approaches have beeropeap

Brooks and Tobias (2000) suggest a ‘simplificabdmodels’ approach for cases where
the indicators to be followed are the average thinput rates. They suggest an eight-stage
procedure. The reduced model can be very simpldra@rdan analytical solution becomes
feasible and the dynamic simulation redundant. rheirk is interesting, but is valid in
cases where the required results are averaged la@ck the aim is to measure throughput.
It is not interesting to follow the various evetdking place in the work center (WC).

Leachman (1986) has proposed a model for use irseheconductor industry, which
uses cycle time as an indicator. This model has l@proved by Hung and Leachman
(1999). They propose a technique for model redoctio be applied in large wafer
fabrication facilities. They use ‘total cycle timahd ‘equipment utilization’ as decision-
making indicators to do away with the WC. In thease, these WCs have a low utilization
rate and a fixed service level (they use the stahdaviation of batch waiting time as a
decision-making criterion).

Tsenget al. (1999) compare the regression techniques appiesh ‘aggregate model’

(macro) by using the ‘flow time’ indicator. Theyggest reducing the model by mixing the
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‘macro’ and ‘micro’ approaches, so as to minimizees in complex models. Here again,
for the ‘macro’ view, they deal only with the esétion of flow time as a whole. For the
‘micro’ approach, they construct an individual reggion model for each stage of the
operation to estimate its individual flow time. Toemulative order of flow time estimates
is then the sum of the individual flow times. Théyen, try to mix the macro and micro
approaches. These different approaches simplifyribe@el by using a macroscopic view of
the system and by optimizing a macroscopic indic@tial cycle time, flow time...)

Li et al (2009) propose a reduction model approach basedhe aggregation of
machines on the production line. They build a catgpmodel of the production line and, if
the last two machines correspond to a serial lthey aggregate them. The same is
performed with the first two machines if they cepend to a serial line. These aggregation
steps may be performed recursively and they areotddnbackward and forward
aggregation, respectively. If the two machinesda@bgregated follow a Bernoulli model or
an exponential model, an analytical investigatiiowes the production rate of the new
aggregated machine to be determined. If not, alaiton phase must be performed to
determine an empirical formula for the productiater

Some works (Doumeinget al, 1987; Hwanget al, 1999) use Petri nets as tool in order
to simplify network structures by using macro-pReehich represent complex activities
associated with function groups.

To simplify models, some works have studied theafse continuous flow model based
on gradient estimation for stochastic systems imeorto approximate discrete
manufacturing environments (Ho, 1987; Suri and1@94). Other authors use metamodels

(linear regression, splines, Kriging, etc.) to per a simulation model (Kleijnen and
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Sargent, 2000). Neural networks can be viewed agea of metamodel (Barton, 1994,
Pierreval, 1996; Kleijnen and Sargent, 2000). lditah, neural networks have proved
their abilities to extract models from experimerdata (Thoma®t al, 1999). Therefore,
the use of neural networks has emerged recentlgnamteresting approach within the
framework of the supply chain or workshop managdni®hervaiset al, 2003; Chiu and

Lin, 2004).

2.3. On neural network in manufacturing

Neural network approaches have been used in dicappn areas of the manufacturing.
Zhang and Huang (1995) have noticed that neuravorks are used in monitoring and
diagnosis, process modeling and control, groupnclygy, engineering design, quality
assurance, robotics, scheduling, or process plgrargas.

Different typologies of neural network have beerdudor dealing with scheduling
problem (Akyol and Bayhan, 2007). Hopfield netwarkd its extensions are used to solve
optimization problems. So, many works use Hopfigldtwork to determine static
scheduling by minimizing the sum of all the stagttimes of each job’s last operation (Foo
and Takefuji, 1988; Foet al, 1995), by minimizing makespan (Willems and Bitand
1995), or by minimizing the weighted sum of thelieass and tardiness penalties (Akyol
and Bayham, 2005). These approaches are genertdhsible for large size problems and
may generate constraints-violating solutions. Cetitige network and self organizing map
have also be used to deals with the same problamg Bnd Li (1990) use competitive
networks in order to minimize total tardiness. Tds® of competitive network needs the

definition of equations of motion for the problemnstraints and an energy function that
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converges to stable state. Chen and Wang (2009)laje\a self organizing map—back

propagation network to estimate the remaining ctiohe of every job in a semi conductor

manufacturing factory. Multilayer perceptrons algoaused in scheduling applications in

order to select a suitable scheduling strategy é&enand Grabot, 1997), or designing a
scheduling software (Fereg al., 2003).

Some works focus on one aspect of scheduling pmbléin and Hwang (1999) study
dynamic task allocation and use two multilayer pptmons to allocate the task between
human and computer. Dispatching rules selectianjob shop has been investigated by El
Bouri and Shah (2006) which minimize the makespaoh the mean flow time with two
different neural networks. Kuet al (2007) address the same problem by focusing en th
construction of the learning data set. Mouelhi-@hiband Pierreval (2010) determine the
parameters through simulation optimization to penfthe dispatching rules selection.

The design of manufacturing process is another rtapb area of neural network
applications. Cakar and Cil (2004) determine thmiper of machines in a work center in
function of priority rules. The inputs of the midijer perceptron used are machine
utilization rate, percentage of the late parts, arghn values of flow time, tardiness, and
completion time. Vosniako®t al (2006) associate multilayer percetron and genetic
algorithm to analysis and design manufacturingscelArazet al (2008) focus on the
determination of the optimum kanban parameters siggua multilayer perceptron for
generating simulation metamodels.

This area is related to the process metamodelinghms the core of many works.
Chambers and Mount-Campbell (2002) propose to mealgh component of a process by a

neural model and to associate them in order toopéi the complete process.
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In order to estimate important parameters, somieocasiipropose to use neural networks
as metamodels. Fonseca and Navarese (2002) detetih@mrmanufacturing lead times for
orders simultaneously processed in a job shop.tifiethroughput is estimated by using
multilayer perceptron for single/multi product mémturing environments (Yang, 2010).
Kutschenreiter-Praszkiewicz (2008) uses Radial $aBunction to estimate time
consumption in machining.

In all these applications, the choice of the stiectof the neural network is always a
complex task and determining a suitable or neargbtstructure for a neural network has
been called a “black art” (Branke, 1995). Howewsme authors try to respond to this
guestion. Sukthomya and Tannock (2005) investiglage selection of inputs, and they
attempt to provide guidelines for the training cfural networks to model complex
industrial processes. Khosraatial. (2010) try to construct neural metamodels withroal
structure. Moreover, they build prediction intessalor point predictions of neural
metamodels.

For multilayer perceptron, the determination of themar-optimal structure is a well-
known problem investigated by many authors. Two nmapproaches can be used:
Constructive approaches (Chentouf and Jutten, 1B9@&ls and Personnaz, 2003) and
pruning approaches (Hassibi and Stork, 1993; Dmy&a0?2).

Akyol and Bayhan (2007) recall the main advantaages disadvantages of the Hopfield
networks, competitive networks and multilayer pptoens.

The main advantage of Hopfield networks is theissinge parallelism architecture when

their main disadvantages are that they may convésgcal optimum, the ways of

10
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incorporating constraints into the energy functeomd the termination criteria affect the
quality of the results, and the translation of pheblem into the energy function is difficult.

Competitive networks are best applicable to optatiin and classification problem and
by using competitive learning rule, the penaltyntgrare handled explicitly therefore the
energy function is simplified and the time requir@dobtaining coefficient is reduced.
However, equations of motions need to be derivédreesolving the problem, competitive
networks cannot be applied to simplify the enengiyction of all scheduling problems and
their convergence should be analyzed carefully.

Multilayer perceptrons are universal approximatavhjch have better generalization
capabilities to capture complex relationship betwe®uts and outputs. However, their
main drawbacks are that gradient-based trainingnigoes may be trapped into local
minima, the generation of training set is time eongg, and overlearning degrades the
performance of the network. The problem of locaimmpm may be attenuated by using an
adapted initialization algorithm and the determovatof the optimal structure allows

avoiding the overlearning problem.

3. MODEL REDUCTION PROCESS

3.1. Proposed approach

The proposed approach is based on the associafiafisorete event models and
continuous models (neural network) in order to giesi simulation model. Our objective is
to maximize the bottleneck utilization rate andthet same time, simplify simulation model

construction for modelers.

11
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The reduction algorithm proposed is an extensiothoke presented by Thomas and
Charpentier (2005). The main goal of this algoritisnto reduce the number of simulation
blocks. It is based on the ‘theory of constraimgiich uses the concept of bottleneck.
Many definitions of bottleneck are available in titerature and still more are used in
practice. Most of them view the bottleneck as tleestvmachine, e.g., the machine with the
smallest efficiency. Other authors consider the hireec with the largest effect on the
throughput as bottleneck (ki al, 2009). Here, two particular types of work cest@//C)
are defined:

« ‘conjunctural bottleneck’ (current bottleneck) is\&C that is saturated for the
master production schedule (MPS) in the predicdisigeduling in question. This
means that it uses all of its available capacity,

» ‘structural bottleneck’ means WC that has oftennbeeis in such a condition.
These ‘structural bottlenecks’ are determined lpeerence feedback.

The proposed algorithm is presented figure 1 asdmain steps are recalled and
explained below:

1. Identify the WC which is the structural bottlenedls said before, this one has
been the main capacity constraint for several yéarsording to the experience
of production manager).

2. ldentify the conjunctural bottleneck for the bunadieMOs of the MPS under
consideration.

3. Among the WCs not listed in 1 and 2, identify thee¢synchronization WC) that
satisfies the following two conditions:

* necessary at least for one of the MOs using admattlk, and

12
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* widely used considering the whole body of MOs
4. If all MOs have been considered, go to 5; if natig 3.

5. Model all the WCs that have not been found durirggrevious steps by using a

continuous model, a neural network.

First work center (WC)

Next WC

Is the last?

Is the last?

| Replace WC not liste}
above by NN model|

Figure 1. Algorithm used

Hence, the WCs remaining in the model are eithejurwtural or structural bottlenecks,
or are WCs that are vital to the synchronization tlké MOs. All other WCs are

incorporated in ‘aggregated blocks’ upstream or miveam of the bottlenecks. These

| 13



Accepté a: Engineering Applications of Artificial Intelligence

‘aggregated blocks’ are modeled by neural netwarkgh estimate the throughput times
between two bottlenecks. These models permit toulsi® the alimentation of the
bottlenecks and so, to control the bottlenecks.
The main benefits of this algorithm are:
- modelers can focus on the description of the huetiks,
- noncrucial parts of the system are modeled withearning approach
(automatization of this modeling step),
- the resulting model is less complex than a commats and
- simulation time is shorter than with a complete slod

This paper focuses on step 5 of the reduction ghgor The bottlenecks are considered

here as known.

3.2. The multilayer perceptron (MLP)

The works of Cybenko (1989) and Funahashi (198%k haroved that a multilayer
neural network with only one hidden layer usingigim®idal activation function and an
output layer using a linear activation function egproximate all nonlinear functions with
the desired accuracy. This result explains thetgmeerest of this type of neural network,
which is called ‘multilayer perceptron.” In this vk the objective is to model the
throughput times of parts between two bottlenecksubing information given by the
system. It is assumed that this throughput timeldcdne approximate with a nonlinear

function obtained with a MLP.

14
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Figure 2. Structure of the multilayer perceptron

The structure of the multilayer perceptron is riechlhere. Its structure is shown in

figure 2. The neurons of the first (or input) layestribute just then inputs{xf,---,x?]o}

of the MLP to the neurons of the next (hidden) tayespecial input neuron (depicted by a
square in figure 2) represents a constant inpuéletgul, and it is used to represent the
biases or thresholds of the hidden layer. The duipthe neurons of the hidden and of the
output layers is given by a so-called ‘activationdtion’ of the weighted sum of its inputs.
The activation function of the hidden neurons & lilgperbolic tangent when the activation
function of the output neuron is a linear one. Tdren of this neural network is given, for

single output, by:

r=Futte b3 e 3k 3 e s )

i i=1

15
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wherex?, h =1, ...,ny, are the inputs of the networlk, andb!, i=1,...,n; h=1--,ng,
are the weights and biases of the hidden Iag{eri, =1, ...,,n; are the outputs of the hidden

neurons,wi2 and b are the weights and bias of the output meuro

Kleijnen and Sargent (2000) have proposed a magiglincess that can be subdivided
into 10 steps:
- determine the goal of the model,
- identify the inputs and their characteristics,
- specify the domain of applicability,
- identify the output variable and its charactersstic
- specify the accuracy required of the model,
- specify the model’s validity measures and theiunesg values,
- specify the model and review this specification,
- specify a design,
- fit the model, and
- determine the validity of the model.

In this work, these different steps are used tetrant the neural network. The four first
steps are related to the design of the input amgublayers. The output neurons represent
the information to model when the input neurongespond to the data available in order
to model the considered system.

The three last steps are related to the desigmedfiidden layer and to the learning of the

parameters. The determination of the hidden lapdrtae learning of the parameters are

16
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performed simultaneously. For this, the learniragtstfrom an overparameterized structure
and it is performed in three steps:

- initialization of the weights and biases of the revzed structure,

- learning of the parameters,

- pruning of the spurious parameters.

The initialization of the weights and biases isf@pened by using an evolution of the
Nguyen-Widrow (1990) algorithm proposed by Thomad Bloch (1997). This algorithm
permits to associate a random initialization ofgi#$ and biases to an optimal placement
in the input and output spaces. This method islaimo the slice linearization and permits
to avoid the initial saturation of hidden neurons.

The learning algorithm used is the Levenberg-Margualgorithm with a robust
criterion (Thomas and Bloch, 1996). The Levenbermyrddiard algorithm permits to
associate the speed of the Hessian methods taalbity of the gradient methods. This is
performed by adding a parameter multiplied by thentity matrix in order to permits the
inversion of the Hessian matrix even if it is sitegu The tuning of this parameter during
the learning permits to the Levenberg-Marquard ritlgm to work as a gradient descent
algorithm when this parameter is great and as asS&hewton algorithm when this
parameter is small. The use of a robust criteriermits to avoid the influence of outliers
and, has a regularization effect in order to prewserfitting.

The pruning algorithm used is the Neural Networlriftg for Function Approximation
(N2PFA) algorithm (Setiono and Leow, 2000). Thigagithm uses the mean absolute
deviation (MAD) to measure the performance of tleeral network. It is performed into

two main steps. In the first one, the spurious @mdeurons are pruned, and in the second

17
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one, the feature selection is performed. The gyatter eliminating an hidden neuron (first

step) or an input (second step) is the same aweryssimple and fast. During the first step,
the hidden neuron i (i = 1, ..ny) is deleted (by vanish the weight*) and the resulting

structure is evaluated by calculating the MAD valder the learning and validation data
sets. The best resulting structure is compared thighinitial one, and, if its MAD values
are not so degraded, the considering hidden neusmsmove and the procedure is
repeated until no hidden neurons can be removee, Hie initial structure is keep.

The same work is performed in a second step omph# neurons.

4. ILLUSTRATION OF THE PROPOSITION

For illustration, we use the proposed approachuitd la simulation model of a sawmill
workshop. The main objective of sawmill is to autet trunks into planks of different sizes.
In this actual case, managers need a tool to &mtin their weekly decision-making
Master Production schedule (MPS) process. This weorksulting from collaboration with
the sawmill which want:

- to evaluate the effectiveness of its MPS,
- to maximize its load rate, and so, its global painhity,
- to explain some unexplained congestion phenometteedfimmer WC.

A first work (Thomas and Charpentier, 2005) wittc@mplete model has permit to
represent the congestion phenomena and to useefhissentation in order to improve the
load rate. This model, which is recalled in secdoPa, has permit to show that a load rate

of the bottleneck too high (higher than 60%) degsathe productivity of this bottleneck,

18
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and so, the productivity of the sawmill. The diffity is that the bottleneck is the last work
center of the sawmill but all the influent factawa the productivity of the bottleneck
depends of the first work center.

However, this complete model is unusable on acasé for the dynamic evaluation of

the MPS because of the time needed to modified it.
4.1. Overview of the sawmill

At the time of the study, the sawmill has a capaoft270,000 nYyear, a turnover of
€52 million and 300 employees.

This workshop can be described from a process mdintiew. This sawmill can be
represented by two linear parallel flows for theirmand secondary products. This fact,
associated to the variation of log dimensions léedprocess to be non-linear. Therefore,
the physical industrial production system can beidéd into three main parts. To
understand the functioning of the process, thesmof a log from its admission into the

process to its exit in planks form will be descdbe

Secondary products conveying

(Kockums saw) MS (scanner)

| BTS | I_I_I I_I_I
| N
IR I ]
RQM4A QM3
RQMS5A RoM2
( 6 RQM48 ROM1
i (55 o Edd @Uo'/,«
il SRR -
T MKV X CSMK Log arrival
RQM6 RQM7 (lifting apparatus)
T : :
Main products conveying I B2 lLE_H[mﬂ

(Trimmer )

| BT4 |

Secondary products conveying
(Kockums saw)
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Figure 3. The Canter line

The first part of the process corresponds to thet€Zdine, which is presented figure 3.
Dashed arrows indicate the products flow. The a®red log is taken into the process by
using conveyors RQM1, RQM2, and RQM3. Accordingtsocharacteristics (determined
by scanner MS), the log is driven to conveyors RQWIRQM5, which are used as input
inventory for the Canter line. Only RQMS5 is usedehim order to simplify the presentation.
After that, logs go on the first canter's machinel dater on the CSMK saw, which

transforms logs into square-shaped parallelepiffegige 4).

. Smaller diameter of the log
Main products

Secondary product
(first and second passage)

Larger diameter of the log

Figure 4. The cutting plan

This first step, which gives the two first sides tbe parallelepipeds, produces two
planks (called secondary products), which are takerof the Canter line by the BT4 and
BT5 conveyors. The log is then driven on the RQM®weyors, then rotated 90°, and
stored in RQM7 awaiting its second passage on 8K saw. After the second passage,
the squared is completed, and two other secondadupts are taken out of the Canter line
by the BT4 and BT5 conveyors toward the second qfatthe process, the Kockums line.

The squared log is cut on the MKV saw into threangé (called main products). These

20
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main products are driven to the third part of thecpss, the trimmer line. The cutting of the

log into main and secondary products is describeatea cutting plan (figure 4).

Figure 5 shows the second part of the process,eathermain machine is the Kockums

saw. Only secondary products are driven on thit pée secondary products are taken in

the line by the BT4 and BT5 conveyors. They arebguthe QM11 saw, after which they

reach the Kockums saw, which optimizes the plamksming to the products needed. The

alignment table is used as the input inventoryhefkockums saw. The secondary products

are finally sent to the third part of the procegsgte exit conveyor.

Entrance secondary products
(Canterline)
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Figure 5. The Kockums line

21



Accepté a: Engineering Applications of Artificial Intelligence

) & a ~
§ ~ & @ N3 N
&é's & @ §§ g‘@@ ms?@ f:\« f
) ..
& s O & & & S
. [ — —= = |
— - = = —
Pk a—E= = T
é‘ ] ]
Tl & &9 T
Products & Qg" 55 Entrance
conveyor & < Entrance main products
(Sorter) secondary products (Canter line)
(Kockums)
Scraps
conveying
(Crusher)

Figure 6. The trimmer line

The third part of the process is the trimmer Iwbjch is presented in figure 6. This line
performs the final operation of cross cutting. Toyeration consists in cutting up products
to length. The inputs of the line are from collestd and 2, which collect the secondary
and main products from Kockums and Canter linepaetsvely. Saw 1 is used to perform
default bleeding and Saw 2 cuts up products tatleng

A previous work (Thomas and Charpentier, 2005)dkamvn that this last machine, the
trimmer saw, is the bottleneck of the entire preceand, as said previously, the
productivity of the trimmer depends to the decisidaken on the canter work center. So,
the impact of bad decisions are seen too muchtdale corrected. So in order to evaluate

decisions, managers need a simulation tool.
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4.2. The smulation models

a. The complete model

The complete model of the sawmill process (figures7constructed with the Arena®
software and consists of different modules. Thet fmodule is used to model the log
arrival, which follows a homogeneous Poisson preaeith a mean of 20. In this module,
the characteristics of the log, which are measbrethe scanner (figure 3), are associated
with it. In the simulation model, 2000 logs are q@eted at the entry of the process. The
dimensions of these logs follow uniform distributso At starting time, the process is
empty.

A second module, the ‘input sorter’, directs thgsloto either RQM4 or RQMS5,
according to their characteristics. It may alsockejghe log out of the process if it is
machine-gunned or if its dimensions are out of eanthe logs go to the next module,
which models the RQM4 and RQM5 queues. ConveyorMBRQRQMS5, and even RQM?7,
are used as input inventory for the Canter line.oTether modules are used for the
simulation of the Canter line and the passage estjuared log in RQM7. The Canter line
model uses two submodels for the management of @wath secondary products. The
Canter line has three outputs, which lead to thekkims line for the secondary products

and to the trimmer line for the main products.
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Figure 7. The complete model

The other modules, which correspond to the coh@fprocess, are the simplest. They
are used to model the Kockums and the trimmer lamesthe last module is used to model
the sorter of products into different racks.

The different submodels make the model more comi#iak it appears in figure 7. In
particular, construction of the submodel used toage the priority rules for choosing the
input inventory that supplies the Canter line igseay complex task. The simulation ended
when all the logs (with the exception of ejecte@s)nare cut into planks. The simulation
results of this model will be used in section 4.3.

This model has permit to explain some phenomerawogestion of the trimmer and so,
to improve the productivity of the sawmill. Howeyet is not useful for the dynamical
evaluation of the MPS. In fact, the constructionh&f complete model needs one day for an
experimented people. But, the time of readjustnoénihe initial model each time an event
forces to re-use the model is prohibitive. An evemy force to change attributes,

distribution laws, times, and even, may need toifgame flow or work centers... And,
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this work must be performed in a very short timeduse we need to react quickly to the
event. that's why a complete model is not pertiraart the use of a reduced model which is

quicker to construct is needed.

b. The reduced model

As said previously, the bottleneck of this linethe trimmer. Consequently, modeling
the function of the inventories RQM4, RQM5, and RQMnd of the Canter and Kockums
lines is unnecessary. Furthermore, the part sudeditoy the gray dashed line in figure 7
gave no direct and useful information for the easitin of the MPS. In fact, only the arrival
times of the products in the trimmer queue are ulskfr simulating the load of this
bottleneck, and this is the reason for using aifayér perceptron.

According to the modeling process recalled in chaft2, the specific sawmill neural
model could be constructed. To build a neural ngtwave need to identify the input
variables. Thomast al. (2008) collected the available input data which ba classified
into three categories: Data related to the prodinese the logs), data related to the process
and data related to the bill of material or rout{hgre the cutting plan).

The data related to the products are mainly dinoer@iones as length (Ig) and three
values for timber diameters (diaPB, diaGB, and dfl. The thickness of the finished
product, may also be used. However, in a previoakwThomaset al, 2008), it was
shown that thickness have no impact on the readltsa it is not taken into account in this
work.

The data related to the process are the processble collected at the time of log

arrival. In particular, we require the input stamkd the utilization rate of the bottleneck,
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here the trimmer (Q_trim, and U_trim, respectivelyhe number of logs present in the
process between the inputs of RQM5 and the extiefCanter line (Q_RQM) is needed.
The data related to the routing correspond hetkeianformation related to the cutting plan
of the logs which must be cut into main and secong&oducts. Here the cutting plan
(figure 4) divides the log into seven products:
- two secondary products resulting from the firspstéthe cutting process on
the saw CSMK of the Canter line,
- two secondary products resulting from the secoad stitting process on the
saw CSMK of the Canter line after staying in theNRCQqueue, and
- three main products resulting from the third steputting process on the saw
MKYV of the Canter line.

Saws CSMK and MKV belong to the Canter line. Thesen products can be classified
into three categories, according to the locatioBNIK or MKV) and the time during the
cutting process (first or second cutting). Thisomfation is given by the two variables
(prod and Step). The “prod” variable indicates \meetproducts are main or secondary
ones. The “Step” variable indicates whether theosdary products are performed during
the first or second step (before or after the legat along the RQM7 queue).

Consequently, the neural networks input variables &g, diaGB, diaMOY, diaPB,
Prod, Step, Q_trim, U_trim, and Q_RQM. In our apgtion, 12775 products are simulated
with the complete model. These data are used tihditbehavior of the reduced model to
the complete one.

The next step is to identify the output variableir @bjective is to estimate the delay

(AT) corresponding to the duration of the throughtipue for the 12775 productAT is
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measured between the process input time and thenar queue input time. Hena&T is

the output variable of the neural network:

15 9
AT = 2w?.g( Y Wik Xp + b%} +b 2)
i=1 h=1

To specify the model, the number of hidden neureexs to be determined. Therefore,
a weight elimination method, N2PFA, is used to reenspurious parameters (Setiono and
Leow, 2000). As explained in the part 3.2, the NRRf#fgorithm uses the mean absolute
deviation (MAD) to determine the effectiveness loé¢ hetwork. This algorithm works in
two steps. In the first step, it prunes the spwibidden neurons. During the second step,
the spurious inputs are pruned. In order to avaigarly stopping of the algorithm which
drives to an overparametrized structure, a paramaist be tuned which permits a slightly
degradation of the MAD values in exchange of thepsession of one neuron. This
parameter is tuned to 0.025. With this choice,dbketion of one neuron which degrades
the MAD values of 2.5% is accepted.

Therefore, the learning begins with a structuren@isl5 hidden neurons (2), which
correspond to 166 parameters.

The learning of the network is supervised. Hentces necessary to divide the database
into two datasets, namely, learning and validatibne database is constructed with the
complete model, which is used as reference. Tibditmodel, we use the learning algorithm
called the ‘LevenbergMarquard algorithm with robust criterion’ (ThomasdaBloch,
1996). The learning approach corresponds to a Eealch of a minimum and the results
may differ according to the initial weights. To &wate the dispersion of the results, 50

different sets of initials weights are used. Thengmg procedure led to the preservation of
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the nine inputs in 86% of the cases. In the otlases, only the input U_trim (utilization
rate of the trimmer) is removed. The number of biddeurons after pruning varied from 4

to 14. Figure 8 presents the distribution of thddlen neurons number during the 50 trials.
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Figure 8. Distribution of the hidden neurons number

This figure shows that, in 88% of the cases, thelmer of hidden neurons remaining
after pruning ranged from four to seven. Table &spnts the means and the standard

deviations of the residuals for the 50 trials om ldarning and the validation data sets.

Learning residui Validation residus

Mean StD Mean StD
Mean(abs 0.324 54.280 0.6 55.013
StD 1.13] 1.858 1.438 1.784
Min -4.95¢€ 52.55¢ -4.477 53.82¢
Max 3.57( 62.91p 4.704 63.1p1

Table 1. Means and standard deviations of the uatsd

Table 1 shows that, even though the network straanay vary, the results obtained on

the learning and validation data sets are veryectogether. Moreover, when the obtained
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residuals in these different cases are studiedhatiee that the worst results are generally
obtained when few hidden neurons are pruned. How#we best results are obtained when
all the nine inputs are preserved and only fousdwen hidden neurons are retained. The
selected structure used nine input neurons anchdadeen neurons, corresponding to 78
parameters. With this structure, the means of tiaioed residuals on the learning and the
validation data sets are very close to 0 (0.001@ @0865, respectively). The standard
deviations of the residuals are 53.075 and 53.82€he learning and validation data sets,
respectively.
To determine if some dynamics existing in the data not taken into account by the

learning process (i.e. the learning process héedfaithe correlation between the different

inputs and the residuals is performed on the legrand validation data sets (table 2).

Lg diaGB | diaMQOY | diaPE Proc Stef Q_trim U trim | Q RQNV
Mean 0.0070ff 0.005026  0.00668 0.009B79 0.01$519 0.0042186994 0.008546 0.010548
Learning St_d 0.01158 0.010112 0.016762 0.026p24 0.064165 0.0097889784 0.010978  0.023f9
Min 4.66E-04 4.66E-0b 4.75E-05 0.00428 1.12H-05 6.16E-0®0@2]1 0.000141
Max 0.0593f 0.05144| 0.085824 0.13427 0.3270{ 0.04505{ 0.04414] 0.03521( 0.1222§
Mean 0.01682p 0.0150p4 0.015773 0.021J277 0.02p555 0.3]15652008 0.01541 0.020915
validation St_d 0.01013]L 0.012723 0.017408 0.028484 0.06p529 0.0]1182B1582% 0.012396 0.0243F71
Min 0.000899 2.93E-05 0.0003p9 2.94E{07 4.85H-05 0.00p70.60062] 0.000749
Max 0.04093 0.049737 0.087061 0.1446 0.33552 0.05p812 90® 0.05157) 0.1214

Table 2. Correlation between inputs and residuals

Table 2 presents the mean, the standard deviatienminimum and the maximum
values of the correlation coefficient absolute wealbetween the nine inputs and the
residuals obtained with the 50 different trials (bflerent neural models) (for the learning
and validation data sets). These results show #mmbles “Ig” (length), “diaGB (great
diameter of the log), “diaMOY” (medium diametertbe log), “Step” (time of production
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of the secondary products), “Q_trim” (input queué tbhe trimmer) and “U_trim”
(utilization rate of the trimmer) are always notretated with the residuals.

The variables “Prod” (main or secondary products) aventually “diaPB” (smallest
diameter of the log) and “Q_RQM” (number of logegent in the process between the
input of RQM5 and the exit of the Canter line) afeo generally not correlated with the
residuals. In some rare cases, these variablesh@ndesiduals are correlated. However,
these cases correspond to the network structuresevtbo many hidden neurons are keep
(more than 7 hidden neurons). It can be noticetlttteminimal value for the correlation
between “U_trim” (utilization rate of the trimmegnd residuals is 0. This could be
attributed to the pruning of the input in some sasEor the selected structure, the
coefficient of correlation between inputs and raaid is never more than 0.022505.

Now, we consider the residuals obtained with tHecsed structure. For the learning
data set, the mean of the residual is very cloge(b0012) and it represents an error lesser
than 2.7% of the throughput tind€l. This result shows that the structure of the akur
network used is sufficient for learnin§T. Those obtained on the validation data set
corroborate these results. On the validation detiatlse mean of the residuals is also close
to 0 (0.0865) and the residual represents an ésser than 2.3% dkT. Therefore, we
conclude that no overfitting problem occurs andrbaral network can estimate the delay
for datasets other than the learning one.

Based on these results, we can conclude that amalngetwork is a good representation
of this part of the process.

The neural network model obtained is included thi® reduced model shown in figure

9. The modules ‘log arrival,” ‘input sorter’, andriimmer’ in the reduced model are
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identical to those used in the complete one. Gméypart surrounded by a gray dashed line
is replaced. A comparison between the completeir@ig) and reduced (figure 9) models
shows that the model complexity is greatly redudedarticular, the different submodels

are removed from the reduced model. The reducecthwaah be so constructed in one hour

with an automated procedure.

@ Log arrival Trimmer =1 Sorter
—=

]

[

——(=]
= S = o N ey -

—]
Input sorter r T &
- ﬁ@

Neural Network

Figure 9. The reduced model

4.3. Evaluation of the reduced model

In this section, we compare the results obtaineith wie reduced and the complete
models.

Figure 10a shows the evolution of the input inventof the trimmer as a function of
time (s). This comparison is performed with twdeliént data sets obtained under the same
conditions. Figure 10a shows that the two modelssqmte the same type of queue
evolution. However, one difference can be noticdte trimmer queue value of the
complete model between 0 and 500 s increases tbefiffe decreasing to values very

similar to those obtained with the reduced modkke dbserved difference between the two
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values curves are due to the models initializaiThe log arrival in the two models folls
a homogeneous Poissdistributior with a mean of 20.4n addition, many parameters
the models follow a stochastic process. The im@ions of the models produce an e
effect, which could explain the differences in bababetween the two modelThierry et

al., 2008; El Haouzet al,, 2008)
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Figure 10bshows the utilization rate of the trimmer as a fiorcof time (s) for the twi
models (complete in black and reduced in gray). The models present a simil
evolution of the utilization rate and convergeltte same valt after 1000.

To confirm thatthe neural network included in the reduced modsldwrectly learne
the process, we investigate the results obtainedsinyg a homogeneous Poisson pro
with different means as log arrival rule. As anrapée, Figure 1 presents the utilizatio
rateof the trimmer when the mean of the Poisson prois 30 s (compared with the 2C

used previously). Figurel shows that the two models gave similar results thiatl the
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utilization rates converge to the same value of 38fthe two models (compared h the
value of 49% obtained previously). Similar restare obtained when other Poiss

processes angsed as log arrival rul
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Figure 11 Utilization rate of the trimme— Poisson process of mean :

(black: complete model; gray: reduced mo

Theseresults show that a reduced model gives similault®ghan a complete on
Therefore, it is relevant to use reduced modekaestof complete one because it is quic

to construct and use without loss of precis

5. CONCLUSION

A new approach for siulation model reduction has been presented hetis.approact
uses a neural network and, more particularly, atilayér perceptro to model the
functioning of a part of the procethat isnot constrained in capacity. This approach

been applied to thenodelisatiol of a sawmill workshopThe results show th.

33



Accepté a: Engineering Applications of Artificial Intelligence

- the two datasets present similar results,

- the average of the error is small relative to theecpss time scale, and

- the complete and reduced models gave similar seswien if the log arrival rule is

changed.

This means that it seems efficient to use a newetork to model a part of a process
instead of constructing the complete model.

Assuming that the construction of a neural netwsr& quasi-automated task, in which
the modeler only collects and selects the inpua dat. It is faster and easier to construct
this kind of reduced model. This approach allowesttodeler to focus on the management
of bottlenecks.

Our intentions for future work are to investigdte structure determination of the neural
network, particularly the choice of its inputs, atite validation of this approach on
different applications, particularly on severalerral supply chains, such that at least one

particular enterprise belongs to different supgigios.
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