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Based on the operatorial formulation of the perturbation theory, the properties of a confined exci-
ton coupled with phonons in thermal equilibrium is revisited. Within this method, the dynamics is
governed by an effective Hamiltonian which accounts for exciton-phonon entanglement. The exciton
is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transi-
tions. Special attention is thus paid for describing the time evolution of the excitonic coherences
at finite temperature. As in an infinite lattice, temperature-enhanced quantum decoherence takes
place. However, it is shown that the confinement softens the decoherence. The coherences are very
sensitive to the excitonic states so that the closer to the band center the state is located, the slower
the coherence decays. In particular, for odd lattice sizes, the coherence between the vacuum state
and the one-exciton state exactly located at the band center survives over an extremely long time
scale. A superimposition involving the vacuum and this specific one-exciton state behaves as an
ideal qubit insensitive to its environment.

PACS numbers:

I. INTRODUCTION

Molecular lattices show regularly distributed atomic
subunits along which the energy of a specific electronic
transition, or a high frequency vibrational mode, delocal-
izes due to dipole-dipole interaction. This gives rise to
a narrow-band exciton1–3 whose quantum states are su-
perimpositions of local states and which is able to move
coherently along the lattice. However, the exciton in-
teracts with the phonons of the host medium4–6. They
induce stochastic modulations of the local state energies
and they tend to break the excitonic coherence.

The exciton-phonon system is a prototype of an
open system (exciton) coupled with a thermal bath
(phonons) whose characterization is essential in under-
standing many phenomena: exciton dynamics in photo-
synthetic antenna and polymers7–11, vibron propagation
in α-helices12–19 and adsorbed nanostructures20–25, vi-
brational qubits in quantum channels26,27. The exciton
properties are thus encoded in the reduced density matrix
(RDM) whose behavior is governed by a generalized mas-
ter equation (GME)28,29. Among the different strategies
elaborated to derive a GME, the time-convolutionless ap-
proach (TCL) plays a central role29–34. It provides a time
local GME in which the phonon influence is encoded
in a time-dependent relaxation operator. It is particu-
larly suitable for describing non-markovian processes and
for deriving approximate GME. The Born approximation
is often invoked resulting in a second order expansion
(TCL2) with respect to the exciton-phonon coupling.

In a recent series of papers35–39, special attention
has been paid for studying a narrow-band exciton cou-
pled with acoustic phonons. Assuming that the exci-
ton propagates slower than the phonons, the nonadia-
batic weak coupling limit has been considered (see for
instance Refs.40–42 and the references inside). There-
fore, the TCL2 method has been used for describing the

evolution of the excitonic coherences. These coherences
measuring the ability of the exciton to develop superim-
positions involving the vacuum and one-exciton states,
they are required to characterize various processes (opti-
cal response43, quantum state transfer44...). Our stud-
ies have revealed that the behavior of the coherences
strongly depends on the lattice size.

In an infinite lattice35,36, the phonons behave as a
reservoir and the Born approximation is legitimate. In
the nonadiabatic limit, the Markov limit is reached and
the relaxation operator becomes time independent. De-
phasing limited-coherent dynamics takes place so that
the coherences irreversibly decrease with time. They
localize and do not propagate significantly along the
lattice36. By contrast, in a finite size lattice, a strong
non-markovian regime takes place due to the discrete
nature of the phonon energy spectrum37,38. The con-
finement favors quantum recurrences that provide to
the relaxation operator an almost periodic nature which
mainly results from the coupling with the lowest fre-
quency phonon mode (LFPM). The GME reduces to a
linear system of differential equations with almost peri-
odic coefficients. Therefore, parametric resonances be-
tween specific excitonic frequencies and LFPM give rise
to an exponential growth of the RDM indicating that the
TCL2 method breaks down38.

To overcome this difficulty, finite size effects have
been revisited within the standard perturbation theory
(PT)39. To proceed, the system ”exciton+LFPM” has
been considered. Due to its simplicity, it was solved ex-
actly so that the PT performance has been checked. It
has been shown that PT is a powerful tool for describing
the spectral properties of the system. Furthermore, con-
trary to TCL2, PT is particularly suitable for characteriz-
ing the coherence dynamics. Quite naturally, the present
paper is thus devoted to the generalization of PT to in-
clude the influence of all the phonon modes. However, we
shall consider the operatorial formulation of PT that in-
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volves a perturbative unitary transformation45. Within
this method, the exciton-phonon system is governed
by an effective Hamiltonian that accounts for exciton-
phonon entanglement. It is no longer necessary to derive
the perturbed eigenstates to evaluate the coherences, the
required information being encoded in the transforma-
tion.

The paper is organized as follows. In Sec. II, the
exciton-phonon Hamiltonian is described. Then, PT is
applied to build the transformation and to derive the ef-
fective Hamiltonian. An approximate expression for the
coherences is finally established. In Sec. III, the coher-
ence dynamics is studied numerically and the results are
discussed in Sec. IV.

II. THEORETICAL BACKGROUND

A. Model Hamiltonian

In a confined lattice with N sites x = 1, ..., N , one-
exciton states are the first excited states of N coupled
two-level systems35–39. They correspond to N super-
impositions of incident and reflected plane waves with
quantized wave vectors Kk = kπ/L, with k = 1, .., N
and L = N + 1. The kth eigenstate is defined as

|k〉 =

N
∑

x=1

√

2

L
sin (Kkx) |x〉, (1)

where |x〉 is the first excited state of the xth two-level sys-
tem. The discrete eigenenergies ωk = ω0 + 2Φ cos(Kk)
belong to a band centered on the Bohr frequency ω0 of
each two-level system. Its bandwidth 4Φ involves the
exciton hopping constant Φ between neighboring sites
(~ = 1 will be used throughout this paper). The exciton

Hamiltonian is thus defined as : HA =
∑N

k=1 ωk|k〉〈k|.
Note that the vacuum state |⊘〉 describing all the two-
level systems in their ground state with zero energy, the
dimension of the exciton Hilbert space EA is equal to
N + 1. The phonons are the elementary excitations as-
sociated to the external motions of the lattice sites that
behave as point masses M connected via force constants
W . They refer to N normal modes with wave vectors
Qp = pπ/L and frequencies Ωp = Ωc sin(Qp/2), with

p = 1, .., N and Ωc =
√

4W/M . In the phonon Hilbert
space EB, the dynamics is governed by the Hamiltonian

HB =
∑N

p=1 Ωpa
†
pap, a

†
p and ap being standard phonon

operators. Finally, the exciton-phonon coupling V ac-
counts for the modulation of each two-level system Bohr
frequency induced by the lattice vibrations as (for more
details see Ref.38)

V =

N
∑

p=1

Mp(a
†
p + ap), (2)

where the operator Mp acts in EA, only. It is defined as

Mp =

N
∑

k=1

N
∑

k′=1

ηpSpkk′ |k〉〈k′|. (3)

where ηp = [(EBΩp/L)(1 − (Ωp/Ωc)
2)]1/2 measures the

coupling strength with the pth phonon mode, EB being
the small polaron binding energy. In Eq.(3), Spkk′ is
written as

Spkk′ = δp,k−k′ + δp,k′−k − δp,k+k′ − δp,2L−k−k′ . (4)

The finite size exciton-phonon system is governed by
the Hamiltonian H = H0 + V where H0 = HA + HB

is the unperturbed Hamiltonian. Since H conserves the
exciton number, the Hilbert space E = EA ⊗ EB is parti-
tioned into independent subspaces as E = E0⊕E1. In the
zero-exciton subspace E0, V = 0 so that the unperturbed
states are eigenstates of H . They correspond to ten-
sor products involving the vacuum |⊘〉 and the phonon
number states |{np}〉 = |n1, ..., nN 〉. They describe np

free phonons with energy npΩp, p = 1, ..., N . In the one-
exciton subspace E1, the unperturbed states |k〉 ⊗ |{np}〉
refer to free phonons accompanied by an exciton in state
|k〉. Since V turns on in E1, they are no longer eigen-
states of H . The exact eigenstates are entangled exciton-
phonon states that result from scattering processes which
mix both exciton and phonon degrees of freedom. Indeed,
V yields exciton scattering from |k〉 with energy ωk, to
|k′〉 with energy ωk′ , via the exchange of a phonon p with
energy Ωp. The allowed transitions are specified by the
rules Spkk′ 6= 0 that generalize the concept of momentum
conservation in a finite size lattice.

The key point it that these allowed transitions do not
conserve the energy within the nonadiabatic limit, as in
infinite lattices46–48. Provided that 4Φ < Ωc, there is
no resonance between coupled unperturbed states since
ωk−ωk′ 6= ±Ωp. Consequently, within the weak coupling
limit (EB ≪ Φ), second order PT can be applied to treat
the influence of the coupling V 39.

B. Perturbation theory

The operatorial formulation of PT45 is detailed in
Appendix A. It is based on the introduction of a uni-
tary transformation U that diagonalizes the Hamilto-
nian Ĥ = UHU † in the unperturbed basis. The key
point it that U is expanded as a Taylor series with re-
spect to V so that the diagonalization is obtained at a
given order. After simple algebraic manipulations, the
transformed Hamiltonian up to second order is written

as Ĥ = ĤA +
∑N

k=1 Ĥ
(k)
B ⊗ |k〉〈k| (in E1), where

ĤA =

N
∑

k=1

(ωk + δωk)|k〉〈k|

Ĥ
(k)
B =

N
∑

p=1

(Ωp + δΩpk)a†pap. (5)
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The contribution ĤA is the effective exciton Hamilto-
nian. It reveals that in state |k〉, the energy of an exciton
ω̂k = ωk + δωk is renormalized due to its coupling with
the phonons. The correction δωk is defined as (Eq.(A8))

δωk =

N
∑

p=1

N
∑

k′=1

〈k|Mp|k′〉2
ωk − ωk′ − Ωp

. (6)

It results from the spontaneous emission of a phonon p
during which the exciton realizes a transition from |k〉 to
|k′〉. However, in the nonadiabatic limit, the energy is
not conserved during the transition so that the phonon
emission is not a real process. The exciton is only able to
exchange a virtual phonon which is first emitted and then
immediately reabsorbed. In accordance with the small
polaron concept, δωk is the manifestation of the so-called
dressing effect. The exciton does no longer propagate
freely but it is dressed by a virtual phonon cloud.

Similarly, when the exciton occupies a state |k〉, the
phonon dynamics is governed by an effective Hamiltonian

Ĥ
(k)
B (Eq.(5)). Each phonon of the pth mode experiences

an energy shift δΩpk expressed as (Eq.(A8))

δΩpk =

N
∑

k′=1

2〈k|Mp|k′〉2(ωk − ωk′)

(ωk − ωk′)2 − Ω2
p

. (7)

The correction δΩpk results from two mechanisms. First,
the phonon p can be absorbed giving rise to excitonic
transitions from |k〉 to |k′〉. Such a process does not con-
serve the energy within the nonadiabatic limit so that the
phonon is immediately re-emitted. Second, the phonon
p can induce the stimulated emission of a second phonon
during which the exciton realizes transitions. But, as pre-
viously, the emitted phonon is immediately reabsorbed.
Both mechanisms are virtual processes indicating that
the phonons do no longer evolve freely but are dressed
by virtual excitonic transitions.

The operator Ĥ is the effective exciton-phonon Hamil-
tonian. Being diagonal in the unperturbed basis, its
eigenvalues define the system eigenenergies up to sec-

ond order in V as ǫk,{np} = ω̂k +
∑N

p=1 np(Ωp + δΩpk).

The corresponding eigenstates are defined as |Ψk,{np}〉 =

U †|k〉⊗ |{np}〉. Consequently, U provides a new point of

view in which Ĥ does no longer describe independent ex-
citations but refers to entangled exciton-phonon states.
In this new point of view, a state |k〉 defines an exciton
dressed by a virtual phonon cloud whereas the number
state |{np}〉 describes phonons clothed by virtual exci-
tonic transitions.

As shown in the next section, the new point of view
is particularly suitable for deriving an approximate ex-
pression for the excitonic coherences. However, it is ex-
pected to give good results provided that the coupling
between unperturbed states is smaller than the corre-
sponding Bohr frequencies. By studying the different
coupling paths, it turns out that the LFPM is responsi-
ble for the largest perturbation. Consequently, as shown

previously39, PT can be applied at temperature T pro-
vided that (kB is the Boltzmann constant)

4EBkBT

π2Ω2
c

L < x, (8)

where x ≈ 0.05 specifies the desired accuracy for the
approximate eigenenergies. For a given temperature and
a fixed coupling strength, Eq.(8) shows that a critical
length L∗ discriminates between two regimes. For L <
L∗, PT correctly describes the exciton-phonon dynamics
whereas it certainly breaks down for L > L∗.

C. Excitonic coherences

Without any perturbation, the lattice is assumed to be
in thermal equilibrium at temperature T . We thus con-
sider situations for which ω0 ≫ kBT so that the exciton
cannot be thermally excited. By contrast, the phonons
form a thermal bath whose properties are described by
the density matrix ρB = exp(−βHB)/ZB, ZB being the
phonon partition function (β = 1/kBT ).

To study the exciton dynamics, the lattice is brought
in a configuration out of equilibrium in which the exci-
ton is prepared in a state |ψA〉 6= |⊘〉35–39. This step
is supposed to be rather fast when compared with the
typical time evolution of the phonons. As a result, the
initial density matrix is defined as ρ(0) = |ψA〉〈ψA|⊗ρB.
Of course, |ψA〉 depends on the properties under study.
To analyze energy transport, one can choose |ψA〉 = |x0〉
indicating that an excitonic population is created on the
x0th site46–50. In the present approach, we consider that
|ψA〉 is a superimposition involving the vacuum |⊘〉 and
the one-exciton eigenstate |k1〉 as |ψA〉 = c0|⊘〉 + c1|k1〉,
with |c0|2 + |c1|2 = 1. Note that such a superimposition
may result from an optical excitation of the lattice.

In that context, the exciton properties are encoded
in the RDM σ(t) = TrB[ρ(t)], where TrB is a par-
tial trace over the phonon degrees of freedom. Because
H conserves the exciton number, σ(t) exhibits indepen-
dent blocks. Matrix elements σxx(t) and σxx′(t) de-
fine the one-exciton block that is required to study the
transport properties48–50. Here, we restrict our atten-
tion to the block containing the coherences written as
σk2⊘(t) = Gk2k1(t)σk1⊘(0) (σk1⊘(0) = c∗0c1) with

Gk2k1(t) = 〈k2|TrB
[

ρBe
iHBte−iHt

]

|k1〉. (9)

The coherence σk2⊘(t) measures the ability of the ex-
citon to develop a superimposition involving |⊘〉 and |k2〉
at time t, given that a superimposition involving |⊘〉
and |k1〉 was initially created. Consequently, Gk2k1(t)
generalizes the concept of transition amplitude and it
defines the effective exciton propagator. It yields the
probability amplitude to observe the exciton in |k2〉 at
time t given that it was in |k1〉 at t = 0. More pre-
cisely, the full system being prepared in the factorized
state |k1〉 ⊗ |{np}〉, Gk2k1(t) measures the probability
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amplitude to observe the system in a factorized state
exp(−i∑p npΩpt)|k2〉⊗|{np}〉. It thus describes an exci-
tonic transition during which the phonons evolve freely,
an average over the initial phonon state being performed.

The evaluation of Eq.(9) within PT is detailed in Ap-
pendix B. To proceed, we first introduce U and diago-
nalize H . Second, we use the fact that Ĥ is the sum of
independent contributions, each contribution describing
the exciton-phonon system when the exciton occupies a
specific state |k〉. Then, we define the following Heisen-

berg representation Ok(t) = eiĤ
(k)
B

tOe−iĤ
(k)
B

t. Finally,
we introduce the effective density matrix

ρ
(k)
B (t) =

1

Z
(k)
B (t)

N
∏

p=1

exp
[

−(βΩp + iδΩpkt)a
†
pap

]

, (10)

where

Z
(k)
B (t) =

N
∏

p=1

1

1 − exp [−(βΩp + iδΩpkt)]
. (11)

Strictly speaking, ρ
(k)
B (t) is not a density matrix since it

provides complex values for the population of the phonon
number states. However, it reduces to the equilibrium

density matrix at t = 0, i.e. ρ
(k)
B (t = 0) ≡ ρB ∀k. More-

over, ρ
(k)
B (t) being isomorphic to ρB, the trace over the

phonon degrees of freedom will provide averages equiv-
alent to thermal averages but with the correspondence
βΩp → βΩp + iδΩpkt.

In that context, after simple algebraic manipulations,
the effective propagator is rewritten as (see Appendix B)

Gk2k1(t) =

N
∑

k=1

Z
(k)
B (t)

ZB
exp[−i(ωk + δωk)t] × (12)

TrB

[

ρ
(k)
B (t)〈k2|U †

k(t)|k〉〈k|Uk(0)|k1〉
]

.

Expanding U in a Taylor series with respect to V , one
finally obtains the second order expression of the effective
exciton propagator displayed in Appendix C (Eq.(C1)).

III. NUMERICAL RESULTS

In this section, the previous formalism is used for de-
scribing excitonic coherences in a finite size lattice. In
spite of its general nature, it will be applied to amide-I
exciton in α-helices, a system extensively studied in our
previous works35–39. In α-helices, peptide units linked
by H bonds are regularly distributed. Each unit con-
tains an amide-I mode (high frequency C=O vibration)
that gives rise to vibrational excitons coupled with the
phonons of the H bond network. This system is a proto-
type of a finite size lattice since helices containing from 3
to 15 residues are the most abundant in nature51. Of
course, the present model is too simple to accurately

describe vibrational energy flow in real helices whose
dynamics exhibits a tremendous complexity due to the
large number of degrees of freedom. Nevertheless, it in-
volves ingredients that play a key role in interpreting
specific experiments such as pump-probe spectroscopy in
α-helices13 and Electron Capture Dissociation in finite
size polypeptides18. Unfortunately, this model is unable
to describe energy relaxation because it conserves the
number of amide-I exciton. In proteins, the amide-I life-
time, typically of about 1 ps, results from intramolecu-
lar energy redistribution due to the anharmonic coupling
between each amide-I mode and a set of intramolecu-
lar normal modes whose displacements are strongly lo-
calized on the C=O groups52–54. Consequently, we do
not claim that the model is relevant to explain in de-
tails the vibrational dynamics in a protein. Nevertheless,
its interest lies in the fact that it provides a simple ap-
proach to promote the idea that PT is more efficient than
TCL2 method which has been applied recently to a sim-
ilar model38.

Typical values for the parameters are used: ω0 = 1660
cm−1, W = 15 Nm−1, M = 1.8 × 10−25 kg, Ωc = 96.86
cm−1 and Φ = 7.8 cm−1. The adiabaticity B = 2Φ/Ωc

is equal to 0.16 so that the nonadiabatic limit is reached.
The coupling strength will be discussed in terms of the
χ parameter usually introduced in the Davydov model
(EB = χ2/W ). It will vary around χ = 8 pN, a value
close to ab initio estimate55. With these parameters, the
critical length L∗ ≈ 20 ensures the PT validity over the
temperature range T ∈ [0, 300] K (see Eq.(8)).

As shown in Fig. 1a, the phonons induce a red-shift
of each excitonic eigenenergy that scales as δωk ≈ −EB.
Nevertheless, δωk depends on both k and N . A small dis-
persion arises and δωk increases with k (Φ > 0). For N =
10, δω1 = −0.99EB whereas δω10 = −0.71EB. Conse-
quently, δωk defines a band centered on a mean value δω̄
and whose width is about ∆ω = δωN − δω1. It turns out
that δωk rapidly decreases with L and it finally converges.
Such a behavior is encoded in the size dependence of the
band center that scales as δω̄ ≈ −1.056EB(1 − 1.96/L).
Nevertheless, since all the corrections behave similarly,
the bandwidth is less sensitive to the lattice size. It scales
as ∆ω ≈ (0.28 − 2.48/L2.86)EB and it is about 0.28EB

provided that L > 7.

As displayed in Figs. 1b and 1c, the energy of each
phonon mode is either red-shifted or blue-shifted due to
the dressing by virtual excitonic transitions. In a gen-
eral way, an exciton whose energy is above ω0 yields a
red-shift of the phonon energy whereas an exciton whose
energy is below ω0 favors a blue-shift. Nevertheless, op-
posite situations may appear, especially when the exciton
occupies states close to the band center. For N = 8, the
exciton in state k = 4 produces a blue-shift of the fre-
quency of the phonon mode p = 5 whereas the exciton
in state k = 5 yields a red-shift. In addition, specific
phonon modes remain insensitive to the exciton that oc-
cupies a particular state. For N = 8, when the exciton
is either in the state k = 3 or k = 6, the phonon mode
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FIG. 1: (a) Size dependence of the exciton energy correction
δωk/EB vs k. (b) Phonon energy correction δΩpk/EB vs p
for N = 8 and for different k values. (c) Phonon energy
correction δΩpk/EB vs p for N = 9 and for different k values.

p = 6 is not perturbed. As shown in Fig. 1c, a remark-
able effect arises for odd N values. In that case, phonons
dressed by an exciton whose energy is exactly located
at the band center are not perturbed. For k = L/2,
one obtains δΩpk = 0 ∀ p. Note that the intensity of
δΩpk decreases with the lattice size. Phonon modes with
p ≈ L/2 exhibit the largest energy shift whereas phonon
modes with p ≈ N seem to be less affected.

Let us now study the time evolution of the excitonic co-
herences. To proceed, we shall characterize the diagonal
elements of the effective propagator, only. We have veri-
fied that such a restriction is valid because the propagator
is diagonally dominant in the nonadiabatic weak coupling
limit. Therefore, to simplify the notation, Gkk(t) will be

|G
k
k
(t

)|

0.0

0.2

0.4

0.6

0.8

1.0

time (ps)

0 200 400 600 800 1000

|G
k
k
(t

)|
0.0

0.2

0.4

0.6

0.8

1.0
k=1

k=2

k=3

k=4

k=5

k=6

k=7

k=8

(a)

(b)

0 50 100

0.8

0.9

1.0

FIG. 2: Time evolution of the coherence |Gkk(t)| for N = 8,
χ = 8 pN and (a) T = 100 K and (b) T = 300 K (The inset
illustrates the short time behavior for T = 100 K).

called the coherence of the state k. For an even lattice
size (N = 8), the time evolution of |Gkk(t)| is illustrated
in Fig. 2a for T = 100 K. Over a short time scale (t < 100
ps), |Gkk(t)| shows high frequency small amplitude fluc-
tuations just below its initial value equal to unity (inset
in Fig. 2a). Then, it follows a smooth decaying function
that supports a high frequency small amplitude modu-
lation indicating that quantum decoherence takes place.
Such a behavior is strongly k dependent. Indeed, the co-
herences evolve in pairs since |Gkk(t)| ≈ |GL−kL−k(t)|.
Then, the coherence of states close to the band edges
(ωk ≈ ω0±2Φ) decays faster than the coherence of states
located near the band center (ωk ≈ ω0). For instance, at
t = 100 ps, |G11(t)| = 0.72 and |G44(t)| = 0.92 whereas
at t = 500 ps, |G11(t)| = 0.04 and |G44(t)| = 0.56. Fi-
nally, the modulation amplitude is more pronounced for
states located near the band center. As shown in Fig. 2b,
the temperature enhances quantum decoherence. Conse-
quently, |Gkk(t)| remains close to its initial value over
a shorter time scale of about 50 ps. Then, the larger
T is, the faster the coherences decay. Finally, as T in-
creases, the amplitude of the modulation increases. Nev-
ertheless, the temperature affects differently the various
coherences. At t = 200 ps, |G11(t)| reduces from 0.37 for
T = 100 K to 0.015 for T = 300 K. By contrast, |G44(t)|
varies between 0.86 and 0.43 over the same temperature
range. Finally, over 1000 ps, Fig. 2b seems to indicate
that the coherences vanish in the long time limit.

The time evolution of |Gkk(t)| is shown in Fig. 3 for
an odd lattice size (N = 9). Basically, the coherences
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FIG. 3: Time evolution of the coherence |Gkk(t)| for N = 9,
χ = 8 pN and (a) T = 100 K and (b) T = 300 K.

behave as in Fig. 2. They still evolve in pairs and
they first exhibit fast oscillations just below their ini-
tial value. As time increases, they follow smooth decay-
ing functions that show high frequency small amplitude
modulations. Quantum decoherence occurs and, as pre-
viously, it is enhanced by the temperature. Nevertheless,
few differences take place. First, the modulation ampli-
tude appears larger, especially for states located close to
the band center. Then, the coherences that decay do no
longer vanish in the long time limit. This is particularly
pronounced at high temperature (Fig. 3b) for which the
coherences converge to a finite value by exhibiting high
frequency oscillations. The closer to the band center the
state is located, the larger the asymptotic coherence value
and the oscillation amplitude are. However, a surprising
effect takes place that is absent for even N values. In-
deed, the coherence of the state exactly located at the
band center (k = L/2) behaves differently. In the short
time limit, it slightly decreases from unity by exhibiting
high frequency damped oscillations. As time increases,
the oscillations disappear and the coherence converges to
a constant value CL/2 rather close to unity. The influ-
ence of the temperature is twofold. First, as T increases,
CL/2 decreases. Then, the amplitude of the damped os-
cillations increases with T . Nevertheless, the larger the
temperature is, the faster the modulation disappears.

As illustrated in Fig. 4 for N = 8 and T = 100 K,
quantum decoherence is not irreversible and specific fea-
tures arise in the long time limit. Indeed, each coherence
decreases until it recurs at specific revival times. For in-
stance, although |G11(t)| almost vanishes after 1000 ps,
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FIG. 4: Long time evolution of the coherence |Gkk(t)| for
N = 8, T = 100 K and χ = 8 pN.

it increases again over a time scale which extends from
2900 ps to 4400 ps. Then additional recurrences occur
around 5800 ps, 7300 ps and 8700 ps, the amplitude of
which being smaller than 0.08. However, we have verified
that the recurrences decrease as T increases so that they
almost disappear at room temperature. For instance, for
N = 8, T = 300 K and k = 1, recurrences still arise but
their amplitudes remain smaller than 0.001. Similarly,
the larger N is, the smaller the recurrences are.

By contrast, even over very long time scales, the co-
herence of the state k = L/2 survives and it rapidly
converges to CL/2. As shown in Fig. 5a, CL/2 de-
creases almost linearly as T increases. A nonlinear depen-
dence arises at very low temperature, only. For N = 9
and χ = 8 pN, CL/2 = 0.95 for T = 100 K whereas
CL/2 = 0.85 for T = 300 K. Moreover, the coupling en-
hances the temperature effect. Similarly, CL/2 is a linear
function of the lattice size (Fig. 5b). For T = 300 K and
χ = 8 pN, it decreases from 0.92 to 0.71 when N varies
between 5 and 17. Finally, as shown in Fig. 5c, CL/2

also decreases linearly with EB and it decays from 0.85
to 0.67 when EB varies between 0.21 cm−1 (χ = 8 pN)
and 0.47 cm−1 (χ = 12 pN). These results reveal that the
asymptotic value of the coherence of the state k = L/2
scales as CL/2 = 1−α(N −1), with α ≈ 3.82EBkBT/Ω

2
c.

Let us finally characterize the decoherence rate Γk. It
is defined as Γk = 1/Tk, where the decoherence time
Tk is extracted from the relation |Gkk(Tk)| = 1/2. To
proceed, we use the partition detailed in Appendix C
and approximate |Gkk(t)| by |G0

kk(t)|, i.e. the expression
of the coherences obtained when the system eigenstates
are assumed to be collinear to the unperturbed states
(see Eq.(C2)). We have verified that |G0

kk(t)| defines a
smooth function that mimics the average behavior of the
coherences. Its thus accounts for quantum decoherence
so that both Tk and Γk can be extracted form the equa-
tion |G0

kk(Tk)| = |G0
kk(0)|/2. As shown in Fig. 6a for

T = 300 K and χ = 8 pN, Γk is a symmetric function
with respect to the band center, i.e. Γk = ΓL−k. It ex-
hibits discrete values that belong to a band whose upper
bound is Γ1. The lower bound is either zero or ΓN/2,



7

T (K)

0 50 100 150 200 250 300

C
L
/2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

c=8 pN

c=10 pN

c=12 pN

N

1 3 5 7 9 11 13 15 17 19

0.0

0.2

0.4

0.6

0.8

1.0

c=8 pN

c=10 pN

c=12 pN

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

1.0

T=100 K

T=200 K

T=300 K

(a)

(b)

(c)

E
B

(cm
-1
)

C
L
/2

C
L
/2
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(N = 9).

depending on the lattice size parity. For instance, for
N = 8, the decoherence rate extends from Γ4 = 0.028
cm−1 to Γ1 = 0.099 cm−1. By contrast, for N = 9, it
ranges between Γ5 = 0 and Γ1 = 0.096 cm−1. Note that
we have verified that Γ1 decreases with the lattice size
and typically scales 1/

√
L. As illustrated in Fig. 6b for

N = 9 and χ = 8 pN, Γk increases linearly with the
temperature. Note that a nonlinear dependence arises
at very low temperature, only. However, such a behav-
ior strongly depends on the excitonic state. First of all,
ΓL/2 = 0 ∀T . Then, the closer to the band edge the
state is located, the faster Γk increases with the temper-
ature. For instance, Γ1 varies between 0.031 cm−1 and

G k
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FIG. 6: Behavior of the decoherence rate Γk. (a) Γk vs k for
T = 300 K, χ = 8 pN. (b) Γk vs T for N = 9 and χ = 8 pN.
(c) Γk vs EB for N = 9 and T = 300 K.

0.096 cm−1 when T increases from 100 to 300 K. Over
the same temperature range, Γ4 extends from 0.013 cm−1

to 0.040 cm−1. In other words, for T = 100 K, the deco-
herence time for the state k = 1 is equal to T1 = 168.5 ps
whereas it reaches T4 = 405.5 ps for the state k = 4. For
T = 300 K, one obtains T1 = 55.5 ps and T4 = 131.5 ps.
Note that T5 = ∞ ∀T . Similarly, Γk increases linearly
with EB in a way which depends on the k values (Fig.
6c). For N = 9 and T = 300 K, one typically obtains
Γ1 ≈ 0.45EB and Γ4 ≈ 0.19EB. Note that, as previously,
ΓL/2 = 0 ∀EB .
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IV. DISCUSSION

In a confined environment, the coherence dynamics is
controlled by different time scales. Over a short time
scale, the coherences fluctuate just below their initial
value equal to unity. Then, quantum decoherence takes
place and each coherence follows a smooth decaying func-
tion that supports a small amplitude modulation. After
a time scale specified by the decoherence time, the co-
herence either vanishes or exhibits small amplitude os-
cillations close to zero, depending on the parity of the
lattice size. Finally, coherence revivals occur in the long
time limit defining small recurrences whose amplitude
decreases with both T and N . The main observation is
that quantum decoherence strongly depends on the exci-
ton eigenstate. The closer to the band center the state is
located, the longer the decoherence time is. In particular,
for odd lattice sizes, the coherence of the state exactly
located at the band center survives over an infinite time
scale, even at room temperature.

To interpret these features, let us first mention that
within PT, the influence of the exciton-phonon inter-
action is encoded into two main parameters. The first
parameter, δωk, describes the energy shift experienced
by the exciton when it is dressed by a virtual phonon
cloud. According to the small polaron concept41,42,
this dressing yields a red-shift of the Bohr frequency of
each two-level system. This shift, equal to EB in an
infinite lattice, reduced to EB(1 − 2/L) in a confined
environment42. Moreover, the dressed exciton delocalizes
according to a reduced hopping constant Φ̂ ≈ Φ exp(−S),
where the band-narrowing factor at zero temperature is
S = 8EB/(3πΩc)

41. Note that in a finite size lattice Φ̂
is both inhomogeneous and size dependent56. But these
effects remain weak in a lattice with fixed boundary con-
ditions. As a result, the energy corrections behave as

δωk ≈ −EB(1 − 2/L) − 2ΦS cos(kπ/L). (13)

As observed in Fig. 1, δωk forms a band centered on
δω̄ = −EB(1−2/L) and whose width ∆ω = 4ΦS reduces
to 0.273EB with the parameters used in the figure.

The second parameter accounts for the fact that,
dressed by the virtual transitions of an exciton in state
k, the energy of a phonon p becomes Ω̂p = Ωp +δΩpk. To
evaluate the energy correction δΩpk displayed in Figs. 1b
and 1c, let us approximate Eq.(7) by considering normal
scattering processes k′ = k − p and k′ = k + p, only. Up
to first order in the adiabaticity, one obtains

δΩpk ≈ −8BEB

L

(

Ωp

Ωc

)

[

1 −
(

Ωp

Ωc

)2
]

cos

(

kπ

L

)

. (14)

Eq.(14) shows that δΩpk < 0 if k < L/2 whereas δΩpk >
0 if k > L/2. It reveals that δΩpk = 0 ∀ p for k =
L/2. The most perturbed phonon mode satisfying Ωp =

Ωc/
√

3, the maximum energy shift is 3.08BEB/L, i.e.
about 5EB/100 for L = 9 − 10, as observed in Fig. 1.

In that context, assuming that the system eigenstates
reduce to the unperturbed states, the effective exciton

propagator is rewritten as (see Eq.(C2) with Λ
(2)
k = 0)

Gkk(t) ≈ exp(−iω̂kt)Z
(k)
B (t)/ZB . The corresponding

modulus is thus defined as

|Gkk(t)| ≈
N
∏

p=1

1
√

1 + 4∆n̄2
p sin2(δΩpkt/2)

, (15)

where ∆n̄2
p = n̄p(n̄p + 1) measures the thermal fluctua-

tions of the pth phonon number around its average value
n̄p = [exp(βΩp) − 1]−1. Although it is quite simple,
Eq.(15) provides a clear understanding of the different
features observed in the previous section. First of all,
since δΩpL−k = −δΩpk (see Eq.(7)), it turns out that
|Gkk(t)| = |GL−kL−k(t)|, as observed in Figs. 2, 3 and 4.

Then, Eq.(15) describes a smooth decaying function
that tends to zero over intermediate time scale, revealing
that quantum decoherence occurs. The physics of the
decoherence can be understood as follows. At t = 0,
the system is prepared in a factorized state |Ψ(0)〉 =
[c0|⊘〉 + c1|k〉] ⊗ |φ〉. This state describes an exciton in
a superimposed state accompanied by phonons in a well
defined number state |φ〉 ≡ |{np}〉, phonons and exciton
being independent. As time increases, this state evolves
in an entangled exciton-phonon state as

|Ψ(t)〉 ≈ c0|⊘〉 ⊗ |φ⊘(t)〉 + c1e
−iω̂kt|k〉 ⊗ |φk(t)〉, (16)

where |φ⊘(t)〉 is the state of free phonons whereas |φk(t)〉
describes the state reached by dressed phonons. Building
the system density matrix and performing a trace over
the phonon degrees of freedom, one obtains Gkk(t) ≈
exp(−iω̂kt)〈φ⊘(t)|φk(t)〉. The phase factor, that does
not affect the coherence dynamics, accounts for the evo-
lution of the dressed exciton. By contrast, the inner
product 〈φ⊘(t)|φk(t)〉 defines the so-called decoherence
function that measures the ability of the phonons to
evolve freely in spite of their coupling with the exci-
ton. This object is rather general in the theory of open
quantum systems28,29. It suggests that quantum deco-
herence results from the fact that the bath evolves dif-
ferently as the open system occupies different quantum
states (see for instance Ref.57). In the present situation,
a slightly different interpretation emerges. Indeed, when
the phonons are initially in a pure state, the inner prod-
uct reduces to a phase factor

∏

p exp(inp(Ωp−Ω̂pk)t) that
involves the energy difference between free and dressed
phonons. Although this phase factor accounts for the
fact that dressed phonons evolve differently when com-
pared with bare phonons, it does not affect the excitonic
coherence. However, at finite temperature, the phonons
are described by a statistical mixture of number states
so that an average procedure is required. Therefore, per-
forming the average over the initial phonon state yields
a sum over phase factors which interfere some with the
others, resulting in the decay of the excitonic coherence.

As shown in Eq.(15), describing the coherence decay
remains a hard task since |Gkk(t)| involves the product of
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periodic functions. To overcome this difficulty, we first
express the coherence as |Gkk(t)| = exp[−Fk(t)], Fk(t)
being the decoherence factor. Expanding Fk(t) in the
short time limit, one finally obtains

|Gkk(t)| ≈ exp

[

−1

2

N
∑

p=1

∆n̄2
pδΩ

2
pkt

2

]

. (17)

Eq.(17) indicates that the coherence behaves as a Gaus-
sian function whose half width at half maximum yields
an approximate expression for the decoherence rate Γg

k.
Note that a similar time evolution has been proposed
to characterize quantum decoherence in a solute/bath
system57. However, we have verified that |Gkk(t)| scales
as a Gaussian function provided that t < 1/Γg. Over
longer time scale, a slower decay takes place. Conse-
quently, Γg

k always over estimates the exact decoherence
rate displayed in Fig. 6. However, after a detailed anal-
ysis of our numerical data, it turns out that the ratio
Γk/Γ

g
k only depends on the lattice size. Therefore, a

quite good estimate of the decoherence rate that clearly
reproduces the data displayed in Fig. 6 is expressed as

Γk ≈ 1 − 1/L√
2 ln 2

√

√

√

√

N
∑

p=1

∆n̄2
pδΩ

2
pk. (18)

As shown in Eq.(18), the temperature dependence of Γk

is encoded in the fluctuations of the phonon numbers.
Since ∆n̄p typically scales as kBT/Ωp, Γk increases lin-
early with the temperature. Note that this dependence
differs from the standard expression of the dephasing rate
that characterizes the decoherence of an open system cou-
pled with a reservoir of harmonic oscillators1. In that
case, GME methods show that the temperature depen-
dence of the rate originates in its dependence with respect
to the average phonon number n̄p. At high temperature,
both approaches yield a similar temperature dependence
since ∆n̄p ≈ n̄p ≈ kBT/Ω. This is no longer the case at
low temperature since ∆n̄p/n̄p = exp(βΩp/2). Moreover,
Γk is proportional to EB through its dependence with
respect to the phonon energy corrections (see Eq.(7)).
From this dependence, we recover that the closer to the
band edges the excitonic state is located, the larger Γk

is.
As observed in Fig. 3, Eq.(18) also reveals that the co-

herence of the state located at the band center (k = L/2)
survives over an infinite time scale. This feature oc-
curs for an odd lattice size only because δΩpL/2 = 0
∀p. Indeed, during both phonon absorption and phonon
stimulated emission, the virtual excitonic transition form
|k〉 to |k′〉 is counterbalanced by the transition form |k〉
to |L − k′〉. Due to the symmetry of the excitonic en-
ergy spectrum ((ω′

k −ω0) = −(ωL−k′ −ω0)) and because
Mpkk′ = MpkL−k′ , both contributions exactly compen-
sate when k = L/2. As a result, a zero phonon energy
shift occurs so that ΓL/2 → 0. Note that the asymp-
totic behavior of the coherence CL/2 is not described by

Eq.(15). As shown in Fig. 5, CL/2 decreases linearly
with both T , EB and N . Such a behavior originates in
the second order correction of the eigenstates that en-
sure their normalization to unity. As shown in Eq.(C2),

this correction yields the contribution Λ
(2)
k (t) which pro-

vides to CL/2 its dependence with respect to the model
parameters.

Finally, Eq.(15) gives formation about the long time
behavior of the coherences. Indeed, when restricting
the influence of the phonon bath to the pth mode, only,
|Gkk(t)| reduces to a periodic function of time with pe-
riod τpk = 2π/|δΩpk|. As a result, although the coherence
decays due to quantum decoherence, it finally recurs pe-
riodically at specific revivals time τpk, 2τpk, 3τpk ... and
so on. These revivals time define exact recurrences for
which the coherence reaches unity. However, this ideal
scenario breaks down when all the phonon modes are con-
sidered. The main reason it that it is unlikely that the
contribution of each phonon mode will recur simultane-
ously to provide a strong recurrence. In other words, it
is as if the coherence revivals due to the coupling with a
particular phonon mode were screened by the remaining
modes. Nevertheless, each phonon mode yields specific
features that can be distinguished in the long time be-
havior of the coherence at low temperature and in short
lattices. For instance, with the parameters used in Fig.
4, the coherence of the state k = 1 slightly recurs over a
time scale which extends from 2900 ps to 4400 ps. This
feature is the signature of coherence revivals that take
place at the revival times τ11 = 4357 ps, τ21 = 3655 ps,
τ31 = 2919 ps, τ41 = 2873 ps and τ51 = 3398 ps. More-
over, the observed recurrences around 5800 ps, 7300 ps
and 8700 ps are located at the revival times 2τ31, 2τ21
and 2τ11, respectively.

To conclude, let us discuss the implications of the
present work for quantum information processing in con-
densed matter. Indeed, quantum state transfer (QST)
from one region to another is a fundamental task in quan-
tum computing58. Over short length scale, to ensure
communication inside a computer or between adjacent
computers, solid-state based system is the ideal candidate
for scalable quantum computing. However, the quantum
channel strongly depends on the way the information is
encoded. Since it has been suggested that qubits may
be encoded in high frequency vibrational modes59–61, vi-
brational exciton-mediated QST is a promising way for
quantum information processing26,27.

In that context, the confinement of the excitons ap-
pears as a key ingredient to fight against quantum deco-
herence, the public enemy number one in quantum com-
puting. In an infinite lattice, the exciton eigenstates are
Bloch states whose coherent nature rapidly disappears
due to the coupling with the phonon bath36. The coher-
ences decay exponentially according to a state indepen-
dent decoherence rate of about Γ = 4EBkBT/Ωc. With
the parameters used in the present study, the correspond-
ing decoherence time is about 2.86 ps at room tempera-
ture. By contrast, the confinement softens the decoher-
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ence experienced by the exciton, even at high tempera-
ture. Although quantum decoherence strongly depends
on the excitonic states, the decoherence times typically
range between 50 - 200 ps at 300 K. Furthermore, it turns
out that the excitonic state exactly located at the band
center is insensitive to the phonon bath, its decoherence
time being infinite. Of course, such a behavior results
from a second order PT and high order theory will pro-
vide non vanishing ΓL/2 values. Nevertheless, even if
quantum decoherence affects this state, one may expect
that the decoherence time will be extremely long in the
nonadiabatic weak coupling limit. A superimposition in-
volving the vacuum and this particular one-exciton state
will be able to keep its coherent nature over an extremely
long time scale. At high temperature, such a superim-
position can be viewed as an ideal qubit insensitive to
quantum decoherence.

V. CONCLUSION

In this paper, the properties of a confined exciton cou-
pled with phonons in thermal equilibrium has been re-
visited using the operatorial formulation of PT. This
method provides a new point of view in which the dy-
namics is governed by an effective Hamiltonian that does
no longer characterize independent excitations but ac-
counts for exciton-phonon entanglement. The exciton is
dressed by a virtual phonon cloud whereas the phonons
are clothed by virtual excitonic transitions. Within this
new point of view, special attention has been paid for de-
scribing the excitonic coherences that measure the ability
of the exciton to develop superimpositions involving the
vacuum and one-exciton states.

In the nonadiabatic weak coupling limit, it has been
shown that the coherence behavior results from an aver-
age procedure over the phonon degrees of freedom. In-
deed, when the phonons occupy a well-defined number
state, the decoherence function reduces to a phase fac-
tor although dressed phonons behave differently when
compared with bare phonons. At finite temperature, the
average over the initial phonon state yields a sum over
phase factors which interfere some with the others, re-
sulting in the decay of the excitonic coherence. There-
fore, although each coherence remains close to unity over
a rather short time scale, it finally decreases as time in-
creases. After a time scale specified by the decoherence
time, the coherence either vanishes or shows small ampli-
tude oscillations close to zero, depending on the parity of
the lattice size. Coherence revivals have been observed
in the long time limit, but their amplitude remains ex-
tremely small.

The key point is that the confinement softens quan-
tum decoherence. Indeed, it has been shown that the
coherences are very sensitive to the excitonic states and
to the lattice size. Therefore, the closer to the band cen-
ter the state is located, the slower the coherence decays.
In particular, for odd lattice sizes, the coherence of the

state exactly located at the band center survives over an
infinite time scale. In that context, it has been pointed
out that a superimposition involving the vacuum and this
particular one-exciton state behaves as an ideal qubit in-
sensitive to the phonon bath, even at room temperature.

To conclude, let us mention that PT is valid as long
as we remain confined in a small region of the parame-
ter space, i.e. in the weak coupling limit and for short
lattice sizes. Therefore, a more general framework is re-
quired to correctly describe size effects in both interme-
diate and strong coupling limits. Based on the small po-
laron concept, these features will be addressed in forth-
coming works.

APPENDIX A: SECOND ORDER

PERTURBATION THEORY

In its operatorial formulation45, PT is based on the
introduction of a unitary transformation U that diago-
nalizes the transformed Hamiltonian Ĥ = UHU † in the
unperturbed basis. It is written as U = exp(S), where S
is an anti-hermitian operator assumed to be non-diagonal
in the unperturbed basis. It is expanded as a Taylor se-
ries as S = S1 + S2 + S3 + ... where Sq is the qth order

correction in the coupling V . Consequently, Ĥ becomes

Ĥ = H0 + V + [S1, H0]

+ [S1, V ] + [S2, H0] +
1

2
[S1, [S1, H0]] + ... (A1)

From Eq.(A1), S is derived order by order to diagonalize

Ĥ at the desired order. Up to second order in V , the so-
lution of the problem is given by the following equations

[H0, S1] = V

[H0, S2] =
1

2
[S1, V ]nd

Ĥ = H0 +
1

2
[S1, V ]d, (A2)

where d and nd define the diagonal part and the non-
diagonal part of an operator in the unperturbed basis.

Since V is a linear combination of creation and anni-
hilation phonon operators (see Eq.(2)), S1 is of the form

S1 =
∑

p

Λpa
†
p − Λ†

pap. (A3)

The unknown operator Λp acts in EA, only. No restriction

affects this operator since S†
1 = −S1. Therefore, inserting

Eq.(A3) into Eq.(A2) yields

〈k|Λp|k′〉 =
〈k|Mp|k′〉

ωk − ωk′ + Ωp
. (A4)

The knowledge of S1 allows us to compute the commu-
tator [S1, V ] that is required to derive both Ĥ and S2.
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This commutator is defined as

1

2
[S1, V ] =

∑

p

Ap +
∑

pp′

Bpp′a†p′a
†
p + B†

pp′apap′

+
∑

pp′

Bpp′a†pap′ +B†
pp′a

†
p′ap, (A5)

where

Bpp′ =
1

2
[Λp,Mp′ ]

Ap = −1

2
(Λ†

pMp +MpΛp). (A6)

From the diagonal part of Eq.(A5), the transformed

Hamiltonian Ĥ reduces to

Ĥ = HA +
∑

p

Ad
p +

∑

p

[

Ωp + 2Bd
pp

]

a†pap. (A7)

Within the excitonic eigenbasis, Eq.(A7) yields Eqs.(5)-
(7) with the definitions

δωk =

N
∑

p=1

〈k|Ad
p|k〉

δΩpk = 2〈k|Bd
pp|k〉. (A8)

From the non diagonal part of Eq.(A5), one seeks S2

of the form

S2 =
∑

pp′

Epp′a†p′a
†
p − E†

pp′apap′

+
∑

pp′

Dpp′a†pap′ −D†
pp′a

†
p′ap +

∑

p

Cp, (A9)

where the unknown operators Epp′ , Dpp′ and Cp act
in EA, only. Note that C†

p = −Cp to ensure the
anti-hermitian nature of S2. By inserting Eq.(A9) into
Eq.(A2), these operators are finally defined as

〈k|Cp|k′〉 =
〈k|And

p |k′〉
ωk − ωk′

〈k|Dpp′ |k′〉 =
〈k|B̄pp′ |k′〉

ωk − ωk′ + Ωp − Ωp′

〈k|Epp′ |k′〉 =
〈k|Bpp′ |k′〉

ωk − ωk′ + Ωp + Ωp′

, (A10)

where B̄pp′ = Bnd
pp δpp′ +Bpp′(1 − δpp′).

APPENDIX B: GENERAL EXPRESSION OF THE

EXCITONIC COHERENCES

By inserting the unitary transformation U , the coher-
ence Eq.(9) is rewritten as

Gk2k1(t) = 〈k2|TrB
[

ρBe
iHBtU †e−iĤtU

]

|k1〉. (B1)

Since Ĥ is a sum of independent contribution (see
Eq.(5)), the coherence is expressed as

Gk2k1(t) =

N
∑

k=1

exp [−i(ωk + δωk)t] × (B2)

TrB

[

ρBe
iHBt〈k2|U †|k〉e−iĤ

(k)
B

t〈k|U |k1〉
]

.

Because the operator exp(−iĤ(k)
B t) defines a unitary evo-

lution and since [HB , Ĥ
(k)
B ] = 0, the partial trace in

Eq.(B2) is rewritten as

TrB

[

ρBe
i(HB−Ĥ

(k)
B

)t〈k2|eiĤ
(k)
B

tU †e−iĤ
(k)
B

t|k〉〈k|U |k1〉
]

.

At this step, let first define Uk(t) = eiĤ
(k)
B

tUe−iĤ
(k)
B

t as
the Heisenberg representation of the unitary transforma-

tion U with respect to the Hamiltonian Ĥ
(k)
B . Then, since

ρB = exp(−βHB)/ZB, one obtains

ρBe
i(HB−Ĥ

(k)
B

)t =
Z

(k)
B (t)

ZB
ρ
(k)
B (t),

with

ρ
(k)
B (t) = e−βHB+it(HB−Ĥ

(k)
B

)/Z
(k)
B (t)

Z
(k)
B (t) = TrB

[

e−βHB+it(HB−Ĥ
(k)
B

)
]

. (B3)

From the expressions of both HB and H
(k)
B , Eq.(B3) can

be easily evaluated to finally obtain Eqs.(10) and (11).
Therefore, inserting Eq.(B3) into the previous expres-
sion of the partial trace and combining the results with
Eq.(B2) yield the effective propagator Eq.(12).

APPENDIX C: SECOND ORDER EXPRESSION

OF THE EXCITONIC COHERENCES

The approximate expression of the effective exciton
propagator up to second order in the exciton-phonon cou-
pling V is written as
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Gk2k1(t) =
Z

(k1)
B (t)

ZB
e−iω̂k1

tδk2,k1

− Z
(k2)
B (t)

2ZB
e−iω̂k2

t
∑

p

[

〈k2|ΛpΛ
†
p|k1〉n(k2)

p (t) + 〈k2|Λ†
pΛp|k1〉(n(k2)

p (t) + 1)
]

− Z
(k1)
B (t)

2ZB
e−iω̂k1

t
∑

p

[

〈k2|ΛpΛ
†
p|k1〉n(k1)

p (t) + 〈k2|Λ†
pΛp|k1〉(n(k1)

p (t) + 1)
]

+
Z

(k2)
B (t)

ZB
e−iω̂k2

t
∑

p

[

〈k2|Cp|k1〉 + 〈k2|Dpp −D†
pp|k1〉n(k2)

p (t)
]

− Z
(k1)
B (t)

ZB
e−iω̂k1

t
∑

p

[

〈k2|Cp|k1〉 + 〈k2|Dpp −D†
pp|k1〉n(k1)

p (t)
]

+
∑

k

Z
(k)
B (t)

ZB
e−iω̂kt

∑

p

ei(Ωp+δΩpk)t〈k2|Λp|k〉〈k|Λ†
p|k1〉n(k)

p (t)

+
∑

k

Z
(k)
B (t)

ZB
e−iω̂kt

∑

p

e−i(Ωp+δΩpk)t〈k2|Λ†
p|k〉〈k|Λp|k1〉(n(k)

p (t) + 1), (C1)

where n
(k)
p (t) = [exp(βΩp + iδΩpkt) − 1]−1.

The diagonal elements of the effective propagator
can be partitioned into two contributions as Gkk(t) =
G0

kk(t) + δGkk(t). Basically, Gkk(t) reduces to G0
kk(t)

when the system eigenstates are assumed to be collinear
to the unperturbed states. One thus obtains

G0
kk(t) =

Z
(k)
B (t)

ZB
e−iω̂kt[1 − Λ

(2)
k (t)], (C2)

where Λ
(2)
k (t) arises from the eigenstate correction that

ensures their normalization up to second order as

Λ
(2)
k (t) =

∑

p

〈k|ΛpΛ
†
p|k〉n(k)

p (t)+ 〈k|Λ†
pΛp|k〉(n(k)

p (t)+1).

(C3)

By contrast, δGkk(t) is the contribution of the propagator
that involves the components of the system eigenstates
which are directly coupled to the unperturbed states
through the interaction V . These components account
for a variation of the phonon number equal to unity. The
contribution δGkk(t) reduces to the last two terms in
Eq.(C1) for k1 = k2.
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